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ABSTRACT

Concurrency bugs in an operating system (OS) are detrimental as
they can cause the OS to fail and affect all applications running
on top of the OS. Detecting OS concurrency bugs is challenging
due to the complexity of the OS synchronization, particularly with
the presence of the OS specific interrupt context. Existing dynamic
concurrency bug detection techniques are designed for user level
applications and cannot be applied to operating systems.

To detect OS concurrency bugs, we proposed a new type of anno-
tations — interrupt related annotations — and generated 96,821 such
annotations for the Linux kernel with little manual effort. These
annotations have been used to automatically detect 9 real OS con-
currency bugs (7 of which were previously unknown). Two of the
key techniques that make the above contributions possible are: (1)
using a hybrid approach to extract annotations from both code and
comments written in natural language to achieve better coverage
and accuracy in annotation extraction and bug detection; and (2)
automatically propagating annotations to caller functions to im-
prove annotating and bug detection. These two techniques are gen-
eral and can be applied to non-OS code, code written in other pro-
gramming languages such as Java, and for extracting other types of
specifications.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids; D.4.1 [Operating systems]: Process Management—
Concurrency, Deadlock

General Terms

Documentation, Experimentation, Languages, Reliability

Keywords

Concurrency bug detection, Annotation languages, Interrupts, Op-
erating systems, Static analysis

1. INTRODUCTION

Concurrency bugs are inevitable in multi-threaded programs as
concurrency is inherently complex and programmers are trained to
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think sequentially when coding. Concurrency bugs not only cause
severe damage [30, 55], but also are hard to detect due to their
non-deterministic nature. The severity of the concurrency bugs
increases as the popularity of multicore hardware makes multi-
threaded programs more pervasive. Concurrency bugs in an op-
erating system (OS) are particularly detrimental because OS fail-
ures caused by concurrency bugs, e.g., hangs and crashes, can bring
down all software running on top of the OS. As operating systems
inherently have to deal with concurrent activities and shared re-
sources, they have a much higher percentage of concurrency bugs
than application software [59]. A recent study shows that 19% of
OS driver bugs are concurrency bugs [52].

Detecting concurrency bugs in an operating system is not well
addressed and is particularly challenging mainly for two reasons:
e The OS specific interrupt context makes OS concurrency ex-

tremely complex and it has challenged the OS community for

decades [11]. Figure 1 shows that a thread 7" holding lock L is
interrupted by an interrupt handler 7'y (referred to as in interrupt
context), which needs to acquire the same lock. Since the han-
dler T’y has preempted the thread 7', T would not be rescheduled
until the interrupt handler T finishes [10]. The interrupt han-
dler T’y cannot finish its execution because it waits for the lock

L that the thread 7" holds. Such a real deadlock bug has been

found in the Linux kernel 2.6.12: in the function do_entInt

in arch/alpha/kernel/irq_alpha.c, the developers forgot to call
local_irqg disable to disable interrupts to prevent an inter-
rupt handler from contending with other threads on the same lock

(more details appear in Figure 5 and Section 2.5).

Lock Failed Lock
Acquisition Acquisition

Interrupt Handler
Thread (T) Thread (TH)

E lnterrupted by TH

Deadlock! ﬁ)

Figure 1: A deadlock. Since the interrupt handler 7'y interrupted the
thread T, thread 7" cannot be scheduled until 7' finishes; T cannot
finish because it is waiting for 7" to release the lock L.

It is difficult for developers to avoid such interrupt related
bugs. Typically, an OS has tens of thousands of device drivers [40]
and interrupt handlers written by thousands of developers across
several decades [46], with new interrupt handlers being added
constantly. Additionally, interrupts can happen anytime during



linux/kernel/time/tick-oneshot.c:

/% ... Called with interrupts disabled. x/ /%
int tick_init_highres(void) { ... }

int /«@IRQ(0, X)x*/ tick_init_highres(void) { ... }

Called with interrupts disabled. x/

(a) The Original Version

(b) The Annotated Version

Figure 2: Converting a comment in the Linux kernel into an annotation

the execution of a thread, creating numerous possible interleav-
ing combinations. Therefore, it is difficult for a kernel developer
to reason about the numerous possible interleaving combinations
between a thread and the large amount of evolving interrupt han-
dlers. Further, as interrupts are uncommon events (“anomalies”),
they are likely to be neglected by developers, because develop-
ers are less good at enumerating and correctly implementing all
possible anomalies than making the normal/main flow correct.

e The complexity of an operating system, the difficulty of instru-
menting an OS and the large amount of drivers make bug de-
tection for operating systems particularly difficult and cumber-
some. Existing concurrency bug detection tools are mainly built
for user level applications, and have not demonstrated their ef-
fectiveness of detecting concurrency bugs in operating system
code. The complexity and sheer size of an operating system can
incur a prohibitively high run-time overhead and instrumentation
difficulties on dynamic approaches, which is undesirable.

1.1 State of Art

In order to detect concurrency bugs, many techniques have been
proposed [5, 8, 17, 20, 25, 35, 36, 45, 47, 51, 54, 63, 65, 67, 68].
There are two main limitations of these techniques: (1) these tools
do not consider the interaction with the OS specific interrupt han-
dlers, thus missing the opportunity to detect related bugs; and (2)
most of the effective concurrency bug detection tools are dynamic
tools that are designed for user level applications. Detailed com-
parison with prior concurrency bug detection work is discussed in
Section 6.2.

To address the two limitations above, static approaches with in-
terrupts in mind would be a great solution for tackling operating
system concurrency bugs. Toward using static approaches, many
annotation languages [9, 15, 38, 39, 62, 66] are proposed to allow
programmers to formally express their intentions and assumptions,
e.g., where a lock is needed, etc. These annotations not only can be
checked against code to detect software bugs, but also can prevent
developers from introducing new bugs by making the intentions
and assumptions explicit.

