
A Taxonomy of Comments

Or a Critique of C and OS Code Through Comments

Yoann Padiolean and Lin Tan

September 10, 2008

Contents

1 Overview 4

2 Meta Information() 7

3 Past and Future() 10
3.1 Todo() . 10
3.2 Reminder() . 11
3.3 Trigger, deprecated and obsolete() . 13
3.4 OldCode() . 14
3.5 Log() . 15

4 Explanation() 17
4.1 Example() . 17
4.2 Specific Explanations() . 17

4.2.1 For Explanations() . 18
4.2.2 Bit Explanations() . 20
4.2.3 List Explanations() . 20

4.3 Other specific explanations() . 20
4.4 ShortNameExlain () . 20
4.5 Ref() . 21
4.6 Diagram() . 21
4.7 Font() . 23
4.8 Other . 25

4.8.1 Brief . 25
4.8.2 Summary . 25
4.8.3 Long . 25

5 Type() 29
5.1 NULL() . 29
5.2 Bound() . 31
5.3 Range() . 31
5.4 Unit() . 32
5.5 State type() . 33
5.6 Region pointers() . 33
5.7 Dependent types() . 34

5.7.1 Array dependent types() . 34
5.7.2 Union dependent types() . 34

5.8 Relation types() . 35
5.9 Memory types() . 36
5.10 Bit and bytes() . 36

1

5.10.1 Bitset . 36
5.10.2 cpplint . 37
5.10.3 Group . 37
5.10.4 Devil . 38

5.11 Polymorphism, template types() . 41
5.12 Shape . 41
5.13 Abuse int(), Abuse string() . 41
5.14 Not seen in comments . 41

6 Interface() 42
6.1 Pre conditions() . 42
6.2 InOut() . 43
6.3 Context() . 45

6.3.1 Context Lock() . 45
6.3.2 Context Caller() . 49
6.3.3 Context Interrupt() . 49
6.3.4 Other context . 50
6.3.5 SmPL . 52
6.3.6 Buffer Ownership() . 52

6.4 Effects() . 52
6.5 Error() . 53
6.6 Magic number() . 57
6.7 Module interface() . 59
6.8 Time and Space properties() . 60
6.9 Other interface() . 61

7 Code Relationships() 62
7.1 File organization() . 63

7.1.1 Visual organization() . 63
7.1.2 Grouping() . 64

7.2 EndOfXXX() . 65
7.3 Control Flow() . 66

7.3.1 Caller Callee() . 66
7.3.2 Before After() . 67
7.3.3 Other . 68
7.3.4 Unreached() . 69
7.3.5 ProblematicControl() and FALLTHRU() . 69
7.3.6 Else Explanation() . 70

7.4 Data Flow() . 70
7.4.1 Unused() and ARGSUSED() . 72

7.5 Other code-data correlations() . 73
7.5.1 DataClump() . 73
7.5.2 StructInitialize() . 74
7.5.3 Lock variables correlations() . 75
7.5.4 Protocol() . 77

7.6 Repeat() . 78
7.6.1 Repeat type() . 78
7.6.2 Repeat parameters() . 78

7.7 Designator() . 79
7.7.1 DesignatorField() . 80
7.7.2 DesignatorMethod() . 81
7.7.3 DesignatorArray() . 82

2

7.7.4 DesignatorHashArray() . 83
7.8 ByteRange() . 84
7.9 ByteAddress() . 85
7.10 Crossref() . 86
7.11 Clone() . 87
7.12 Aspect() . 89
7.13 Misc() . 90

8 Other() 91

9 Discussions 92
9.1 C vs other programming languages . 92

9.1.1 Ada . 92
9.1.2 C++ . 92
9.1.3 Java . 92
9.1.4 OCaml . 92
9.1.5 Other . 92

9.2 Proposed major improvements . 92
9.2.1 Migration tool . 92
9.2.2 Unifying framework and generic frontend . 93
9.2.3 Extensible checker . 93
9.2.4 CAP: Computer Assisted Programming . 93
9.2.5 cpp-lint . 93
9.2.6 Source code visualizer and browser . 93
9.2.7 NewC . 94
9.2.8 COP: Copy-paste Oriented Programming . 94
9.2.9 Relationship . 94
9.2.10 Anti-devil . 94
9.2.11 Semantic VCS . 94

10 Conclusion 95

3

Chapter 1

Overview

There are different ways to classify comments, depending on the questions we are interested in:

• What? What is inside the comment ? Why it was written ? Does it contain useful information ? If
yes who is the target of the comment, the programmer working with (client) or working on the code
(implementer), or possibly a tool ?

