
aComment:
Mining Annotations from Comments and Code
to Detect Interrupt-Related Concurrency Bugs

Lin Tan, University of Waterloo, lintan@uwaterloo.ca
Yuanyuan (YY) Zhou, University of California, San Diego
Yoann Padioleau, Facebook Inc.

Lin TanaComment

OS Concurrency Bugs are a Problem

• Operating System (OS) concurrency bugs can bring down
all applications running on top of it.

• OS has a higher percentage of concurrency bugs than
application software. [TanTechReport’11]

• 19% of OS driver bugs are concurrency bugs. [RyzhykEuroSys’09]

2

• Concurrency bugs are
pervasive and hard-to-detect.

Lin TanaComment

Interrupts Complicate OS Synchronization

3

Thread (T2)

L

Context Switch

L

L

L

Failed Lock
Acquisition

Lock
Acquisition

L

L

Lock
ReleaseL

Thread (T1)

Lin TanaComment

D

• Interrupts can also cause other concurrency bugs.

• Hard to reason about interrupts because

• Interrupts can happen at anytime.

• Interrupts are relatively infrequent.

• OS contains many interrupt handlers.
4

1

Thread (T1) Interrupt Handler
Thread (TH)

Interrupt

L

Deadlock
Failed Lock
Acquisition

Lock
Acquisition

L

L

Should disable
interrupts

Interrupts Complicate OS Synchronization

L

Lin TanaComment

State-of-Art & Our Solution

• Most effective concurrency bug detection tools [SavageTOCS’97,
ChoiPLDI’02, LuASPLOS’06, LuSOSP’07, HammerICSE’08, JulaOSDI’08, NaikICSE’09, BurnimICSE’10, LaiICSE’10]

• do not consider interrupts

• are dynamic tools designed for user-level applications.

• Dynamic approaches are cumbersome for OS:

• difficult to instrument OS, low level, many drivers, large code
sizes, complexity, ...

5

• Our Solution: Static approach with interrupts in mind

Lin TanaComment

Goal

• Infer

• Precondition: If interrupts should have already been
disabled or enabled upon entry to a function, and

• Postcondition: If interrupts should have already been
disabled or enabled upon exit from the function

6

{

An
no

ta
tio

ns

• From comments and code

• Detect violations to these annotations
statically

Lin TanaComment

Inferring Annotations from Comments & Code

7

linux/kernel/time/tick-oneshot.c:
/* … Called with interrupts disabled. */
int tick_init_highres(void) {…}/*@IRQ(D, X)*/

linux/kernel/posix-cpu-timers.c:
void run_posix_cpu_timers(…)
{ BUG_ON(!irqs_disabled()); … }

/*@IRQ(D, X)*/

Lin TanaComment

Our Contributions

✦ Feasible to extract annotations from
comments & code

• Designed new interrupt-related annotations

• Generated 96,821 interrupt-related annotations &
automatically detected 9 true bugs in the Linux kernel

• These annotations can help developers avoid bugs.

✦ Combining comments & code help extract
more annotations and detect more bugs than
using comments or code alone.

8

Lin TanaComment

Outline

• Motivation & Contributions

• Annotation Design

• Annotation Extraction

• From comments

• From code

• Annotation Propagation & Bug Detection

• Results: Bug Detection & Annotation Extraction

• Related Work

• Conclusions

9

Lin TanaComment

Annotation Language Design

10

Value Meaning

D Interrupts are disabled.

E Interrupts are enabled.

X Donʼt care

@IRQ (Precondition, Postcondition)@IRQ (D/E/X , D/E/X)

Example Meaning

@IRQ (D, D) Interrupts are disabled on entry and remain disabled on exit.

@IRQ (X, E) Don’t-care on entry and interrupts are enabled on exit.

@IRQ (X, X) Our design choice: Either @IRQ (D, D) or @IRQ (E, E)

Read our paper for the meaning of value ‘P’.

Lin TanaComment

Annotation Extraction From Comments

11

Software LOC Sentence IRQSent

Linux 5.2M 1,024,624 23,662

FreeBSD 2.4M 420,013 11,117

NetBSD 3.3M 680,650 23,942

OpenSolaris 3.7M 535,073 8,074

Total 14.6M 2,660,360 66,795

• Millions of lines of comments exist in OSs.

• We analyze comments as is: No need to rewrite comments.

Lin TanaComment

Annotation Extraction From Comments

12

ID Heuristics

1 <call> & <with> & <interrupt> (ordered)

2 <before> & <disable/enable> & <interrupt> (orderless)

3 <assume> & <disable/enable> & <interrupt> (orderless)

• /* Neither are the interrupt status bits */ (Linux)
• /* Called with interrupts disabled. */ (OpenSolaris)
• /* Disables interrupts before calling this function */ (NetBSD)
• /* Must be called with interrupts locked out */ (FreeBSD)

• Automatically extract function names and the
preconditions (D or E).