These annotation languages have made significant impact. For
example, Microsoft’s SAL annotations [38] helped to detect more
than 1,000 potential security vulnerabilities in Windows code [4].
Seeing the success of SAL, Microsoft recently proposed new anno-
tations including concurrency related annotations [4]. In addition,
several other annotation languages, including Sparse [62] from the
Linux kernel community, Sun’s Lock_Lint [39], and SharC [3], ex-
press concurrency related concerns.

However, none of the annotation languages above fully express
the concurrency assumptions that an OS needs, e.g., interrupt re-
lated assumptions. Ideally, we want to know the preconditions
and postconditions regarding interrupts of every function. In other
words, we want to know whether interrupts should be disabled
or enabled upon entry of a function, and whether the interrupts
should be disabled or enabled upon exit of the function. Con-
sidering that software can contain hundreds of thousands of func-
tions, it is tedious and time-consuming to manually annotate all of

these functions. The significant amount of effort involved in an-
notating programs can greatly limit the impact of annotation lan-
guages [16]. Therefore, while we should definitely encourage de-
velopers to write annotations, it would be desirable to provide sup-
port for annotating new and legacy code.

1.2 Idea and Contributions

Fortunately, it is feasible to extract interrupt related precondi-
tions and postconditions from both source code and comments writ-
ten in natural language. We will use examples to explain how we
extract postconditions and preconditions in this section. The de-
tailed extraction techniques are described in Section 2.3. For post-
conditions, if we know that 1ocal_irq disable disables inter-
rupts, we can infer that all functions thatcall local_irq disable
but not any interrupt-enabling-function also disable interrupts.

Preconditions can be inferred in multiple ways. It has been a
common practice for programmers to write comments to directly
express their intentions and assumptions [46, 60]. For example, the
comment in Figure 2(a) states that interrupts must be disabled be-
fore calling tick_init_highres. This comment can potentially
be expressed as annotation /+ @IRQ (0, X) x/, where 0 indi-
cates that interrupts must be disabled before calling the function,
and x indicates that interrupts can be either disabled or enabled
upon exit of this function (Figure 2(b)). Section 2.4 describes how
the postcondition, X, can be refined during the annotation propaga-
tion process.

Additionally, programmers often write code assertions such as
BUG_ON (!irgs_disabled()) to print an error message if inter-
rupts are not disabled, indicating that they assume that interrupts
must be disabled already. The function run_posix_cpu_timers,
for instance, starts with BUG_ON (!irgs_disabled () ), indicating
that this function must be called with interrupts disabled. Although
such dynamic assertions can help detect bugs, they are limited be-
cause (1) they require bugs to manifest in order to detect them,
which is difficult for OS concurrency bugs; and (2) these assertions
incur high runtime overhead, therefore are often disabled for pro-
duction runs for better performance. If we could convert such as-
sertions into annotations and check the annotations statically, such
a static approach can complement dynamic assertions [69] to detect
more bugs with no run-time overhead. For example, we add annota-
tion /x @IRQ (0, X) =/ tofunction run_posix_cpu_timers,
which enables us to detect the Linux kernel bug discussed ear-
lier. Furthermore, we may infer interrupt related preconditions
from source code by using statistical approaches similar to prior
work [13, 31, 33].

We propose converting programmers’ intentions inferred from
the comments and code they write into formal annotations and use
these annotations to detect interrupt related OS concurrency bugs.
Two key techniques helped us generate annotations for all functions
for effective bug detection: hybrid annotation extraction from both
comments and code and annotation propagation. First, we infer
annotations solely from comments. We then infer annotations from
code only, e.g., from code assertions such as BUG_ON. Finally, we
combine the annotations inferred from both comments and code to
detect bugs. We also demonstrate that the annotations inferred from



comments and code complement each other. By combining them,
we achieve better coverage and accuracy in annotation extraction,
which help us detect more bugs more accurately. For effective bug
detection, we also automatically propagate annotations from callee
functions to caller functions when necessary.

Although this paper focuses on generating interrupt related an-
notations and detecting OS concurrency bugs, the hybrid approach
of extracting specifications from both comments and code can be
applied to non-0S code, code written in other programming lan-
guages such as Java, and for extracting other types of specifica-
tions. While this paper focuses on leveraging the extracted anno-
tations to detect bugs, the annotations can be used for many other
purposes, such as helping developers avoid bugs.

In total, we generate 96,821 interrupt related annotations from
the Linux kernel, which are automatically propagated from a to-
tal of 245 seed annotations. These seed annotations are inferred
directly from comments and code assertions with little manual ef-
fort (226 of which are from comments, and 24 of which are from
code assertions). Only 5 of the seed annotations can be extracted
from both comments and code assertions, meaning that the major-
ity (221 from comments and 19 from code assertions) can only be
extracted from one source. The result indicates that it is beneficial
to infer annotations from both sources. We have used these annota-
tions to detect 9 real bugs (7 of which were previously unknown),
which are more than we could have detected by using annotations
extracted from code alone or using annotations extracted from com-
ments alone.

This work, aComment, makes the following contributions:

e Proposed a new type of annotations — interrupt related annota-
tions — and generated 96,821 such annotations for the Linux ker-
nel with little manual effort.

e Leveraged the new annotations to automatically detect bugs caused

by the complex OS synchronization related to interrupt context.

e Applied a general, hybrid approach to extract specifications from
both code and comments. Note that our prior work iComment [60]
only extracts rules from comments (a background of iComment
and a detailed comparison with iComment appear in Section 6.3).

e Used the interrupt related annotations to compare the coverage
of code and comments regarding annotation extraction and bug
detection.

2. DESIGN OF aComment

To help prevent and detect software bugs, our ideal goal is to an-
notate all functions with interrupt related annotations and use these
annotations to check for bugs. However, this process is tedious
and time-consuming; aComment automates this process. There are
three steps in annotating all functions and using them for bug de-
tection: (1) designing expressive and easy-to-use annotation lan-
guages, (2) converting comments and code into formal annotations,
including propagating annotations to the callers of a function when
necessary, and (3) verifying that these annotations are followed by
the code.