• Where? Where is the comment? In our case in which OS (Linux, FreeBSD, OpenSolaris), in which
subsystem (core, driver, filesystem, network protocol, etc), in an implementation (.c) or header (.h)
file, and its place in the file (in a header, function, structure, macro, etc).

• When? When the comment was written? It can be the absolute time (10 years ago), or the time
relative to the file creation (2 months after file creation). The last information can give a hint about
the development phase (design, maintenance, etc) the comment was written for, the first if those kinds
of comment are still relevant today.

• Who? Who is the author of the comment ? A core developer? A maintainer? A tester? A beginner?
An expert? Or maybe it was auto-generated by a tool ?

From those four general and comprehensive questions, the last three can be to some extent automatically
answered; they are mainly quantitative. Some previous works partially studied those three questions, for
instance [] was interested in the difference between expert and beginners comments. Section ?? discusses
those related works. We present the results of our own study where we analyze the source code repositories
of the three OS in Section ??.

In this section we are interested in the first question, the what, arguably the most important one
considering our main goal which is to listen to programmers. This question is mainly qualitative and as such
more difficult, which may explain why nobody before to the best of our knowledge have really studied in
depth this question. For this we have manually examined 1050 comments randomly sampled from the three
OS and classified them in a taxonomy we gradually refined, as explained in Section ??.

The toplevel categories of our taxonomy are:

• Meta Information

• Past and Future

• Explanation

• Type

• Interface

• Code Relationships

4

• Other

The following sections will detail each of those toplevel categories. The most interesting one for bug-checking
are Type, Interface, and Code Relationships.

One way to view those toplevel categories is that they roughly correspond to the order in which one can
see them in a file. The header of the file usually contain a copyright notice and other Meta Information, then
come some log about the history of the file, its Past and Future, then a summary or high-level Explanation,
then come some data-structures and Type definitions, and then some functions and their Interface. The
primary purpose of comments is to help understand code, and as such the last two categories are used to
help the programmer understand an entity in isolation, without even looking at the implementation. But
at some point, to understand a program, one has to understand how entity works together and so need to
understand Code Relationships. In some way Past and Future can also be seen as describing relationships,
how the current code relates to its past and future.

This is of course only a rough correspondence. In practice some notions crosscut; a copyright can for
instance also be attached to a specific function. As opposed to the ’where’, ’when’, and ’who’, which lead
to obvious classifications, the ’what’ is more difficult to classify as comments are used for a wide range of
purpose.

Also, some operating system notions crosscut those categories. We repeatedly encountered mainly four
topics in OS comments:

• Resource management: especially about memory and buffer handling

• Timing: concurrency, complex flow interaction, lock, interrupt

• Low-level interaction: bit and byte layout, hardware register interaction, network format, endianess

• Protection: address space, scope

For instance concurrency comments are sometimes used in Interface, to describe the assumptions made by a
function about locking, but also to describe Code relationship, such as how a lock variable is related to and
protect other variables.

Note that some comments may be obsolete or even misleading, but for our purpose, which is to identify
programmer needs, this is not an issue. Indeed those comments were certainly at one point correct and so
expressed a valid programmer need.

In the same way even if we only analyze the comments present in the current version of the three OS,
and so may miss some comments that have disappeared, we think that they were probably not important
comments. They may have disappeared because they expressed a past programmer need that was fulfilled
by a programming language extension or tool.

