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In recent years, Automated Program Repair (APR) has been extensively studied in academia and even drawn
wide attention from the industry. However, APR techniques can be extremely time consuming since (1) a
large number of patches can be generated for a given bug, and (2) each patch needs to be executed on the
original tests to ensure its correctness. In the literature, various techniques (e.g., based on learning, mining,
and constraint solving) have been proposed/studied to reduce the number of patches. Intuitively, every patch
can be treated as a software revision during regression testing; thus, traditional Regression Test Selection (RTS)
techniques can be leveraged to only execute the tests affected by each patch (as the other tests would keep the
same outcomes) to further reduce patch execution time. However, few APR systems actually adopt RTS and
there is still a lack of systematic studies demonstrating the benefits of RTS and the impact of different RTS
strategies on APR. To this end, this article presents the first extensive study of widely used RTS techniques at
different levels (i.e., class/method/statement levels) for 12 state-of-the-art APR systems on over 2M patches.
Our study reveals various practical guidelines for bridging the gap between APR and regression testing,
including: (1) the number of patches widely used for measuring APR efficiency can incur skewed conclusions,
and the use of inconsistent RTS configurations can further skew the conclusions; (2) all studied RTS techniques
can substantially improve APR efficiency and should be considered in future APR work; (3) method- and
statement-level RTS outperform class-level RTS substantially and should be preferred; (4) RTS techniques
can substantially outperform state-of-the-art test prioritization techniques for APR, and combining them can
further improve APR efficiency; and (5) traditional Regression Test Prioritization (RTP) widely studied in
regression testing performs even better than APR-specific test prioritization when combined with most RTS
techniques. Furthermore, we also present the detailed impact of different patch categories and patch validation
strategies on our findings.
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1 Introduction
Automated Program Repair (APR) [25, 29, 32, 71, 79, 84] has been proposed to automatically
generate patches for buggy programs so as to reduce manual debugging efforts. Modern APR
techniques often follow a generate-and-validate procedure, leveraging test suites as the partial
specification of the desired program behavior. More specifically, a test-based APR system repeatedly
generates patches and validates them against the whole test suite until a patch that can pass all
tests is found. To date, a large number of APR techniques have been proposed, effectively fixing a
considerable number of real bugs and improving software quality/productivity [17, 24].

Although receiving wide attention from both academia and industry, APR techniques can be
extremely time consuming [17, 19, 22, 44, 47, 70]: (1) for a given bug, there are a vast number of
patches generated; (2) for each generated patch, it often takes non-trivial time to execute the original
tests for correctness validation. Efficiency is essential for the practical usage of APR systems [44],
as both the production cycle and the development cycle require low-latency debugging assistance
from APR systems. In particular, given the computing resources are not always sufficient, parallel
execution cannot always be available for APR systems.

To reduce overheads in the repair procedure, researchers have proposed various cost reduction
approaches. For example, numerous APR techniques have been proposed to reduce the number of
generated patches, including constraint-based [15, 53, 79], heuristic-based [24, 72, 84], template-
based [32, 40, 41], and learning-based techniques [13, 37, 51]. However, APR still remains one of
the most costly approaches in software engineering.
Regression Testing [83] reruns regression tests on every software revision to check whether it

breaks previously working functionalities and have been widely adopted in practice. Meanwhile,
rerunning all tests for each revision can be extremely time consuming [16, 56].Therefore, researchers
have proposed various regression testing techniques to speed up the process. For example, given a
software revision, Regression Test Selection (RTS) [18, 36, 58, 61, 62] only selects/executes the
tests affected by code changes for faster regression testing (because the other tests should have the
same outcomes on the original and new revisions). To date, RTS techniques have been shown to
significantly accelerate regression testing and has been widely incorporated into build systems of
open source projects [18, 86] and commercial systems [10, 87].

In fact, APR shares a similar procedure with regression testing that the buggy program is repeatedly
modified (by APR systems rather than developers during regression testing) and each generated patch
can be treated as a software revision to be exhaustively validated during regression testing. Therefore,
regression testing techniques, such as RTS, can be naturally applied to accelerate APR. However,
surprisingly, after systematically revisiting the APR literature, we find that such an important
optimization receives little attention from existing APR work: most existing APR systems do not
apply any RTS, while the few APR systems doing so adopt RTS at different granularities without
demonstrating their clear benefits. For example, Practical Program Repair (PraPR) [17] adopts
statement-level RTS while CapGen [71] uses class-level RTS in its implementation without any
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justification. Therefore, it remains unknown that how important it is to adopt RTS in APR systems and
how different RTS techniques affect APR efficiency. As a result, 16 of the 17 APR systems proposed in
recent 3 years have still not adopted any RTS at all (Section 2.3).

To bridge such a knowledge gap, we perform the first extensive study to investigate the impact
of widely used RTS techniques on APR efficiency. More specifically, we first investigate the cost
reduction achieved by widely used RTS techniques at different levels (i.e., class/method/statement
levels); furthermore, we also study the joint impact of RTS and other popular regression testing
techniques (i.e., various test prioritization techniques which reorder test executions and can also
potentially speed up patch validation) on APR efficiency. Our study is conducted on 12 state-of-the-
art APR systems with over 2M patches generated for the widely used Defects4J [28] benchmark.

Our study reveals various practical guidelines for the APR community. (1) The number of patches
widely used for measuring APR efficiency can incur skewed conclusions, and the use of inconsistent
RTS configurations can further skew the conclusion. (2) RTS can indeed reduce a significant
portion of test executions on all studied APR systems and should be considered in future APR
work. (3) The performance varies among different RTS strategies. In particular, statement- and
method-level RTS can significantly outperform class-level RTS and are recommended for future
APR work. (4) RTS techniques can substantially outperform state-of-the-art test prioritization
techniques for APR, and combining them can further improve APR efficiency. (5) Traditional
Regression Test Prioritization (RTP) techniques [39, 48] widely studied in regression testing
perform even better than APR-specific test prioritization [59] when they are combined with most
RTS techniques. Besides, we further present the detailed impact of different patch categories and
patch validation strategies on our findings. Lastly, we also discuss the impact of RTS strategies on
the repair effectiveness.

As the first extensive study on the impact of regression testing on APR, this article makes the
following contributions:

—Literature review. Revisiting the literature and implementations of existing APR systems,
highlighting RTS as an important optimization mostly neglected and inconsistently configured
by existing work.

—Extensive study. Performing the first extensive study on the impact of different regression
testing strategies on APR efficiency, exploring various representative RTS techniques (and RTP
techniques) for 12 state-of-the-art APR systems on a well-established benchmark (Defects4J)
with 395 real bugs, involving over 2M patches in total.

—Practical guidelines. Demonstrating the importance of regression testing for APR and reveal-
ing various practical guidelines regarding the adoption of regression testing for the APR
community and future APR work.

2 Background and Motivation
2.1 RTS
RTS [18, 36, 58, 61, 62] accelerates regression testing by executing only a subset of regression tests.
Its basic intuition is that the tests not affected by code changes would have the same results on the
original and modified revisions. An RTS technique is regarded as safe if it selects all tests that may
be affected by changed code, because missing any of such tests may fail to detect some regression
bugs. A typical RTS strategy involves analyzing two dimensions of information: (1) changed code
elements between the original and modified program revisions and (2) test dependencies on the
original revision. RTS then selects the tests whose dependencies overlap with the changed code
elements.
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Based on the granularities of changed code elements and test dependencies, RTS techniques can
be categorized as class-level [18, 36], method-level [60], and statement-level RTS [21, 58, 62]. For
example, Gligoric et al. [18] proposed an efficient class-level RTS, and Zhang [86] proposed an
RTS strategy of hybrid granularities. In addition, according to how test dependencies are analyzed,
RTS techniques can be categorized as dynamic [18, 21, 58] and static RTS [33, 36]. For example,
Legunsen et al. [36] compared the performance and safety of static RTS approaches in modern
software evolution and found that class-level static RTS was comparable to dynamic class-level RTS.
To date, RTS has been shown to substantially reduce the end-to-end regression testing costs [18, 86]
and has been widely incorporated into build systems of open source projects [2, 4]. While existing
work has extensively studied different RTS approaches in the traditional regression testing and
other related scenarios (e.g., non-functional genetic improvement [20]), in this work, we perform
the first extensive study of RTS in the APR scenario.