Section 2.1 presents the three major challenges of aComment
and an overview of our solutions. Section 2.2-2.4 describe how we
perform the three steps described above respectively and how we
address the three major challenges.

2.1 Challenges and An Overview of Our Solu-
tions

This section discusses the three major challenges in annotating
all functions and using the annotations for bug detection.

Converting comments and code into annotations.

Although it is promising to extract annotations from comments
and code, it is quite challenging. First, comments are ambiguous
and written in free form; developers can express the same meaning
using different words, phrases, sentence structures, etc. It is dif-
ficult to automatically and precisely analyze comments to extract
the correct annotations from them. Furthermore, we want the an-
notations generated by our aComment tool to be accurate, as these
annotations are intended to be added back to the source code to help
developers better understand the program to prevent them from in-
troducing new bugs.

To address the challenges above, we improve our comment parser
used in iComment [60], design new heuristics for extracting anno-
tations, and manually verify all generated annotations. For each
generated annotation, our analyzer shows the original comment and
the surrounding code to allow a user to either accept, reject, or mod-
ify the extracted annotations (e.g., flip the annotation, change the
function name, etc.). The 245 manually verified correct annotations
can help us detect bugs, as well as guide the developers to prevent
the introduction of new bugs. To extract annotations from code
assertions (briefly described earlier in Section 1.2, and elaborated
later in this Section), we built a scalable static analysis tool.

Dealing with scarceness of annotations.

Since not all functions have comments or code assertions stat-
ing their preconditions and postconditions, one cannot annotate all
functions in a piece of software simply by extracting annotations
from comments and code assertions.

To annotate all functions, we need to have the ability to prop-
agate annotations of a function to the function’s callers. For ex-
ample, if we know that function local_irg enable enables all
local interrupts and that a direct caller of it does not disable inter-
rupts, we can infer that the postcondition of its caller assumes that
interrupts are enabled. It is tedious and time-consuming to man-
ually perform this analysis as software contains tens of thousands
of functions and their interaction is complex. It is challenging to
make this process efficient and scalable. We propose a bottom-up
summary-based annotation propagation technique to automate this
process, which avoids analyzing a function repetitively (Details in
Section 2.4).

Handling interrupt restoring functions.

It is insufficient for aComment to consider only interrupt dis-
abling functions (e.g., local_irq disabled) and interrupt en-
abling functions (e.g., local_irg enable), as some functions
(called interrupt restoring functions, e.g., local_irg restore)
restore a previously-saved interrupt state. We cannot treat such
restoring functions as a simple interrupt disabling function or an
interrupt enabling function. Thus, they have to be specially treated.

2.2 Annotation Language Design

As we are concerned with the OS synchronization in the special
interrupt context, we design annotations in the following format:
@IRQ (Precondition, Postcondition),where Precondition
and Postcondition can have one of the 4 values, i.e., 0, 1, X and
p. The meanings of each of the 4 values are shown in Table 1(a).
Value p indicates that a function, e.g., local_irqg restore, re-
stores the saved interrupt state. We use (x, P) to indicate func-
tions that restore a saved interrupt state, and all other 6 annotations
that contain a value P is not accepted. Therefore, although there
are 16 possible annotations, only 10 of them are accepted by aCom-
ment as shown in Table 1(b), and the rest of the 6 should not appear
in aComment.



Meaning

IRQ (Pre, P
Value | Meaning @ @?R(Q Eg’ O;)St)
0 Interrupts are disabled. @IRQ (O’ 1
1 Interrupts are enabled. g%gg 8’ (1);
X Don’t-care: Interrupts are either %Ill;% (();(’ )é))
disabled or enabled. @IRQ (X, 1
P Interrupts are restored to the saved g}gg g(l)’ ig
interrupt state. @IRQ (X’ P)

Don’t-care on entry and interrupts are restored to the saved state on exit.

Interrupts are disabled on entry and remain disabled on exit.
Interrupts are disabled on entry but are enabled on exit.
Interrupts are enabled on entry but are disabled on exit.

Interrupts are enabled on entry and remain enabled on exit.

Either @IRQ (0, 0) or @IRQ (1, 1)
Don’t-care on entry and interrupts are disabled on exit.
Don’t-care on entry and interrupts are enabled on exit.
Interrupts are disabled on entry and don’t-care on exit.
Interrupts are enabled on entry and don’t-care on exit.

(a) The meaning of the 4 annotation values

(b) All valid annotations. ‘Pre’ stands for preconditions and ‘Post’ denotes postconditions.

Table 1: Proposed Annotations.

Software | #Sentence | #IRQSent
Linux 1,024,624 23,662
FreeBSD 420,013 11,117
NetBSD 680,650 23,942
OpenSolaris 535,073 8,074
Total | 2,660,360 66,795

Table 2: Extracting annotations from comments is challenging. #Sen-
tence is the total number of comment sentences. #IRQSent is the to-
tal number of comment sentences that contain the keyword ‘interrupt’
(case insensitive).

Typically, there are two ways to incorporate annotations in soft-
ware: (1) adding annotations in comments so that they are back-
ward compatible, or (2) introducing new language keywords, which
can ensure that the annotations evolve with code but is not back-
ward compatible. Either would work for aComment. We choose
the first approach for backward compatibility.

2.3 Annotation Extraction

This section describes how we extract preconditions from the
comments and source code (more specifically, code assertions).
We call these directly extracted annotations seed annotations. Sec-
tion 2.4 presents how to propagation these seed annotations to their
caller functions when necessary, and postconditions are determined
during this propagation process.

Extracting Annotations from Comments.

Annotation extraction from comments consists of two steps: (1)
comment extraction: extracting annotation containing comments,
which are comments that contain interrupt-related preconditions
(defined in Section 2.2) and (2) annotation generation: converting
these comments into annotations. Postconditions are inferred dur-
ing the propagation process, which is presented later in Section 2.4.

Comment Extraction: We improve the comment parser from
iComment [60], use it to extract all comments from a given pro-
gram, and break these comments into sentences.