By looking at those comments, we found that many of them could or should be supported by better or
existing:

• Programming languages (PL), especially:

– better type system

– programming features

• Software development tools, especially:

– Bug detection tools (checkers)

– Source code visualization

– Source code navigation

– Version control system (VCS)

– Bug database

5

– Collaboration tools

– Debugger and Profiler

– Tester (regression testing framework)

– Integrated Development Environment (IDE) which encompasses most of the preceding items

• Software process methodologies

The line between a bug detection tool (checker), a (type-based) annotation language, and a programming
language type system is a very thin line. What is put inside the compiler and type system and what is put
outside of it in external tools may change. Also, even programming language features can now be put
in external tools like Xoc [1]. That’s why annotation languages are not part of the preceding list. Also,
“annotation” is a too general term. Annotations are not used only for bug finding. Annotations crosscut
the preceding list. Multiple tools already use special annotations in comments:

• Documentation tools use special annotations for authorship

• CVS use special annotations ($Id:$, $Log:$)

• Editors like Eclipse or Emacs use special annotations to better visualize the source code or manage
TODO items

• Some research work on debugging (KStruct []) proposed to add annotations on fields in structure to
help debugging, and MicroDriver [] proposed annotations to specify what part of the driver must be
put in kernel space and what part can be in user-space

This in fact shows that special annotations in comments are already used for a wide range of purpose,
and we think may be generalized to more uses. Comment annotations can be used as a special artifact in
the code for different tools to collaborate with each other: comments can be the ring that rule them all.
For instance the bugzilla tool could extract automatically, thanks to a special comment annotation, the
maintainer name of a file to automatically send the bug report to the right person.

/∗
∗ This comment i s parsed by con f i gu r e to c r ea t e c type . c ,
∗ so don ’ t change i t un l e s s you know what you are doing .
∗
∗ . c on f i gu r e . s t r x f rm mu l t i p l y c p932=1
∗ . c on f i gu r e . mbmaxlen cp932=2
∗/

i f (i p s o c k == INVALID SOCKET)
{

DBUG PRINT(” e r r o r ” , (”Got e r r o r : %d from socket () ” , s o c k e t e r r n o)) ;
s q l p e r r o r (ER(ER IPSOCK ERROR)) ; /∗ purecov : t e s t e d ∗/
un i r eg abo r t (1) ; /∗ purecov : t e s t e d ∗/

}

So, in the rest of the rest paper, the terms comments, special comments, special annotations, or annota-
tions are considered equivalent.

Remember that comments are mostly used as an escape door by the programmer, because there is no
other way (no PL feature, no tool) to express what the programmer has in his mind.

6

Chapter 2

Meta Information()

The Meta category allows the programmer to express his need to identify and protect his work. Programming
languages (PLs) do not allow to express such needs, except maybe Eiffel [].

There are mainly 3 subcategories but they are mostly used at the same time in the same comment:

• Author

• Copyright

• Date

/∗ $Id : mntfunc . c , v 1 . 1 9 . 6 . 4 2005/01/31 12 :22 :20 armin Exp $
∗
∗ Driver f o r Eicon DIVA Server ISDN cards .
∗ Maint module
∗
∗ Copyright 2000−2003 by Armin Sch ind l e r (mac@melware . de)
∗ Copyright 2000−2003 Cytronics & Melware (info@melware . de)
∗
∗ This so f tware may be used and d i s t r i b u t e d accord ing to the terms
∗ o f the GNU General Pub l i c License , incorpora ted here in by r e f e r ence .
∗/

/∗ . . .
∗ Send bug r epo r t s and improvements to <boggs@boggs . palo−a l t o . ca . us>.
∗/

Those kinds of comments are now more formally supported by tool like Javadoc (@author, @copyright,
etc), which confirms that the repeated use of special comments in the past led to the invention of special
annotations and tools.

Also, tools like CVS can automatically adjust some comments containing special tags ($Id:$, $Log:$)
to display for instance the last person who modified the file, which shows that comments can be used as the
basis for tool cooperation.

Some copyright notice are sometimes enclosed by special tags, like in OpenSolaris (/* CDDL HEADER END */),
which can be used for instance by tool like Emacs to automatically hide the copyright if the programmer
want to focus on the code.