2.2 APR
APR [53, 67, 82] automatically fixes program bugs with minimal human intervention. Given a buggy
program, APR generates patches and then validates them to check their correctness. A typical
test-based APR system takes a buggy program and its test suite (with at least one failed test) as
inputs and consists of three phases. (1) Fault localization: before the repair process, off-the-shelf
fault localization [7] is leveraged to diagnose suspicious code elements (e.g., statements). (2) Patch
generation: the APR system then applies repair operations on suspicious locations following the
suspiciousness ranking list. Each modified program version is denoted as a candidate patch. (3)
Patch validation: lastly, each candidate patch is validated by the test suite until a patch that can
pass all tests is found, i.e., plausible patch. The whole patch validation is often terminated once
finding plausible patches or reaching the time budget.

Existing work suggests that patch validation is very time consuming [22, 49], because (1) the
number of generated patches is large and (2) each patch validation requires non-trivial time to
execute the original tests. To date, various APR systems have been proposed to generate patches
with different strategies, and they can be categorized into the following categories according
to the way of patch generation. (1) Heuristic-based APR [24] (e.g., GenProg [84], ARJA-e [85],
VarFix [75]) iteratively explore the search space of program modifications via certain heuristics; (2)
constraint-based APR [15, 53, 79], e.g., Nopol [80], generates patches for conditional expressions
by transforming them into constraint solving tasks; (3) template-based APR [32, 41], e.g., KPar
[40], designs predefined patterns to guide patch generation; (4) learning-based APR [13, 37, 51],
e.g., CocoNut [51], adopts machine/deep learning techniques to generate patches based on existing
code corpus.

2.3 RTS in Patch Validation
In addition to the large number of generated patches, each patch also needs to be executed against
the original tests, which can be very costly. In fact, the generate-and-validate procedure in APR
is very similar to the regression testing scenario that patches are modifications of the original
buggy program and each of them needs to be validated by the existing test suite. Therefore, it is
intuitive to adopt regression testing techniques in patch validation, such as improving the repair
efficiency by executing only the tests affected by the patch via RTS. We then systematically revisit
RTS techniques adopted in existing APR systems. In particular, we consider APR systems targeting
Java programs due to its popularity in the APR community and use two sources of information to
collect representative APR systems (i.e., program-repair.org and the living review of APR [57]). For
each APR system, we check which RTS strategy is used both in its paper and its implementation (if
the source code is released). Table 1 summarizes the results of our literature review.
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Table 1. Revisiting RTS Strategies on APR Systems

APR Time RTS APR Time RTS APR Time RTS
PAR [31] 2013 No jGenProg [53] 2016 No jKali [53] 2016 No

jMutRepair [53] 2016 No DynaMoth [16] 2016 No xPAR [36] 2016 No
HDRepair [36] 2016 No NPEFix [15] 2017 No ACS [80] 2017 No

Genesis [47] 2017 No jFix/S3 [35] 2017 No EXLIR [65] 2017 No
JAID [12] 2017 No ssFix [79] 2017 No SimFix [25] 2018 No

Cardumen [54] 2018 No SketchFix [23] 2018 Stmt LSRepair [44] 2018 No
SOFix [46] 2018 No CapGen [72] 2018 Class ARJA [85] 2018 Stmt

GenProg-A [85] 2018 Stmt Kali-A [85] 2018 Stmt RSRepair-A [85] 2018 Stmt
SequenceR [14] 2019 No kPAR [41] 2019 No DeepRepair [74] 2019 No

PraPR [18] 2019 Stmt Hercules [66] 2019 No GenPat [24] 2019 No
AVATAR [42] 2019 No TBar [43] 2019 No Nopol [81] 2019 No
ConFix [32] 2019 No FixMiner [33] 2020 No CocoNut [52] 2020 No
DLFix [38] 2020 No CURE [27] 2021 No Recoder [89] 2021 No

Reward [82] 2022 No DEAR [39] 2022 No AlphaRepair [78] 2022 No
ARJA-e [86] 2020 No VarFix [76] 2021 No

Stmt, statement.

Based on the table, we have the following findings. (1) Most existing APR systems, including the
latest system proposed in 2022, have not adopted any RTS strategy to optimize the efficiency of
patch validation. In other words, the whole test suite is repeatedly executed against each generated
patch, including the tests that are not affected by the patch at all. Although some system (i.e.,
VarFix) adopts random sampling to reduce the test executions, it still executes the entire test suite
after the sampled test are passing. (2) The few APR systems which adopt RTS are all based on
dynamic RTS. This makes sense as prior regression testing studies show that static RTS can be
imprecise and unsafe (e.g., due to Java Reflections) [36, 66]. (3) For the few APR systems using RTS,
they adopt RTS at different granularities (highlighted by different colors in the table) without clear
justification. For example, PraPR directly performs dynamic statement-level RTS, while CapGen
uses class-level RTS.

Motivation: RTS is neglected by most APR systems and different RTS strategies are randomly
adopted for those few systems using RTS. Therefore, it remains unknown how necessary it is
to adopt RTS in APR and how different RTS techniques affect APR efficiency. To bridge this
knowledge gap, we perform the first extensive study on the impact of RTS on APR efficiency.

3 Study Design
3.1 Preliminaries
We first formally define key conceptions used in this article.

3.1.1 Patch Validation Matrix. Given a buggy program P1 and its test suite T (with at least one
failed test), an APR system generates a list of candidate patches P after the patch generation phase.

Definition 3.1. Patch Validation Matrix M defines the execution results of all tests on all patches.
In particular, each cell M[P, C] represents the execution result of test C ∈ T on patch P ∈ P,
which can have the following values: (1) m, if C has not been selected by RTS and thus skipped for
execution, (2) 7, if C fails on the patch P, (3) 3, if C passes on the patch P, and (4) —, if C is selected
by RTS but has not been executed (i.e., its execution result remains unknown).

The early-exit mechanism is a common efficiency optimization widely enabled in existing APR
systems [17, 24], which stops validation for the current patch once it fails on any test. In this
scenario, there are many tests whose results remain unknown, resulting in a validation matrix
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with “—” cells. We denote such a matrix as a partial patch validation matrix M? . Meanwhile, in the
other scenario where the execution results of all tests are required [49], the early-exit mechanism is
often disabled. In this scenario, all the selected tests would be executed even when there are some
tests that already failed during patch validation, leaving no “—” cell in the matrix M. We denote
such a matrix as a full patch validation matrix M5 . The following are examples for full and partial
matrices when there is no RTS adopted in patch validation. For example, patch validation for P1

stops by the failure of C1, and thus the execution results of C2 and C3 on P1 remain unknown in M? .

M5 =


C1 C2 C3

P1 7 3 3
P2 7 7 3
P3 3 3 3

 M? =


C1 C2 C3

P1 7 − −
P2 7 − −
P3 3 3 3

 (1)

3.1.2 Studied RTS Strategies. Based on the literature review, we focus on dynamic RTS strategies
that utilize test coverage in buggy programs as test dependencies, since static RTS can be imprecise
and unsafe [36, 66]. Given a candidate patch P, PΔ denotes the set of code elements modified by P,
and C[P1, C] denotes the set of code elements in P1 that are covered by the test C .