What does not work? We extracted comment sentences that con-
tain word “interrupt” regardless of cases. Table 2 shows that there
are on the order of 10,000 such comments. A cursory examination
found that less than 5% of the comments contain the kind of anno-
tations we want to extract (defined in Section 2.2), which is consis-
tent with our comment characteristics study results [46]. Therefore,
it is inefficient to manually read all of these comments to extract
seed annotations. Our prior work iComment [60] used machine
learning techniques to automatically analyze several thousands of
lock-related comments to extract programming rules. However,
we cannot directly apply the techniques used in iComment [60]

ID Heuristic

1 <call> & <with> & <interrupt> (ordered)

2 <before> & <disable/enable> & <interrupt> (orderless)
3 | <assume> & <disable/enable> & <interrupt> (orderless)

Table 3: Main heuristics used to extract annotations from comments.
Names in <> are variables (defined in Table 4) which can expand into
multiple words and their variants. The first heuristic requires the three
variables to appear in the specified order while the other two do not.

because around 25% of the thousands of lock-related comments
contain rules, but less than 5% of the over 10,000 interrupt related
comments contain rules/annotations. The same techniques used in
iComment [60] would produce much less accurate results for in-
terrupt related comments. Additionally, aComment requires higher
analysis accuracy as the extracted annotations are intended to be
added back to the source code to improve program comprehension
and prevent the introduction of new bugs. We do not want to add
wrong annotations to mislead developers.

Therefore, we combine simple program analysis with effective
heuristics to extract annotations and manually verified all of the an-
notations. The heuristics are shown in Table 3 where each variable
can be expanded into multiple words and their variants as shown in
Table 4. We tried our best to include as many paraphrases and vari-
ants. For example, in addition to “disable”, we used “turn off”,
“block”, “lock out”, and their variants such as “disables”, “dis-
abling”, “disabled”, “turning off”, “turned off”, “turns off”, etc. In
the future, we can leverage advanced natural language processing
techniques [19, 32] to automatically discover paraphrases. Addi-
tionally, we filter out comments that contain words such as “may”
and “might”. Furthermore, as aComment only extracts function
preconditions and postconditions, we only consider comments that
are before a function body, a function declaration, or a function call.
As we aim for high precision, i.e., more extracted annotations are
accurate and correct, the heuristics above are biased to find more
comments that are likely to contain annotations at the cost of miss-
ing some annotation containing comments.

Annotation Generation: After aComment extracts the com-
ments that contain the interrupt related preconditions, aComment
needs to decide if the precondition is 0 or 1 and extract the name of
the function associated with the annotation. aComment obtains the
information above using simple program analysis and heuristics:

Is the precondition 0 or 17 By identifying the verbs (e.g., “dis-
able” and “enable”) and negation words (e.g., “not”), we can deter-
mine the precondition. For example, “disable” is mapped to 0, and
a negation word “not” flips the precondition once to 1.

What is the function name? Given an annotation containing com-
ment, aComment can extract the function name by analyzing the



Variable Definition
<call> Word “call”, its variants such as calls, called, and calling
<before> “caller”, “before”, “on entry”, “upon entry”, and their variants
<disable/enable> | “disable”, “enable”, “turn on”, “turn off”, “block”, “lock out”, and their variants
<interrupt> “interrupt”, “irq”, and their variants

Table 4: Definitions of the variables in Table 3

linux/kernel/posix-cpu-timers.c: linux/kernel/timer.c:
1 static void vmi_timer_set_mode(enum clock_event_mode mode, 1 void update_process_times(int user_tick)
2 struct clock_event_device *evt) { 2 | {
3 cycle_t now, cycles_per_hz; 3 struct task_struct xp = current; // calls get_current() X, X)
4 BUG_ON(lirgs_disabled()); 4 int cpu = smp_processor_id(); // not a function call
3 5
6 } 6 account_process_tick(p, user_tick); 0, 0)
7 run_local_timers(); 0, 0)
- : - 8 if (rcu_pending(cpu)) X, X)
Figure 3: Code assertion example 9 rcu_check_callbacks(cpu, user_tick); X, X)
10 scheduler_tick(); 0, 0)
11 run_posix_cpu_timers(p); 0, 0)
code segment below the comment, e.g., a function definition or a 2 ) }
function call statement.

For each generated annotation, our analyzer shows the original
comment and the surrounding code to allow a user to either accept,
reject, or modify the annotation (e.g., flip the annotation, change
the function name, etc.).

As shown later in Table 8, the heuristics are effective in dramat-
ically reducing the number of comments we need to verify. We
only needed to read 682 of the 66,795 comments to verify a total
of 355 accurate seed annotations from the four operating system
code bases. These manually verified accurate 355 interrupt related
annotations can not only help detect bugs, but also help developers
prevent the introduction of bugs.

Extracting Annotations from Code.

As many functions do not have comments explaining their pre-
conditions and postconditions, we need to extract more seed anno-
tations by learning from the source code. We observed that source
code typically contains assertions to indicate that a function must
be called with interrupts disabled or enabled. For example, Fig-
ure 3 shows that function vmi_timer_set_mode calls assertion
code BUG_ON (!irgs_disabled()) as its first statement to indi-
cate that interrupts should have already been disabled before call-
ing vmi_timer_set_mode. At runtime, if interrupts are not dis-
abled before calling vmi_timer_set_mode, error messages will
be printed by the kernel. While such assertions can help detect bugs
to some extent, they are limited as mentioned in Section 1.2: (1)
debugging macros such as BUG_ON are disabled by default mainly
due to the high runtime overhead; and (2) such a dynamic approach
can only detect manifested bugs, and the manifestation of concur-
rency bugs in an OS is extremely difficult. If we can convert such
assertions into annotations and check if the code conforms to the
annotations statically, we could detect bugs that cannot be detected
by these dynamic assertions.