! ! /∗
∗ CDDL HEADER START

7

∗
∗ The con ten t s o f t h i s f i l e are s u b j e c t to the terms o f the
∗ Common Development and D i s t r i b u t i o n License , Version 1.0 on ly
∗ (the ”License ”) . You may not use t h i s f i l e excep t in compliance
∗ with the License .
. . .
∗ CDDL HEADER END
∗/

/∗
∗ Copyright 2002 Sun Microsystems , Inc . A l l r i g h t s r e s e rved .
∗ Use i s s u b j e c t to l i c e n s e terms .
∗/

But those meta-information are right now mainly used for doc-generation. One could imagine that if a
bug-database tool like bugzilla knew about those meta-information, then a bug report could be automatically
forwarded to the right person, providing the comment also contains email information, if not of the author
maybe of the maintainer of the file. If one would like to do a survey and ask questions to kernel programmers,
those annotations may also be useful to automate the process.

Also, even if some file may be owned by multiple authors, with different copyright, there is no easy
way to actually know which parts belong to which authors by just inspecting the current version. Some
meta-information can and are sometimes associated to specific functions to identify fine-grained ownership,
but it is rarely used as it is tedious to repeat to dozen of functions.

/∗
∗ David H r d e m a n <david@2gen . com>
∗ The key makes the SCSI s t a c k p r i n t con fus ing (but harmless) messages
∗/

UNUSUAL DEV(0x4146 , 0xba01 , 0x0100 , 0x0100 ,
”Iomega” ,
”Micro Mini 1GB” ,
US SC DEVICE , US PR DEVICE, NULL, US FL NOT LOCKABLE) ,

There is no easy way to describe the scope of the code owned by different authors. As such it can also be
difficult for tools to identify the copyright of a specific part of a multi-authors code, which depending on the
license, for instance GPL or public domain, may have a strong impact. Some companies for instance want
to detect if the code of their employees are actually copy-paste of codes with restrictive (like GPL) license.

In fact more recently advanced VCS allow for each line of a file to easily know who has written this line
and when (with cvs annotate foo.c) which can be very useful when debugging code with lots of authors
to know who is responsible for a buggy code and so who should be contacted to fix it. But the algorithm
used is line oriented and may be messed by simple cut and paste. It is actually difficult to track the author
of a line by just using the information in a VCS [?]. Maybe some support from the IDE may help, where
the authorship will be more explicit, but hidden from the programmer that would not like to be bothered
by such authorship marks. But with those marks in the text, it would be trivial to track the author through
cut and paste.

The emacs library used a special format of comments which can be understood by some tools to help
programmers find plugins.

; ; ; d i r c o l o r s . e l −− prov ide the same f a c i l i t y o f l s −−c o l o r i n s i d e emacs
; ; Emacs Lisp Archive Entry
; ; Filename : d i r c o l o r s . e l
; ; Author : Padio leau Yoann <p a d i o l e a @ i r i s a . f r >
; ; Vers ion : 1 . 0

8

Microsoft [] have proposed also to add manifest to code as self-describing artifact, specifying what the
code is for.

/∗
DO NOT EDIT THIS DOCUMENT ! ! ! THIS DOCUMENT IS GENERATED BY
moz i l l a / i n t l / un i c h a r u t i l / u t i l / g e n b i d i c a t t a b l e . p l

∗/

9

Chapter 3

Past and Future()

The Past and Futur category allows the programmer to express his need to refresh his own memory. Robery
Warren [] said: ”comments are both a memory aid to the original developers and a guide to future source
code readers”. It can also be a guide for futur changes.

Programmer use comments for such purpose as programming language offer few features to talk about
the past and future of the code. An exception may be the Eiffel programming language which allows to
annotate functions as deprecated.

Even if people can now use version control system (VCS) to go back in time, programmer still prefer or
at least still use comments for talking about the past, be it to show old code statements, changelogs (which
could be extracted from commit messages), or notes about the past.

3.1 Todo()

Programmers use different forms of TODO (/* TODO */, /* FIXME */, /* XXX */).

buf−>vb . f i e l d = f i e l d ; // FIXME: check t h i s

/∗FIXME: us ing G ra t e s . ∗/

addr = addr >> 2 ; /∗ temporary hack . ∗/

! ! /∗
∗ Update parameters o f an IPv6 i n t e r f a c e address .
∗ I f necessary , a new entry i s c rea t ed and l i n k e d in t o address chains .
∗ This func t i on i s separa ted from in6 c on t r o l () .
∗ XXX: shou ld t h i s be performed under s p l n e t ()?
∗/

int
i n 6 u p d a t e i f a (struct i f n e t ∗ i f p , struct i n 6 a l i a s r e q ∗ i f r a ,

struct . . . {
. . .
/∗ XXX − most f i e l d s in k i r u s a g e c h are not (ye t) f i l l e d in ∗/
struct rusage k i r u s a g e c h ; /∗ rusage o f c h i l d r en proce s s e s ∗/
struct pcb ∗ k i pcb ; /∗ k e rne l v i r t u a l addr o f pcb ∗/