Definition 3.2. Given a patch P and the whole test suite T , a dynamic RTS strategy for APR
selects a subset of tests T ′ for execution. In particular, for precise and safe RTS, each test in T ′

should cover at least one modified code element, i.e., ∀C ∈ T ′,PΔ ∩ C[P1, C] ≠ ∅, while each test
not in T ′ should not cover any modified element, i.e., ∀C ∉ T ′,PΔ ∩ C[P1, C] = ∅.

Note that the above definition is simplified for the ease of understanding. Our actual implemen-
tation for ensuring RTS precision and safety is actually more complicated and handles all types
of Java code changes (e.g., method-overriding hierarchy changes) following prior safe RTS work
[18, 86]. According to the granularity of modified code elements, we study three RTS strategies:
class-level (')(2;0BB ), method-level (')(<4Cℎ>3 ), and statement-level RTS (')(BC<C ). In addition, we
regard no RTS adoption as the baseline test selection strategy, denoted as ')(=> . In the example, if
C1 and C3 cover the statements modified by P1, while C1 and C2 cover the statements modified by
P2 and P3, the partial and full validation matrices associated with ')(BC<C can be represented as
Equation (2). For example, since C3 does not cover any statement modified by P3, ')(BC<C skips
C3 in the validation for P3. However, if C3 happens to cover other statements in the same class as
the modified statements (i.e., C3 covers the classes modified by P3), ')(2;0BB would select C3 when
validating P3. In this way, RTS at coarser granularities tend to select more tests.

M5 =


C1 C2 C3

P1 7 m 3
P2 7 7 m
P3 3 3 m

 M? =


C1 C2 C3

P1 7 m −
P2 7 − m
P3 3 3 m

 (2)

3.1.3 Efficiency Measurement. Recent work [44] on APR efficiency adopts the number of patches
as the efficiency metric. However, in our work, simply counting the number of patches could
be imprecise, because it treats each patch as equally costly and measures repair efficiency in an
oversimplified way. For example, given M? in Equation (1), both P2 and P3 would be regarded as
one program execution, even if P3 actually executes more tests than P2. Therefore, in this study, we
define the following metrics based on the number or time of test executions for precise efficiency
measurement.

Definition 3.3. Given a patch validation matrix M, its accumulated number of test executions
#)=D< (M), sums up the number of test executions on all the validated patches, i.e.,
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#)=D< (M) =
∑
M[P, C], if M[P, C] ≠ m ∧ M[P, C] ≠ —; its accumulated time of test execu-

tions #)C8<4 (M), sums up the time of test executions on all the validated patches, i.e., #)C8<4 (M) =∑
5C (M[P, C]), if M[P, C] ≠ m ∧ M[P, C] ≠ —, and the function 5C returns the execution time of

the given test C on the patch P.

Definition 3.4. Given the patch validation matrix M without regression testing technique, and
the matrix M')( generated by certain regression testing strategy, '43D2C8>==D</C8<4 measures the
efficiency improvement achieved by the RTS strategy compared to no RTS, i.e., '43D2C8>==D</C8<4=
#)=D</C8<4 (M)−#)=D</C8<4 (M')( )

#)=D</C8<4 (M) .

For example, without any RTS (in Equation (1)),#)=D< (M5 ) is 9 and#)=D< (M? ) is 5. Meanwhile,
with ')(BC<C (in Equation (2)), #)=D< (M')(

5
) is 6 and #)=D< (M')(

? ) is 4. ')(BC<C achieves 33.33%
/20.00% '43D2C8>==D< in the full/partial matrix. Such efficiency difference cannot be captured by
the number of patches. For example, if only considering the number of patches in M')(

? and M? ,
there is no reduction achieved by RTS at all.

In this work, we mainly present the results on the number of test executions. In fact, we find that
results between the number or the time of test executions are consistent (more details in Section 5).
While execution time is often dependent on many factors (e.g., specific implementations and test
execution engines) unrelated to APR approaches [44], the number of test executions is more stable
and more suitable for future work to reproduce. In addition, we also discuss the RTS impact on
repair effectiveness in Section 5.

3.2 ResearchQuestions (RQs)
—RQ1: Revisiting APR efficiency. We revisit the efficiency of APR systems by making the first
attempt to (1) measure repair efficiency by the number of test executions and (2) compare the
efficiency of different APR systems with consistent RTS configurations to eliminate the bias
from RTS strategies.

—RQ2: Overall impact of RTS strategies. We investigate the efficiency improvement achieved by
different RTS strategies based on their reduction of test executions.

—RQ3: Impact on different patches. We further study the impact of RTS on patches of different
characteristics (i.e., fixing capabilities and fixing scopes) to find out what kinds of patches are
more susceptible to RTS.

—RQ4: Impact with the full patch validation matrix . In RQ1–RQ3, we investigate APR efficiency
with the default partial patch validation matrix (with early-exit), which is widely adopted in
many APR systems for the sake of efficiency. In this RQ, we further study the impact of RTS
strategies with the full validation matrix (without early-exit).

—RQ5: Combining test selection with prioritization. In addition to RTS strategies, when the
early-exit is enabled, the execution order of tests jointly decides the number of test execu-
tions. Therefore, we further combine the studied RTS strategies with state-of-the-art test
prioritization techniques and investigate their impact on APR efficiency.

3.3 Benchmark
We perform our study on the benchmark Defects4J V.1.2.0 [28], which is the version used most
widely by existing APR work [17, 42, 79]. Defects4J V.1.2.0 includes 395 real-world bugs from
6 real-world software systems. We choose Defecst4J, as (1) some studied APR systems are only
implemented for Java (e.g., SimFix), and (2) most studied systems are evaluated on Defects4J in their
previous work while using a consistent widely used benchmark can better position our findings in
the domain.
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3.4 Studied APR Systems
Following the recent studies on APR [44], our study selects APR systems for Java program according
to the following criteria. (1) The source code of the APR system is publicly available because we
need to modify patch validation settings. (2) The APR systems can be successfully applied to
Defects4J subjects. (3) The APR systems require no extra input data besides program source code
and the available test suite. In this way, we successfully collect 16 APR systems fulfilling the
requirements above, and all of them are also used as the studied APR systems in previous work
[44]. However, these APR systems use test cases at different granularities: the Astor family [52]
(including jMutRepair, jGenProg, jKali) and Cardumen [53] regard each test class as a test case,
while the remaining systems all regard each test method as a test case. Since RTS results at different
test-case granularities are incomparable, we use the more popular test-method granularity with 12
APR systems in our study, including (1) constraint-based systems: Accurate Condition Synthesis
(ACS) and Dynamoth, (2) heuristic-based systems: Arja, GenProg-A, Kali-A, RSRepair-A, and SimFix,
(3) template-based systems: AVATAR, FixMiner, kPar, PraPR, and TBar. In total, the studied APR
systems generate 2,532,915 patches for all the Defects4J subjects studied, while each patch can involve
up to thousands of test executions.