Therefore, we use simple static analysis to extract annotations
from these assertion macros. We analyze the direct callers of
BUG_ON (!irgs_disabled()) and BUG_ON (irgs_disabled())
to see if these functions are intended to be called with interrupt dis-
abled or enabled.

2.4 Annotation Propagation

Our goal is to annotate all functions based on the seed annota-
tions extracted from comments and code. If we know the annota-
tions of all the callee functions of function Foo, then we can track
the interrupt related szate to automatically generate the annotation

Figure 4: The above annotation propagation example for the Linux
kernel illustrates, that we can infer that the annotation for function
update_process_times is @RIRQ (0, 0) based on its callee func-
tions’ annotations (shown on the right).

for function Foo. Taking the code in Figure 4 as an example, we can
infer that the annotation for function update_process_times is
@IRQ (0, 0). Specifically, we start with the precondition of the
first callee function (Line 3), which is x. When we see Line 6, we
can infer that the interrupts must be disabled after Line 3. As the
annotation for Line 3 is (X, X) (recall that this means either (0,
0) or (1, 1)), we know the interrupt state before Line 3 is 0,
which is the precondition of update_process_times. Similarly,
we can infer that the interrupts should remain disabled on exit of
function update_process_times. Therefore, both the precondi-
tion and postcondition of function update_process_times must
be 0. Note that we cannot update the annotation of the callee func-
tion get_current from (X, X) to (0, 0) because it is possible
that when called from a different location, the states before and af-
ter calling get_current are both 1 (interrupts are enabled), mean-
ing that its annotation can be either (0, 0) or (1, 1).

The next question is how to obtain the annotations of all the
callee functions in the first place. This task is performed in a
bottom-up fashion in two steps, so that all the callee functions are
annotated before their callers. In the first step, the initialization
step, we assign the seed annotations to their corresponding func-
tions, called seed functions. In the second step, the propagation
step, we propagate the seed annotations from the seed functions to
their callers repeatedly in a bottom-up manner.

Step I: Initialization: We add the seed annotations extracted
from comments and assertions to their corresponding functions. In
addition, we annotate functions that directly disable, enable, or re-
store interrupts, e.g., local_irqg disable for the Linux kernel,
called IRQ functions. A kernel usually has a very small number
of IRQ functions. For example, we only need to annotate 8 IRQ
functions for the Linux kernel (Section 3). We annotate these IRQ
functions with (x, 0) if they disable interrupts, with (x, 1) if
they enable interrupts, and with (x, P) if they restore a saved in-
terrupt state. We then find all unannotated functions that do not
have any callees, and annotate them with (X, X), meaning that



linux/arch/alpha/kernel/irq_alpha.c

asmlinkage /* @IRQ (0, 0)*/ void do_entlnt(...) { _— Violation!
) 4/ Forgot to call
smp_percpu_timer_interrupt(...); ... local irq disable:
} [] Areal bug in the
\%y Linux kernel

void /* @IRQ (0, 0)*/ smp_percpu_timer _interrupt() { ... }

—

S

linux/kernel/posix-cpu-timers.c:
void I* @IRQ (0, 0)*/ run_posix_cpu_timers(...)
{ ... BUG_ON(lirgs_disabled()); ... }

Figure 5: This is a real bug in the Linux kernel 2.6.12, which is de-
scribed in Introduction. A “call” arrow denotes a direct call or an indi-
rect call of a function.

these functions can be called with interrupts disabled or enabled,
but the postconditions should be the same as their preconditions.

The reason that we use (X, 0) instead of (1, 0) as the anno-
tation for an interrupt disabling function is, that these interrupt dis-
abling functions simply clear the interrupt state, and do not assume
interrupts enabled on entry. Therefore, interrupt disabling functions
can be nested, e.g., it is legitimate to call local_irg disable
twice consecutively. The same is true for interrupt enabling func-
tions. If a user of aComment wants to flag such nested usage as
a warning, he or she can set the annotations for interrupt disabling
functions as (1, 0) instead. Our tool supports both options. With-
out losing generality, we will use (x, 1) for explanation and re-
sults presentation in the rest of this paper.

Step II: Propagation: Our propagation analysis starts from the
bottom of a call graph to find all functions whose callee functions
are all annotated, and automatically infers the annotations for them.
This propagation process is repeated until all functions are anno-
tated. If a call graph contains no cycles, it is guaranteed that all
functions in the call graph will be annotated. In case of a cycle
(i.e., recursive function calls), we follow the cycle until the annota-
tions stabilize.

If an interrupt restoring function is encountered, we simply re-
store the state to Xx. A more precise analysis would restore to the
saved interrupt state (i.e., a parameter of the interrupt restoring
function). However, this is more expensive as it requires context
sensitivity. Because developers choose to save the interrupt state, it
generally indicates that the saved state can be 0 or 1; therefore, X is
a better choice than either 0 or 1.

Let us still use the example in Figure 4 to explain the propagation
process. After several rounds of propagation from the bottom of
the call graphs, all of function update_process_times’s callees
are annotated as Figure 4 shows. Therefore, we can infer that the
annotation for update_process_timesis (0, 0).

2.5 Annotation Checking and Bug Detection

Bugs are detected during the propagation process described above.

There are two types of violations, i.e., root function violations and
unsatisfiable violations. If a root function’s precondition is not X,
it is considered a root function violation, where a root function is
a function that does not have a caller (e.g., in the kernel). A func-
tion may not have any caller in the kernel because the function is
intended to be called by user level functions. As root functions’

Software | LOC | #Sentence
Linux | 5.2M | 1,024,624
FreeBSD | 2.4M 420,013
NetBSD | 3.3M 680,650
OpenSolaris | 3.7M 535,073

Table 5: Operating systems evaluated by aComment. LOC is the total
number lines of code (including comments), with blank lines excluded.
#Sentence is the total number of comment sentences.

callers are outside the kernel, if the precondition is 0 or 1, it can
not be guaranteed, indicating a bug. Therefore, although aCom-
ment did not analyze the user level code, aComment can detect
bugs caused by the interaction between the user level code and the
kernel code. Take the bug described in the Introduction as an exam-
ple (Figure 5), our aComment tool reports a violation when it prop-
agates annotation (0, 0) from function run_posix_cpu_times
to function smp_percpu_timer_interrupt, and eventually to
the root function do_entInt. This is a real bug as confirmed by
the Linux kernel developers. The function local_irg disable
should be called before calling smp_percpu_timer_interrupt
to disable interrupts to ensure the precondition 0 of function
smp_percpu_timer_interrupt. Section 4 shows more bugs de-
tected by our aComment tool.