“disable”, “turn off”, “block”, “lock out”, ...

Contains no annotations

Lin TanaComment

linux/kernel/posix-cpu-timers.c:
void run_posix_cpu_timers(…)
{ BUG_ON(!irqs_disabled()); … }

/*@IRQ(D, X)*/

Annotation Extraction From Code Assertions

• Learn from dynamic assertions

• Can learn invariants from the majority of code
[ErnstICSE’00], [EnglerSOSP’01], [HangalICSE’02], [LiFSE’05], [LivshitsFSE’05], [TanSecurity’08] ...

13

Seed function

• We directly extract annotations from seed functions’
code and comments.

• Challenge: Scarceness of seed functions

Lin TanaComment

Annotation Propagation

14

linux/kernel/timer.c:
1 void update_process_times(int user_tick)
2 {
3 struct task_struct p = get_current();
4 ...
5
6 account_process_tick(p, user_tick);
7 run_local_timers();
8 if (rcu_pending(cpu))
9 rcu_check_callbacks(cpu, user_tick);
10 scheduler_tick();
11 run_posix_cpu_timers(p);
12 }

@IRQ(X, X)

@IRQ(D, D)
@IRQ(D, D)

@IRQ(D, D)

@IRQ(X, X)
@IRQ(X, X)
@IRQ(D, D)

(X, X)

(D, D)
(D, D)
(D, D)
(D, D)
(D, D)
(D, D)

(D, D)

@IRQ(D, D)

• Initialize

• only 8 IRQ functions (e.g., local_irq_disable) with (X, E), (X, D), etc.

• seed functions with annotations extracted from comments and code

(, D)

Lin TanaComment

/* @IRQ (X, D)*/
/* @IRQ (E, E)*/

Bug Detection - Unsatisfiable Annotations

15

drivers/ssb/pcmcia.c:
static void ssb_pcmcia_write16(…) {
 …
 spin_lock_irqsave(…);
 err = select_core_and_segment(…);
 …
 }

linux//arch/x86/mm/pageattr.c:
static void /* @IRQ (E, E) */ cpa_flush_array(…)
 { … BUG_ON(irqs_disabled()); … }

}
Violation!
A real bug

in the Linux
kernel

Call*

Seed function

Lin TanaComment

Bug Detection - Root Function Annotations

• Root function do_entInt has no callers within a module.

• No guaranteed that external callers will disable interrupts.

16

linux/arch/alpha/kernel/irq_alpha.c
asmlinkage /* @IRQ (D, D) */ void do_entInt(…) {
 …
 smp_percpu_timer_interrupt(…); …
 }

linux/kernel/posix-cpu-timers.c:
 void /*@IRQ (D, D)*/ run_posix_cpu_timers(…)
 { ... BUG_ON(!irqs_disabled()); ... }

Violation!
Forgot to call

local_irq_disable();
A real bug in the

Linux kernelCall*

Seed function

Lin TanaComment

Outline

• Motivation & Contributions

• Annotation Design

• Annotation Extraction

• From comments

• From code

• Annotation Propagation & Bug Detection

• Results: Bug Detection & Annotation Extraction

• Related Work

• Conclusions

17

Lin TanaComment

Overall Results On Linux

• Annotations can help detect and avoid bugs.

• Comments and code complement each other for
annotation extraction and bug detection.

• We propagate seed annotations to generate 96,821
annotations.

18

Source
Seed

Annotation
Seed

Checked
True
Bugs

False
Positives

Comment 226 119 7 2

Assertion 24 17 3 1

Total 245 133 9 3

Lin TanaComment

Annotation Extraction Results

• Reduce the # of annotations to be manually read
from 66,795 to 682.

• The annotation generation accuracy is 90-100%.

19

Software LOC Sentence IRQSent

Linux 5.2M 1,024,624 23,662

FreeBSD 2.4M 420,013 11,117

NetBSD 3.3M 680,650 23,942

OpenSolaris 3.7M 535,073 8,074

Total 14.6M 2,660,360 66,795

HeuSent Annotation

423 226

80 43

108 62

71 24

682 355

Lin TanaComment

Limitations & Future Work

• Automatically learn paraphrases, e.g., “disable” = “block”

• Promising preliminary results [LinNLE’01, GlickmanRANLP’03, HillMSR’08]

• Consider different types of interrupts, different interrupt
context, and conditional annotations

• Send annotations to developers for confirmation

• To detect annotations extracted from outdated comments

20

Lin TanaComment

Conclusions
✦ Feasible to extract annotations from

comments & code

• Generated 96,821 interrupt-related annotations &
automatically detected 9 bugs in the Linux kernel

• These annotations can help developers avoid bugs.

✦ Combining comments & code help extract
more annotations and detect more bugs than
using comments or code alone.

• Apply to non-OS code and for extracting other types
of annotations

21