3.5 Implementation Details
To implement studied RTS strategies, following state-of-the-art Ekstazi [18] and HyRTS [86], we
leverage on-the-fly bytecode instrumentation with ASM [5] and Java Agent [6] for lightweight test
dependency collection at the class/method/statement level on buggy programs. For all studied APR
systems, we modify their source code to collect patch/test execution results with different RTS and
validation settings. We only keep the compilable patches (85% compilation rate) in our experiments
as RTS strategies cannot be applied to un-executable patches. For each system, we try up to three
re-executions for failed/error repair attempts. In all RQs, we schedule all originally failed tests prior
to originally passed tests, which is also the common practice of all recent APR systems because
the former are more likely to fail again on patches. For each APR system, we mainly follow the
same configurations (such as timeout and JDK version) as its original publication. We manually
modified all studied APR systems to collect the detailed patch execution information required by
unified debugging and ensured our modified versions did not impact underlying tool functionality.
Each system used original time settings suggested by the original papers. Each tool was executed
using the same JDK version found in the tool’s original publication, allowing us to obtain repair
execution results as close as possible to the tool’s original results.

From RQ1 to RQ4, within the originally failed tests or the originally passed tests, we prioritize
them by their default lexicographical order to eliminate the impact of different test execution orders.
Our data are available at [1], including patch results and impact on repair effectiveness of all studied
APR tools.

3.6 Threat to Validity
Our study focuses on APR systems for Java programs, which might threaten generality of our
findings. We mitigate this threat by performing our study on a large spectrum of APR systems
belonging to different categories and a widely used benchmark with hundreds of real bugs [17,
24, 71]. In addition, to mitigate the threat in faulty implementations, we carefully review our RTS
implementations and experimental scripts; the source code of all the studied APR systems was
directly obtained from their authors or original open source repositories; we further ensured that
each APR system performs consistently before and after our modifications.
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Table 2. Number of Test Executions among APR Systems

Subject RTS Strategy PraPR SimFix AVATAR kPar TBar FixMiner Dynamoth ACS Arja Kali-A GenProg-A RSRepair-A

Lang

#Patch 381.27 275.98 4.63 4.79 4.76 4.56 0.16 1.00 522.97 26.92 628.85 289.23
#Test (')(=> ) 2,117.61 8,802.36 321.41 163.19 437.52 233.15 1,256.86 1,140.80 68,448.64 799.43 86,910.25 10,945.44
#Test (')(2;0BB ) 447.31 291.91 19.48 18.30 24.63 18.88 25.71 64.40 1,571.25 59.54 2,746.19 620.69
#Test (')(<4Cℎ>3 ) 414.15 244.86 12.11 11.89 12.63 11.88 2.86 1.80 1,196.83 51.54 1,376.81 556.39
#Test (')(BC<C ) 412.59 244.79 11.44 11.59 11.96 11.50 2.00 1.20 1,176.53 50.63 1,369.64 534.58

Math

#Patch 1,483.12 469.45 5.84 5.12 5.01 4.76 0.23 1.00 804.09 10.11 858.19 411.58
#Test (')(=> ) 11,879.77 13,723.01 168.78 237.05 640.65 239.38 2,042.74 3,071.33 104,804.90 705.64 73,174.10 9,661.55
#Test (')(2;0BB ) 1,711.16 679.05 12.92 46.66 34.66 9.47 50.79 241.33 4,828.21 22.00 5,231.08 828.93
#Test (')(<4Cℎ>3 ) 1,573.21 403.17 8.20 7.25 8.18 7.03 32.53 14.83 2,105.64 15.97 1,610.38 498.28
#Test (')(BC<C ) 1,557.41 379.67 7.81 6.86 7.25 6.23 27.00 6.33 1,382.11 14.10 1,419.85 463.63

Time

#Patch 1,466.54 396.50 2.50 2.00 2.23 1.08 0.23 1.00 335.92 13.23 380.62 107.46
#Test (')(=> ) 7,782.19 3,754.42 1,065.00 4.73 359.09 490.00 1,303.67 3,894.00 34,310.82 724.00 141,456.00 2,652.50
#Test (')(2;0BB ) 2,513.88 658.67 232.55 4.73 80.82 107.38 537.33 2,042.00 7,337.91 325.70 29,401.40 635.00
#Test (')(<4Cℎ>3 ) 1,848.62 372.08 9.73 4.73 6.55 5.25 8.67 52.00 3,822.82 55.30 10,596.50 413.90
#Test (')(BC<C ) 1,808.12 368.08 9.73 4.73 6.55 5.25 8.67 27.00 1,781.91 38.50 1,903.60 291.50

Chart

#Patch 784.88 588.21 5.00 4.56 4.40 4.48 0.40 - 627.76 42.36 729.72 333.16
#Test (')(=> ) 5,517.96 2,459.42 272.84 107.61 367.74 102.12 1,640.80 - 202,236.87 2,035.27 104,090.08 9,552.46
#Test (')(2;0BB ) 1,053.80 529.25 8.26 8.00 8.79 7.12 77.30 - 27,627.48 133.45 5,694.38 758.38
#Test (')(<4Cℎ>3 ) 868.24 485.96 6.89 6.89 6.37 6.59 16.70 - 6,853.48 61.45 2,645.12 450.67
#Test (')(BC<C ) 863.96 485.92 6.89 6.89 6.37 6.59 16.30 - 2,356.57 56.82 1,746.42 386.71

Closure

#Patch 14,725.00 511.03 2.96 2.61 2.94 0.42 - - - - - -
#Test (')(=> ) 86,651.19 7,995.31 342.78 378.73 478.09 2.89 - - - - - -
#Test (')(2;0BB ) 47,374.48 3,229.28 140.81 154.94 197.02 2.89 - - - - - -
#Test (')(<4Cℎ>3 ) 28,476.71 922.37 6.17 9.90 6.67 2.89 - - - - - -
#Test (')(BC<C ) 21,825.07 662.63 4.49 3.92 4.40 2.89 - - - - - -

Mockito

#Patch 2,307.92 - 1.67 2.00 1.81 1.67 - - - - - -
#Test (')(=> ) 3,753.19 - 267.75 41.27 200.27 4.62 - - - - - -
#Test (')(2;0BB ) 2,857.81 - 97.56 26.00 146.47 4.62 - - - - - -
#Test (')(<4Cℎ>3 ) 2,555.61 - 7.62 5.80 48.00 4.62 - - - - - -
#Test (')(BC<C ) 2,547.64 - 7.38 5.80 7.33 4.62 - - - - - -

4 Results Analysis
4.1 RQ1: Revisiting APR Efficiency
Table 2 presents the number of test executions with different RTS strategies. We also present the
number of validated patches in the table (i.e., #Patch is the average patch number of each bug).
Note that cells are empty when there is no valid patch generated. Based on the table, we have the
following observations.

First, measuring APR efficiency by a more precise metric (i.e., the number of test executions) can
draw totally different conclusions from the number of validated patches advocated by prior work
[44]. For example, for each buggy version of Math, SimFix (469.45 patches) validates many more
patches than RSRepair-A (411.58 patches), showing that SimFix is less efficient than RSRepair-A
in terms of the number of validated patches. Such a conclusion is consistent with the finding
in previous work [44], which also measures APR efficiency by the number of validated patches.
However, the conclusion can be opposite if these systems are compared by the number of test
executions. For example, with class-level RTS, SimFix executes 679.05 tests and RSRepair-A executes
828.93 tests per buggy version of Math, indicating that SimFix is more efficient than RSRepair-
A. The reason is that although RSRepair-A generates fewer patches than SimFix, each patch of
RSRepair-A executes many more tests than SimFix. Such inconsistencies between the number
of test executions and patches are prevalent. Hence, it is imprecise to measure APR efficiency
by simply counting the number of patches, since different patches can execute totally differ-
ent number of tests. Future work on APR efficiency should also consider the number of test
executions.