If preconditions and postconditions conflict with each other, our
aComment tool reports them as unsatisfiable violations. For exam-
ple, if function A (with annotation (x, 1)) isinvoked immediately
before function B (with annotation (0, 0)), we know it is not sat-
isfiable because the interrupts are enabled after calling A, but they
should be disabled before calling B.

The reported bugs are ranked according to their confidence scores,
which are affected by several factors including seed annotation
confidence and violation confidence. As code is generally more re-
liable than comments, seed annotations extracted from code asser-
tions are considered more accurate than seed annotations inferred
from comments. Therefore, bugs violating seed annotations ex-
tracted from code assertions are given higher confidence scores.
Unsatisfiable violations are given higher confidence scores than
root function violations, because aComment may miss some of the
callers of the root functions due to static analysis imprecision (de-
tails in Section 4.1). If the confidence score of a bug is lower than
an adjustable threshold, the bug is not reported to the user. The user
of aComment can always set the threshold to be O to retrieve all the
potential bugs.

2.6 Static Analysis

As the used static analysis techniques are not our major contribu-
tion, we only briefly describe them. We extend our static analysis
tool from iComment [60] to extract annotations from assertions,
propagate annotations, and detect OS concurrency bugs. The anal-
ysis is inter-procedural, flow-insensitive, and summary-based.

3. EXPERIMENTAL METHODS

Our aComment tool automatically propagates annotations start-
ing from a few IRQ annotations, i.e., annotations for functions that
directly disable, enable or restore interrupts. For the Linux kernel,
we manually identified 4 interrupt disabling functions, 2 interrupt
enabling functions, and 2 interrupt restoring functions. aComment
takes the 8 IRQ annotations as input, and automatically propagates
them to all other functions, a total of 96,821 annotations. One can
update these IRQ annotations easily if the code changes or if we
want to analyze a different code base.



Source | Seed | SeedChecked | TrueBugs | FalsePositives
Comment 226 119 7 2
Assertion 24 17 3 1

Total 245 133 9 3

Table 6: aComment generated 96,821 annotations for the Linux kernel
and detected 9 true bugs. The ‘Total’ row is not the sum of the two rows
above, because seed annotatios extracted from assertions overlap with
seed annotations extracted from comments, causing the detected bugs
to overlap as well.

Evaluated Software.

We evaluated our aComment tool on the latest versions of the
Linux kernel. In addition, we extracted annotations from the com-
ments of three other large kernel code bases, i.e., FreeBSD, NetBSD
and OpenSolaris (Table 5). All of the four OSs are written in the C
programming language, which is the dominant programming lan-
guage for writing operating systems. However, our hybrid anno-
tation extraction, annotation propagation, and bug detection tech-
niques are general and can be applied to code written in other pro-
gramming languages such as Java.

4. RESULTS
4.1 Opverall Results

Table 6 shows the overall annotation extraction, annotation prop-
agation, and bug detection results of aComment. The ‘Total’ row
is not the sum of the two rows above, because seed annotations
extracted from assertions overlaps with seed annotations extracted
from comments, causing the detected bugs to overlap as well.

aComment generates 96,821 interrupt related annotations by an-
alyzing comments and code from the Linux kernel. In total, 245
seed annotations are inferred from comments and code assertions,
226 of which are from comments, and 24 of which are from code
assertions. Only 5 of them can be extracted from both comments
and code assertions, meaning that the majority (221 from com-
ments and 19 from code assertions) can only be extracted from one
of the two sources. This result indicates that it is beneficial to in-
fer annotations from both sources. Our hybrid approach greatly
increases the number of annotations that can be extracted, which
helps detect more bugs (Table 6, Column ‘TrueBugs’) more accu-
rately. All the 245 seed annotations are manually verified as cor-
rect.

Using the annotations, our checker reports 12 bugs, 9 of which
are true bugs (7 of which were previously unknown) from the latest
versions of the Linux kernel. These bugs are not only important
(they are in the core kernel modules; they can crash, hang, or cor-
rupt the OS; and they can affect all applications running on top of
the OS), but also hard-to-detect (due to their non-deterministic na-
ture and the complex interaction with interrupts).

Table 7 presents the annotation distribution in the Linux kernel,
which shows that 25,509 functions’ annotations are not simply (X,
X); it would be tedious and time-consuming to manually specify
them all. The result demonstrates that our propagation and ex-
traction techniques are effective in annotating all functions from
a handful of IRQ annotations.

Table 6 also shows that only a portion (133) of the inferred seed
annotations were used for bug detection because we used a typical
x86 Linux kernel compilation, meaning that some of kernel code
was not compiled and cannot be analyzed. Some of the kernel code
was not compiled because it depends on a particular architecture or
a particular driver. To actively compile a maximum amount of code
remains as our future work.

Annotation No.
(0, 0) 404
0, 1) 89
(1,0) 873
(1, 1) 4,539
(X, 0) 2,046
X, 1) | 17,470
X, X) | 71,312
(X, P) 2
0, X) 8
1,X) 78
Total | 96,821

Table 7: Distribution of Linux annotations

static void ssb_pcmcia_write16(...) Violation!
{ .
Areal bug
*@IRQ (X, V)¥ \
spin_lock_irgsavey...); Fera( ‘0)/ } in the
err = select_core_and_segment(...); | |I* @RQ ( 1, 1) Linux

kernel
} Call
\v4

static int /* @IRQ (1, 1)*/ selle_ctrcorefandfsegment(...) {.}

all

linux//arch/x86/mm/pageattr.c:
static void I* @IRQ (1, 1)*/ cpa_flush_array(...)
{ ... BUG_ON(irgs_disabled()); ...}

Figure 6: A real bug detected by aComment in the Linux kernel. A
“call” arrow denotes a direct call or an indirect call of a function.