Second, comparing APR efficiency with different RTS strategies can also deliver opposite conclu-
sions. For example, on subject Time, RSRepair-A executes 413.90 and 291.50 tests with ')(<4Cℎ>3

and ')(BC<C , while SimFix executes 372.08 and 369.08 tests with ')(<4Cℎ>3 and ')(BC<C . When
both systems are configured with method-level RTS, RSRepair-A is considered as less efficient
than SimFix; however, when they are compared under statement-level RTS, RSRepair-A is actually
more efficient than SimFix. Moreover, if APR systems are compared under different RTS strategies
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Table 3. Reduction of the Number of Test Executions by Different RTS Strategies

Subject RTS Strategy PraPR SimFix AVATAR kPar TBar FixMiner Dynamoth ACS Arja Kali-A GenProg-A RSRepair-A

Lang
')(2;0BB 33.33% 35.66% 17.92% 10.57% 21.48% 14.80% 69.99% 56.37% 36.67% 22.16% 26.11% 30.12%

')(<4Cℎ>3 34.51% 36.31% 18.35% 10.95% 22.05% 15.22% 71.31% 59.94% 38.16% 22.50% 26.68% 31.17%
')(BC<C 34.55% 36.31% 18.40% 10.99% 22.09% 15.26% 71.36% 59.97% 38.17% 22.52% 26.70% 31.20%

Math
')(2;0BB 48.91% 52.45% 5.46% 5.36% 19.91% 8.63% 92.17% 90.59% 38.66% 16.44% 28.77% 31.73%

')(<4Cℎ>3 50.41% 55.81% 6.27% 6.30% 21.08% 8.99% 93.06% 98.86% 40.16% 16.79% 30.16% 32.44%
')(BC<C 50.50% 55.89% 6.28% 6.31% 21.11% 9.05% 93.33% 99.63% 40.42% 16.85% 30.35% 32.68%

Time
')(2;0BB 31.25% 29.42% 7.14% 0.00% 7.15% 9.83% 19.62% 47.56% 19.59% 17.90% 7.97% 16.26%

')(<4Cℎ>3 40.12% 35.60% 9.06% 0.00% 9.06% 12.45% 33.15% 98.66% 21.41% 28.27% 9.31% 17.38%
')(BC<C 40.31% 35.60% 9.06% 0.00% 9.06% 12.45% 33.15% 99.31% 22.60% 29.01% 9.93% 18.01%

Chart
')(2;0BB 58.50% 33.16% 15.68% 5.49% 20.88% 5.85% 85.96% - 53.39% 40.87% 34.93% 39.33%

')(<4Cℎ>3 62.45% 34.67% 15.76% 5.55% 21.02% 5.88% 89.10% - 59.10% 43.78% 38.81% 42.02%
')(BC<C 62.52% 34.67% 15.76% 5.55% 21.02% 5.88% 89.12% - 59.67% 44.10% 39.22% 42.45%

Closure
')(2;0BB 31.73% 20.27% 3.22% 3.79% 3.90% 0.00% - - - - - -

')(<4Cℎ>3 46.18% 30.51% 5.28% 6.56% 7.38% 0.00% - - - - - -
')(BC<C 51.80% 32.01% 5.30% 6.65% 7.42% 0.00% - - - - - -

Mockito
')(2;0BB 18.03% - 21.10% 2.77% 5.49% 0.00% - - - - - -

')(<4Cℎ>3 21.17% - 30.69% 6.43% 14.82% 0.00% - - - - - -
')(BC<C 21.30% - 30.72% 6.43% 19.67% 0.00% - - - - - -

Average
')(2;0BB 36.96% 34.19% 11.75% 4.66% 13.13% 6.52% 66.93% 64.84% 37.08% 24.34% 24.45% 29.36%

')(<4Cℎ>3 42.47% 38.58% 14.23% 5.96% 15.90% 7.09% 71.66% 85.82% 39.71% 27.83% 26.24% 30.75%
')(BC<C 43.50% 38.90% 14.25% 5.99% 16.73% 7.11% 71.74% 86.30% 40.22% 28.12% 26.55% 31.09%

respectively, the conclusion may further be skewed. Therefore, it is important to adopt the same
RTS strategy when comparing the repair efficiency among different APR systems. We also strongly
recommend the future APR work to explicitly describe their RTS strategy adopted in experiments,
so that their follow-up work can mitigate the threats in RTS configuration.

Finding 1: Using inconsistent RTS configurations can skew the conclusion of APR efficiency. Future
APR work should explicitly describe their adopted RTS strategies and the efficiency comparison
among multiple APR systems should guarantee a consistent RTS configuration.

4.2 RQ2: Overall Impact of RTS Strategies
Table 3 presents the reduction of the number of test executions achieved by each RTS strategy
compared to no RTS. Based on the table, for all the studied APR systems on almost all the subjects,
adopting RTS can remarkably reduce the number of test executions in patch validation. For example,
on the subject Math, Dynamoth skips 93.33% of test executions if it adopts ')(BC<C . Even for RTS at
the coarsest level (i.e., ')(2;0BB ), the average reduction ranges from 4.66% to 66.93% among different
APR systems. Note that at some cases there is no difference among RTS strategies, e.g., FixMiner
on Closure, because all generated patches fail at the first executed test (i.e., the first originally
failed test still fails on these patches). We would further analyze the individual impact on different
patches in Section 4.3. In summary, our results suggest that RTS can significantly improve the
efficiency of patch validation and future APR work should no longer overlook such an important
optimization.

Finding 2: For all studied APR systems, adopting RTS can remarkably improve APR efficiency and
should be considered in future APR work.

Overall, there is a common trend that ')(BC<C always executes the least tests while ')(2;0BB
exhibits the most tests. This is not surprising because class-level coverage is the coarsest selection
criterion, based on which more tests would inherently be selected. In addition, ')(<4Cℎ>3 /')(BC<C
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Table 4. Reduction on P%2� and P3

APR P%2� P3

')(2;0BB ')(<4Cℎ>3 ')(BC<C ')(2;0BB ')(<4Cℎ>3 ')(BC<C

PraPR 73.24% 85.74% 87.95% 87.33% 97.18% 97.88%
SimFix 82.88% 99.11% 99.15% 84.50% 96.77% 98.22%

AVATAR 81.16% 98.95% 99.17% 82.27% 99.36% 99.53%
kPar 66.33% 98.07% 98.58% 83.47% 99.31% 99.80%
TBar 68.34% 98.63% 99.13% 76.07% 95.39% 99.55%

FixMiner 85.02% 96.90% 99.14% 93.28% 99.71% 99.80%
Dynamoth 94.75% 96.71% 97.22% 87.50% 99.19% 99.27%

ACS - - - 98.34% 99.66% 99.95%
Arja 90.09% 95.56% 97.28% 93.58% 99.15% 99.44%
Kali 88.76% 97.97% 99.30% 84.30% 99.00% 99.59%

GenProg 88.85% 96.84% 99.05% 94.28% 99.33% 99.57%
RSRepair 92.83% 97.94% 99.42% 95.79% 99.11% 99.58%

can significantly reduce more test executions (4.36%/4.69% on average) than ')(2;0BB . Such a differ-
ence is statistically significant according to the Wilcoxon Signed-Rank Test [74] at the significance
level of 0.05 on almost all the APR systems (i.e., 11 out of 12). Meanwhile, interestingly, the differ-
ence between ')(<4Cℎ>3 and ')(BC<C is often subtle. For example, the average difference between
')(<4Cℎ>3 and ')(BC<C is only 0.33%. In fact, such observation is consistent with prior work in
traditional regression testing [86], which shows that method-level RTS outperforms class-level RTS
but is often not significantly worse than statement-level RTS. The reason is that modern system
design principles recommend writing simple method bodies for the ease of maintenance, making
the majority of method body changes directly affect all tests covering the methods (i.e., ')(BC<C is
close to ')(<4Cℎ>3 ). Hence, method- and statement-level RTS are more recommended for APR.

Finding 3: Different RTS strategies exhibit different reduction performance. ')(BC<C and ')(<4Cℎ>3

perform similarly, but both of them significantly outperform ')(2;0BB .

4.3 RQ3: Impact on Different Patches
We now investigate the impact of RTS strategies on the patches of different characteristics. Based on
the intuition that a patch involving more test executions might be more sensitive to RTS strategies,
we categorize patches by their fixing capabilities or fixing code scopes. Sections 4.3.1 and 4.3.2
present the impact on these patch categorizations, respectively.

4.3.1 Impact on Patches of Different Fixing Capabilities. Based on test execution results, we
can categorize patches into groups of different fixing capabilities. (1) P�2� : a patch cannot fix all
originally failed tests and thus its validation gets aborted by some originally failed test; (2) P%2� : a
patch can fix all originally failed tests but fails on some originally passed test, and thus its validation
gets aborted by some originally passed test; (3) P3: a patch that can pass all originally failed and
originally passed tests (i.e., plausible patch). Obviously, P�2� has the weakest fixing capability and
its validation halts extremely early, and thus adopting RTS would not make any difference on its
number of test executions. Therefore, we present the impact of RTS strategies on the other two
patch groups, i.e., P%2� and P3 in Table 4. In particular, each cell shows the reduction ratio of test
executions compared to no RTS. Note that since ACS generates only P�2� and P3, its corresponding
cells in P%2� are empty. As suggested by the table, compared to the overall reduction on all patches
(i.e., the reduction in Table 3), the impact of RTS strategies on P3 and P%2� is even more remarkable.
For example, the reduction ratio ranges from 66.33% to 99.42% on P%2� and ranges from 76.07% to
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Fig. 1. Ratio of patches of different fixing capabilities.

99.95% on P3. In addition, compared to all patches, the difference between RTS strategies is also
enlarged on P3 and P%2� . In summary, RTS can achieve larger reductions for patches with stronger
fixing capabilities.

Finding 4: The impact of RTS strategies is even more prominent on P3 and P%2� , where an extremely
large portion of tests (e.g., up to 99.95%) get reduced.

Considering the drastic impact of RTS on P3 and P%2� , we further check whether an APR system
is more susceptible to RTS if it exhibits a higher ratio of P3 or P%2� . Figure 1 presents the ratio of
different patch categories.

First, it is noteworthy that almost all the existing APR systems exhibit a very high ratio (e.g.,
around 90%) of P�2� , indicating that P%2� and P3 are sparse in the space of compilable patches.
Liu et al. [44] empirically compared the number of un-compilable patches and inplausible patches
generated by different APR systems, to measure their costs wasted in patch validation toward
generating a valid patch. Their work showed that the state-of-the-art APR techniques can avoid
generating un-compilable patches. However in our work, we make the first attempt to investigate
patches of different fixing capabilities (e.g., how many tests can pass on each patch). Our results
suggest that for most existing APR systems, the majority of their inplausible patches have a low
capability of fixing originally failed tests and get immediately terminated in the very beginning
stage of validation. We also find that the two constraint-based APR systems (e.g., Dynamoth and
ACS) generate a lower ratio of P�2� . The potential reason may be that constraint-based APR systems
target at conditional expressions, which are more likely to impact the test execution outcomes,
i.e., making the originally failed test pass. In addition, ACS designs ranking strategies on fixing
ingredients for condition synthesis, which might bring the plausible patch forward, end up the
whole validation process earlier, and thus reduce the ratio of P�2� .

Second, there is no apparent correlation between the ratio of P%2� (or P3) and the impact degree
of RTS strategies (e.g., with −0.09 Pearson correlation coefficient). For example, although PraPR
exhibits a quite low ratio of P%2� and P3 (e.g., 0.29% and 0.93%), it reduces a larger portion of test
executions than other APR systems. One straightforward reason is that the number of originally
failed tests is significantly less than the originally passed tests. For example, each buggy version in
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Closure has 2.63 failed tests and 7,180.89 passed tests on average. The number of skipped originally
passed tests is often significantly larger than the number of originally failed tests, and thus the
impact of RTS on originally passed tests can still dominate the overall efficiency. It also explains
why even with such a low ratio of P%2� and P3 we can still observe a remarkable impact of RTS on
overall efficiency.

Finding 5: The majority of compilable patches generated by existing APR systems immediately fail
on the originally failed tests. Even with such a low P%2� and P3, the APR efficiency is still sensitive
to RTS strategies, since most bugs exhibit substantially more originally passed tests than originally
failed tests.

4.3.2 Impact on Patches of Different Fixing Scopes. Based on the scope of fixed code, all the
generated patches can be categorized as single-edit or multiple-edit patches. In particular, according
to the granularity of edited code elements, we categorize patches as (1) patches editing single
class (denoted as P(� ) vs. patches editing multiple classes (denoted as P"� ), (2) patches editing
single method (denoted as P(" ) vs. patches editing multiple methods (denoted as P"" ), and (3)
patches editing single statement (denoted as P(( ) vs. patches editing multiple statements (denoted
as P"( ).

Figure 2 presents the ratio of patch categories of different fixing code scopes. It shows that the
majority of generated patches are single-edit patches, especially when edited code elements are at
coarser granularities (i.e., class or method).

Table 5 presents the reduction achieved by RTS at the corresponding granularity on single-edit
and multiple-edit patches. For example, the cell in the column “')(2;0BB” and the row “Lang” means
that on Lang ')(2;0BB can reduce 21.83% and 27.36% of test executions on patches that edit multiple
classes (P"� ) and on patches that edit single class (P(� ), respectively. Based on the table, at most
cases, RTS can reduce more test executions on single-edit patches than multiple-edit patches. The
reason is that multiple-edit patches often involve more code elements and thus are covered by more
tests, resulting in a lower ratio of reduction. Note there are several counter cases, e.g., on Closure
the reduction on multiple-statement patches is much larger than on single-statement patches
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Table 5. Reduction on Single/Multiple Edit Patches

Subject ')(2;0BB ')(<4Cℎ>3 ')(BC<C

P"� P(� P"" P(" P"( P((
Lang 21.83% 27.36% 21.83% 27.86% 15.25% 25.75%
Math 26.18% 28.82% 17.67% 30.35% 20.45% 29.75%
Time 9.85% 13.26% 20.78% 16.49% 7.53% 14.77%
Chart 32.92% 30.99% 27.95% 35.14% 19.27% 33.64%

Closure - 11.30% - 19.48% 55.06% 17.34%
Mockito - 9.48% - 14.62% - 15.62%

MC, multiple classes; MM, multiple methods; MS, multiple statements;
SC, single class; SM, single method; SS, single statement.

(55.06% v.s. 17.34%). We find that at these cases a considerable ratio of generated multiple-edit
patches have stronger fixing capabilities (i.e., belong to P%2� or P3) and thus exhibit a higher
reduction.

Finding 6: Most patches generated by existing APR systems are single-edit patches. RTS can reduce
more test executions on single-edit patches than on multiple-edit patches, since usually fewer tests
can cover the modified code elements of single-edit patches. Meanwhile, for some special cases,
multiple-edit patches can have high probabilities in producing high-quality patches passing more
tests, leaving more room for RTS.

4.4 RQ4: Impact with the Full Matrix
In RQ1–RQ3, we investigate the impact of RTS with the partial validation matrix (M? ), i.e., the
early-exit mechanism is enabled and the validation for each patch would be terminated after any
test failure. In RQ4, we study the impact of RTS with the full matrix (M5 ), i.e., the validation for
each patch would continue even when there are failed tests. A full validation matrix is common in
the scenario that execution results of all tests are required, such as unified debugging [48]. In this
RQ, we further investigate whether there is any difference of RTS impacts in two scenarios (full
validation matrices vs. partial validation matrices).