False positives are mostly caused by the inaccuracy of our static
analysis. First, our static analysis tool cannot know if certain state-
ments are not reachable. For example, aComment mistakenly con-
sidered that the function call 1ocal_irqg disable () in the code
segment while (0) {local_irqg disable();} was executed,
therefore, it inferred the wrong interrupt state and reported a false
bug. Such false positives can be removed by eliminating obviously
not executed code segments. Additionally, function pointers are
frequently used in the kernel code, but our static analysis tool can-
not adequately discover their aliases, causing false positives. A
more advanced pointer aliasing analysis can reduce these false pos-
itives.

Detected Bug Examples.

In addition to the bugs shown earlier, we show another bug auto-
matically detected by our aComment tool in Figure 6. The precon-
dition in annotation @IRQ (1, 1) is extracted directly from the
assertion in cpa_flush_array (shown at the bottom of Figure 6),
while the postcondition is obtained during propagation. The anno-
tation is propagated to select_core_and_segment, which is not
satisfiable because the interrupts were disabled right before calling
function select_core_and_segment. In addition, several other
caller functions of select_core_and_segment disable interrupts
right before calling select_core_and_segment. However, we
count them as one bug, because they were all solved by one bug fix
by the kernel developers: making select_core_and_segment
no longer call cpa_flush_array.



Software | #Sentence | #IRQSent | #HeuSent | #Annot
Linux | 1,024,624 23,662 423 226
FreeBSD 420,013 11,117 80 43
NetBSD 680,650 23,942 108 62
OpenSolaris 535,073 8,074 71 24
Total | 2,660,360 66,795 682 355

Table 8: Annotations extracted from comments. #Sentence is the to-
tal number of comment sentences. #IRQSent denotes the number of
comment sentences that contain the keyword ‘interrupt’ (case insensi-
tive). #HeuSent is the number of comment sentences extracted using
our heuristics. #Annot is the number of annotations that are manually
verified to be correct.

4.2 Annotation Extraction Results

Comments Versus Code.

In total, 245 seed annotations are inferred from the Linux kernel
comments and code assertions, 226 of which are from comments,
and 24 of which are from code assertions. A majority of the an-
notations, 221 from comments and 19 from code assertions, can
only be extracted from one of the sources. This result indicates that
comments and code complement each other for annotation extrac-
tion. Our hybrid approach increases the number of annotations that
can be extracted, which helps detect more bugs more accurately.

Annotation Extraction in Other OSs.

Table 8 shows the number of interrupt related annotations ex-
tracted from the four popular operating systems’ comments. It
demonstrates that our heuristics dramatically reduced the number
of comments that we need to read manually to verify the annota-
tions: we only need to manually read 682 of the 66,795 comments
to find a total of 355 accurate seed annotations from the four op-
erating systems. The annotation extraction precision is the num-
ber of verified annotations (355) divided by the total number of
extracted annotation containing comments (682), which is 52.1%.
We can significantly improve this precision by focusing on function
header comments, which are more likely to contain preconditions
and postconditions. We calculate the annotation generation accu-
racy as the number of verified annotations whose preconditions and
function names are generated correctly of the total number of ver-
ified annotations. The annotation generation accuracy for the four
OSs is 90.3-100.0%.

Section 4.1 demonstrates that aComment is effective in leverag-
ing the extracted annotations in the Linux kernel to detect bugs.
The annotations in the other three OSs should help us detect more
bugs, which remains as our future work.

4.3 Time Overhead

On a server with two 2.4 GHz Intel processors, it took aComment
30 minutes to analyze comments to extract seed annotations. The
annotation propagation and bug detection process finished within
235 minutes. Therefore, our aComment tool is practical to be used
for real-world large software.

5. DISCUSSIONS AND LIMITATIONS

Alternative Solutions.

To avoid the bug in Figure 5, one solution is to have hardware
disable interrupts before entering an interrupt handler (as x86 does).
However, this can cause problems as it is hardware architecture de-
pendent. In the Alpha architecture, the hardware does not disable
interrupts before entering an interrupt handler, which caused this

bug. In addition, it does not solve the general OS concurrency
problem. For example, it does not help when interrupts need to
be disabled before a function that is not an interrupt handler.

Limitations.

aComment is effective in extracting and inferring annotations for
all functions in large software, however, it has limitations. We only
considered annotations that require all interrupts to be disabled and
enabled. Some functions may assume that a particular interrupt is
disabled or enabled on entry or exit, which is out of the scope of
aComment. In the future, we can extend our work to extract and
analyze these more detailed assumptions.

We assumed that functions have unconditional interrupt related
preconditions and postconditions. In other words, if a function
must be called with interrupts disabled in some contexts, and must
be called with interrupts enabled in other contexts, we simply con-
sider that the precondition is X (i.e., don’t-care). While it is possible
to model conditional preconditions, it is a bad practice for develop-
ers to implement functions with conditional preconditions.

As software evolves, comments can become outdated, which
may cause some annotations extracted from comments to be ob-
solete. Our manual verification of the extracted comments did not
reveal any wrong annotations caused by this reason. In the future,
we would like to send the annotations to the developers to verify
the correctness of the annotations. In practice, developers often up-
date comments to keep them in sync with source code [37, 60]; and
we believe that important comments are less likely to be outdated
because developers may be more motivated to keep them in sync.

6. RELATED WORK

6.1 Annotation Languages

Many annotation languages have been proposed to extend the C
type system [9, 15, 38, 39, 62], to specify locking requirements [39,
62], to annotate function interfaces [15, 38, 62], or to mark con-
trol flows [15, 38]. Storey et. al [58] studied how programmers
use TODO comments for task annotation purpose. None of these
annotation languages can express the complex synchronization as-
sumptions that are intertwined with interrupts in operating system
code. Moreover, these studies rely on manually written annotations
while we advance the state of art by semi-automatically annotating
code.