Table 6 shows the accumulated number of test executions #)=D< (M5 ) on each APR system. We
present the average number of all subjects and buggy versions. It is notable that the full patch
validation matrix collection is extremely resource-consuming, e.g., from thousands to millions
of tests are executed when there is no RTS. We can observe a prominent reduction when RTS
strategies at finer granularities are integrated in APR systems. For example, on average, for each
buggy version, ')(BC<C even reduces millions of test executions for PraPR. In summary, our results
show that RTS should definitely be applied in the full-matrix scenario.

Finding 7: The full validation matrix is extremely resource consuming, for which RTS has a more
remarkable impact by reducing even up to millions of test executions.

We further compare the reduction achieved by RTS between full and partial matrices in Figure 3.
First, the reduction curves of the full matrix are far beyond the partial matrix. For example, with the
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Table 6. Number of Test Executions with Full Matrices

APR ')(=> ')(2;0BB ')(<4Cℎ>3 ')(BC<C

PraPR 20,018,923.45 12,495,932.50 9,958,460.34 9,600,813.31
SimFix 70,588.42 11,408.54 1,483.51 1,039.05

AVATAR 11,065.76 2,821.98 1,219.36 591.52
kPar 9,903.78 2,435.97 1,088.50 509.45
TBar 10,256.57 2,856.96 1,237.31 522.12

FixMiner 6,441.49 740.07 144.00 32.86
Dynamoth 596.65 114.32 17.75 16.86

ACS 93.46 5.12 1.44 0.71
Arja 1,435,025.26 177,282.34 32,882.52 23,861.27
Kali 54,751.70 3,999.24 915.59 755.44

GenProg 1,585,441.03 199,088.14 33,824.91 23,840.29
RSRepair 668,634.75 48,785.24 7,650.52 5,131.89
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Fig. 3. Reduction with full/partial matrices.

full matrix, all the RTS strategies can help all APR systems save more than 70% of test executions. In
particular, ')(BC<C and ')(<4Cℎ>3 can save more than 95% of test executions at most cases. Second,
the difference between partial and full matrices varies among different APR systems. For example,
Dynamoth achieves a slightly larger reduction while AVATAR achieves a much larger reduction
after they switch from partial matrices into full matrices. Furthermore, consistent with the finding
for partial matrices, method- and statement-level RTS perform similarly, and both substantially
outperform class-level RTS. Interestingly, their superiority over class-level RTS is even enlarged
with full matrices. In fact, the early-exit mechanism in partial matrices prevents more tests from
executing, which mitigates the impact from RTS strategies. Therefore, the reduction achieved in
the full-matrix scenario represents the upper bound of the impact.

Finding 8: RTS can remarkably reduce more test executions with full matrices than with partial
matrices. Method- and statement-level RTS still perform similarly, but their superiority over class-
level RTS is further enlarged with full matrices.
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In summary, the impact of RTS in the full matrices differs from the partial matrices in the
following two folds. First, the reduction ratio in the full matrices is significantly larger than that in
the partial matrices, indicating that RTS is a more necessary efficiency optimization setting for the
full-matrix scenario. Second, the gap between the class-level RTS and method-level/statement-level
RTS in the full-matrix scenario is substantially larger than that in the partial-matrix scenario,
indicating that method-level/statement-level RTS is much more recommended for the full-matrix
scenario.

4.5 RQ5: Test Selection+Prioritization
So far we have studied the RTS impact on APR efficiency controlled in a default test execution
order (i.e., the lexicographic order). In fact, when the early-exit mechanism is enabled (the default
setting for most modern APR systems), the test execution order can also affect the final number of
test executions since it decides when the first failure-triggering test would be executed. Therefore,
we further study the impact of different test prioritization strategies and their joint impact with
RTS on APR efficiency:

—Baseline prioritization. Tests are scheduled by their lexicographic order, which is also the
default setting in previous RQs (denoted as )%10B4 ).

—Patch-history-based prioritization. Qi et al. [59] consider the tests that have failed on more
validated patches as more likely to fail on the current patch and schedule them to execute
earlier. We consider this approach since it is the state-of-the-art test prioritization strategy
specifically designed for APR, and we are the first to study its combination with RTS (denoted
as )%�%').

—RTP . Besides RTS, RTP techniques have also been widely studied in traditional regression
testing to reorder tests for early detection of regression bugs [39, 48, 68]. Since each patch
can be treated as a new revision in regression testing, we can naturally apply RTP for APR.
In particular, we consider two most widely studied approaches, i.e., the total and additional
RTP techniques based on statement coverage [63]. They share the similar intuition that
tests covering more statements or more yet-uncovered statements are more likely to detect
regression bugs (denoted as ')%C>C and ')%033 ). Note that we are also the first to directly apply
RTP for APR.

For each patch, RTS is applied to decide the tests for execution and test prioritization is applied
to decide their execution order. We still follow the common practice of all recent APR systems that
all the originally failed tests are executed before all originally passed tests, because the former are
more likely to fail again on patches. Within the originally failed tests or the originally passed tests,
we further apply the test prioritization strategies to schedule their execution order.

In Table 7, we present the reductions achieved by the combination of different RTS and priori-
tization strategies when compared to ')(=> with )%10B4 . The highest reduction within each RTS
strategy is highlighted. Based on the table, we have the following observations. First, combining
RTS with test prioritization can further improve APR efficiency. However, compared to RTS, test
prioritization brings much lower reduction ratios. For example, when PraPR adopts no RTS, the
best prioritization (i.e., ')%033 ) can achieve only 15.21% reduction, but the worst RTS alone (i.e.,
')(2;0BB with )%10B4 ) can achieve 36.96% reduction. This indicates that test selection strategies
play a more essential role in efficiency optimization. Second, the best prioritization strategy varies
when combined with different RTS strategies. For most APR systems, surprisingly, the traditional
RTP strategy ')%033 reduces the most test executions when combined with ')(=> , ')(2;0BB , or
')(<4Cℎ>3 . We further perform Wilcoxon Signed-Rank Test at the significance level of 0.05 and find
the differences are all statically significant (i.e., p-values < 0.05). To the best of our knowledge, this
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Table 7. Reduction of Combining Selection and Prioritization

APR ')(=> (%) ')(2;0BB (%) ')(<4Cℎ>3 (%) ')(BC<C (%)
)%�%' ')%C>C ')%033 )%10B4 )%�%' ')%C>C ')%033 )%10B4 )%�%' ')%C>C ')%033 )%10B4 )%�%' ')%C>C ')%033

PraPR 14.53 5.08 15.21 36.96 41.44 35.44 40.38 42.47 44.55 41.13 44.95 43.50 44.82 42.91 44.35
SimFix 20.51 −33.17 14.21 34.19 36.76 14.99 36.02 38.58 39.25 20.86 38.74 38.90 39.33 37.20 39.03

AVATAR 0.98 1.44 4.31 11.75 11.28 11.48 10.47 14.23 14.24 14.24 14.31 14.25 14.26 14.25 14.30
kPar −1.75 −0.83 0.66 4.66 3.81 3.93 4.21 5.96 5.98 5.99 4.43 5.99 6.00 6.01 5.90
TBar −1.08 −1.49 2.79 13.13 11.96 11.66 13.86 15.90 15.90 15.89 15.44 16.73 16.73 16.72 16.14

FixMiner −1.44 −0.62 0.08 6.52 6.54 6.51 6.07 7.09 7.10 7.10 6.64 7.11 7.11 7.11 8.53
Dynamoth 2.07 1.49 5.44 66.93 67.01 66.95 66.89 71.66 71.71 71.67 71.65 71.74 71.79 71.74 71.77

ACS 0.00 −33.16 -4.12 64.84 64.84 64.42 65.93 85.82 85.82 85.85 85.97 86.30 86.30 86.32 86.32
Arja 20.58 5.33 13.30 37.08 39.33 37.71 39.71 39.71 40.72 40.01 40.92 40.22 40.79 40.48 40.62
Kali 6.80 6.90 10.29 24.34 25.81 25.29 26.16 27.83 28.10 27.87 28.98 28.12 28.17 28.13 28.14

GenProg 14.03 7.85 11.51 24.45 25.79 24.57 25.87 26.24 26.62 26.11 27.14 26.55 26.66 26.49 26.56
RSRepair 14.31 9.00 10.95 29.36 30.47 29.71 31.08 30.75 31.04 30.79 32.02 31.09 31.13 31.06 31.11

is the first study demonstrating that in the APR scenario, the traditional RTP technique even out-
performs state-of-the-art APR-specific test prioritization technique at the most cases (e.g., without
RTS and with coarse-grained RTS). One potential reason may be that the generated patches share
little commonality and it is challenging for )%�%' to infer the results of un-executed patches from
historical patch executions. In contrast, ')%033 executes tests with diverse statement coverage
as early as possible and thus can advance buggy patch detection. Furthermore, it is notable that
')%033 becomes less effective than )%�%' when combined with ')(BC<C . Intuitively, the tests
selected by coarser-grained coverage criteria (e.g., class-level RTS) tend to exhibit a more diverse
distribution of statement coverage than the tests selected by the statement-level RTS. Therefore,
when combined with ')(BC<C , )%�%' has a stronger capability in distinguishing tests based on
their historical execution results. Third, we can observe that ')%033 outperforms ')%C>C in terms
of the repair efficiency, which is consistent with the previous findings in traditional regression
testing [50, 63].

Finding 9: This study demonstrates for the first time that test selection outperforms test prioritization
for APR, and their combination could further improve APR efficiency. Also, surprisingly, traditional
RTP strategy ')%033 outperforms state-of- the-art APR-specific test prioritization )%�%' for most
cases.

5 Discussion
Time Costs. Figure 4 presents the reduction of both the time and the number of test executions
achieved by different RTS strategies on three representative APR systems (i.e., PraPR, SimFix, and
ACS). In particular, we choose PraPR, SimFix, and ACS as they are the latest APR techniques in their
belonging categories (i.e., template-based, heuristic-based, and constraint-based APR). Based on
the figure, we could have the following observation. In particular, the trends are actually consistent
between the time costs and the number of test executions. For example, on ACS, the gap between
class-level RTS strategy and other RTS strategies is much larger in terms of both time costs and
number of test execution. In fact, such an observation is as expected, as the number of tests in a
test suite is often very large and the reduction achieved by RTS is significant. Note that here we
already include the RTS overheads into time costs, but it is rather lightweight compared to the
patch execution time. For example, for PraPR with the largest project Closure, RTS takes 13 seconds
for all patches while the patch execution without RTS takes about 4 hours. Hence, the number
of reduced test executions is so large that the diversity in the execution time of different tests
would have little effect on the results. In other words, although different tests may have different
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Fig. 5. Plausible patches with different RTS strategies.

execution time, the reduction achieved by RTS strategies is so significant that it exhibits similar
trends between the number of test executions and test execution time. In summary, the time costs
and number of test executions can be alternative when measuring the efficiency of APR systems.
In particular, time costs can demonstrate the efficiency in a more straightforward way while the
non-determinism is supposed to be mitigated by multiple executions; the number of executions can
demonstrate the efficiency in a more stable way. Our results encourage the community to consider
test executions as a status quo metric in the future work.

Repair Effectiveness. We further discuss the impact of different RTS strategies on repair effective-
ness. Figure 5 shows the number of plausible patches (the y-axis) found by different number/time
of test executions (the x-axis). For space limits, we present PraPR results here, and other results
are in our website. The figure indicates a consistent observation with our previous findings: RTS
improves APR efficiency, and thus it helps find more plausible patches within the same budgets.

6 Related Work
Since Section 2 presents background about RTS and APR, here we focus on other regression testing
techniques and the closely related work for improving APR efficiency.
Regression Testing. Besides RTS, researchers also propose other two categories of regression

testing techniques, i.e., RTP [39, 48, 59] and Test-Suite Reduction (TSR) [83]. With the common
goal of accelerating regression testing, RTP reorders test executions for earlier fault detection,
while TSR removes redundant tests permanently according to certain testing requirements. Since
it is often challenging to identify redundant tests, TSR can incur fault detection loss and is not
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as widely adopted (compared to RTS and RTP). This study excludes TSR because it may produce
incorrect patch validation results and reduce the APR accuracy.
APR Efficiency. APR is expensive due to the large number of generated patches and non-trivial

costs in patch validation. In addition to many APR approaches that aim to reduce the number of
generated patches (mentioned in Section 2.2), researchers propose to reduce the number of test
executions for each patch. For example, Qi et al. [59] utilize patch execution history to prioritize
tests. Mehne et al. [55] reduce test executions based on statement coverage (i.e., statement-level
RTS); similarly, as suggested in Table 1, several existing APR systems also leverage RTS to accel-
erate patch validation, e.g., the ARJA family [84] adopts statement-level RTS and CapGen [71]
adopts class-level RTS. In addition, Mechtaev et al. [54] and Just et al. [27] skip redundant test
executions based on program-equivalence, i.e., the test executions of two test-equivalent patches
(e.g., exhibiting indistinguishable test results) can be essentially reduced. Lou et al. [8, 9, 49] unify
the fault localization and program repair to narrow down the search space of the buggy location,
so as to further facilitate the debugging process.

However, the community still lacks a comprehensive understanding on the benefits of RTS for
APR, and our work conducts the first study to systematically investigate the impact of representative
RTS techniques on a wide range of state-of-the-art APR systems.

Besides reducing the number of test executions, researchers have also looked into speeding up
the time for each test/patch execution during APR. For example, JAID [11] and SketchFix [22]
transformed the buggy programs into meta-programs or sketches to accelerate patch validation.
Ghanbari et al. [17] proposed a bytecode-level APR approach which requires no patch compilation
and system reloading. More recently, Chen et al. [12] leveraged on-the-fly patch validation to
save patch loading and execution time to speed up all existing source-code-level APR techniques.
Such techniques are orthogonal to test execution reduction studied in this work, and they can be
combined to further reduce APR cost.
7 Conclusion and Future Work
This work points out an important test execution optimization (RTS) largely neglected and incon-
sistently configured by existing APR systems. We perform the first extensive study of different RTS
techniques for 12 state-of-the-art APR systems on over 2M patches. Our findings include the number
of patches widely used for measuring APR efficiency and the inconsistent RTS configurations can
both incur skewed conclusions; all studied RTS techniques substantially improve APR efficiency,
while method-/statement-level RTS significantly outperform class-level RTS. We also present the
RTS impact on different patches and its combination with test prioritization.

In the future, we plan to extend this work with more APR systems and more test selection
strategies. In particular, this work currently focuses on traditional APR systems. While given the
recent advance in Large Language Models (LLMs), investigating the test execution efficiency
in LLM-based APR systems [69, 76, 77] is an essential problem. In addition, this work mainly
focuses on the RTS strategies in patch validation, while it remains many open problems on more
customized test selection strategies for patch validation, such as leveraging static dependencies or
run-time dependencies for test selection. In addition, extending this study to more diverse projects
and different programming languages can also be interesting future work.
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