6.2 Concurrency Bug Detection

Many dynamic concurrency bug detection techniques were pro-
posed. Race detectors [5, 8, 45, 47, 54, 67] detect data races; a few
studies are conducted to detect, avoid or prevent deadlocks [24, 25,
63]; and other work [17, 20, 29, 35, 36, 65] detects atomicity vi-
olations. Several static concurrency bug detection or verification
techniques were proposed [22, 41, 42, 50, 53, 56, 57].

The work mentioned above does not handle the complex inter-
action with interrupts or leverage the preconditions and postcondi-
tions embedded in comments for concurrency bug detection, miss-
ing the opportunities to detect more OS concurrency bugs. In ad-
dition, none of them demonstrated their effectiveness on operating
system code, which is extremely challenging due to the amount
of drivers, state explosion, bug manifestation, run-time overhead
and/or scalability problems. Further, this paper explicitly generates
and propagates annotations to prevent the introduction of new bugs.

Some work [12, 28, 49] demonstrated the ability to check OS
code. For example, recent work [28] used symbolic execution to
test device driver binaries, which detected several interrupt related



race conditions. aComment complements their work in the follow-
ing ways. aComment infers programming rules (interrupts must be
disabled on entry and exit) in the form of annotations in addition
to bug detection. The inferred annotations may be used by other
detection and verification tools to detect bugs. They can also be
used to help developers avoid bugs. Further, aComment detects
violations to the inferred programming rules, while they [12, 28]
detect data races. As quite often a race is not a bug [36, 43, 44],
aComment addresses this limitation by detecting violations to pro-
grammers’ intentions, which directly indicate bugs. Additionally,
the previous work did not leverage comments for bug detection or
annotation extraction.

A heuristic based dynamic bug detection tool, lockdep, was de-
veloped by the kernel developers specifically for the Linux ker-
nel [2]. Lockdep uses several heuristics to detect lock-related bugs,
e.g., if two locks are acquired in different orders at different places,
and if there are dependencies between a lock that is ever held in in-
terrupt context and a lock that is every held with interrupt enabled.
Being a dynamic approach, lockdep requires “massive amount of
runtime checking” [2], while aComment incurs no runtime over-
head for using a static approach. In addition, aComment infers
fine-grained (specific to a function) annotations to detect violations
to developers’ intentions and assumptions.

6.3 iComment

Our previous work, iComment [60], is the first to automatically
analyze comments written in natural language to extract implicit
program rules and use these rules to automatically detect inconsis-
tencies between comments and source code, indicating either bugs
or bad comments. iComment has demonstrated its effectiveness by
automatically analyzing several thousands of lock-related and call-
related comments to detect 60 new bugs and bad comments in the
Linux kernel, Mozilla, Apache and Wine.

This work is different from iComment [60] in several aspects
as this work: (1) proposed and generated a new type of annota-
tions and used these annotations to detect bugs caused by the com-
plex synchronization related to interrupt context; (2) automatically
propagated annotations to caller functions to improve annotating
and bug detection; and (3) used a hybrid approach to extract anno-
tations from both code and comments, while iComment only ex-
tracted rules from comments.

6.4 Rule and Pattern Extraction

Previous work [6, 7, 13, 14, 31, 33, 34, 48, 61, 64] extracted pro-
gramming rules or models from source code or execution traces for
bug detection or other purposes. Although source code and execu-
tion traces have been very useful for rule and model extraction, cer-
tain important information is documented in comments but are not
available in source code or are extremely difficult to extract from
source code. Without utilizing information in comments, previous
work missed the opportunities to extract more information, detect
more bugs or the chance to improve their bug detection accuracy.

Concurrent to or after our prior work iComment [60], a few stud-
ies [18, 70] extracted rules or specifications from documents in nat-
ural language or the semantics of program identifies. This paper
extracts a different type of rules: OS interrupt related annotations,
which has its unique challenges and requires different techniques.
In addition, we applied a hybrid approach to extract annotations
from both code and natural language text (comments).

6.5 Automatic Documentation Generation

Literate programming by Knuth [26] proposes embedding code
inside documentation to produce “literature” instead of embedding

comments and documentation in the code. GhostDoc [1] generates
XML formatted comments from code identifiers that follow a good
naming convention. Javadoc [27] let programmers use special tags
to document functions or data structures. Those tags are later pro-
cessed by a tool to automatically produce hypertext documentation.
While these tools help developers write better documents, they did
not address the OS concurrency bug detection problem.

6.6 Transactional Memory

Recently transactional memory [21, 23] is proposed to ease the
implementation of concurrent programs. While they can reduce
concurrency bugs, they cannot entirely eliminate such bugs. Our
approaches could still help find bugs in programs using transac-
tional memory. In addition, it is quite challenging to provide trans-
actional memory support for operating systems.

7. CONCLUSIONS AND FUTURE WORK

To detect operating system concurrency bugs related to inter-
rupts, we design a new type of annotations — interrupt related anno-
tations, and generate 96,821 such annotations for the Linux kernel
with little manual effort. These annotations help us automatically
detect 9 real bugs in the latest versions of the Linux kernel. Many
(245) of the annotations are seed annotations, which are directly
inferred from comments and code assertions. We automatically
propagate these seed annotations from the callee functions to the
caller functions to generate annotations for all of the functions. By
extracting seed annotations from both comments and code, we are
able to extract more annotations than using a single source, as only
a small number (5) of the annotations can be extracted from both
sources.

In the future, we plan to extend the analysis to generate annota-
tions for a specific kind of interrupts, and distinguish the different
interrupt contexts, e.g., bottom halves, top halves, softirgs, etc. The
hybrid approach of extracting specifications from both comments
and code can be applied to non-OS code, code written in other pro-
gramming languages such as Java, and for extracting other types of
specifications.
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