}

10

The preceding comment also expressed a data-flow condition.

rpn−>param mask = hto l e16 (param mask) ; /∗ XXX ∗/

/∗
∗ XXX − would be nice i f we cou ld do t h i s w i thout suspending . . .
∗/

txg suspend (dp) ;

! ! /∗ Orig ina l seq number I used ?? qu e s t i ona b l e to keep ?? ∗/
u i n t 3 2 t in i t s eq number ;

Some of those comments even have authors name attached to and so are used as a communication medium
for collaborative work.

/∗ FIXME: Source route IP opt ion packe t s −−RR ∗/
i f (nf conntrack checksum && hooknum == NF INET PRE ROUTING &&

Tools like Eclipse now enable to gather many of those special comments in a special “TODO view” with
cross-reference capability, a small improvment over manual grepping.

There is no connexion right now between TODO, bugzilla, and VCS. So, there is no way to check that
a TODO erased in the past was erased because of a bugfix and that it was legitimate to erase it. It would
require of course to understand the TODO, but maybe TODO could have a better format precising more
the kind of TODO or priority. For instance We could have a refactoring TODO annotation that could be
automatically removed when the refactoring action is performed under the IDE.

Some TODO are also present as macro and used in the concrete code, generating a warning at run-time
about the lack of a feature.

linux/drivers/net/wireless/bcm43xx/bcm43xx_debugfs.h

#define TODO() \
do { \
printk(KERN_INFO PFX "TODO: Incomplete code \
in %s() at %s:%d\n", \
__FUNCTION__, __FILE__, __LINE__); \
} while (0)

#define FIXME() \
do { \
printk(KERN_INFO PFX "FIXME: Possibly \
broken code in %s() at %s:%d\n", \
__FUNCTION__, __FILE__, __LINE__); \
} while (0)

Some tools like log4j [] for Java provide more advanced functionalities.

3.2 Reminder()

! ! /∗
∗ We kmem alloc () the s i g a c t i o n array because
∗ i t i s so b i g i t might blow the k e rne l s t a c k .

11

∗/
sap = kmem alloc ((NSIG−1) ∗ s izeof (struct s i g a c t i o n) , KM SLEEP) ;

Some of the bugfix reminder comments could be connected to a bug database to clearly show what bug
they fixed.

Some comments are also used to describe the absence of something because as something is absent, there
is no other way than using comments to talk about what is missing.

! ! /∗
∗ We used to dec l a r e t h i s array wi th s i z e but gcc 3.3 and o l d e r are not a b l e
∗ to f i nd t ha t t h i s e xp re s s i on i s a constant , so the s i z e i s dropped .
∗/

extern pgd t swapper pg d i r [] ;

Sometimes people also use comments to specify that there is nothing, to represent the emptiness, like in
Yacc for some empty rules, to make it clear that it’s not an error that the rule is empty but it was done on
purpose:

NOT FROM SAMPLE (p a r s e r c . mly)
s t r u c t d e c l l i s t g c c :
| s t r u c t d e c l l i s t { $1 }
| /∗ empty ∗/ { [] } /∗ gccex t : a l l ow empty s t r u c t ∗/

while (. . . ; . . . ; . . .)
/∗ noth ing ∗/ ;

} else if ((codec72==0x8000) && (codec6c==0x0080)) {
/* nothing */
}

struct kmem list3 ∗ n o d e l i s t s [MAXNUMNODES] ;
/∗
∗ Do not add f i e l d s a f t e r n o d e l i s t s []
∗/
/∗
∗ We put n o d e l i s t s [] a t the end o f kmem cache , because we want to s i z e
∗ t h i s array to nr node id s s l o t s i n s t ead o f MAXNUMNODES
∗ (see kmem cache ini t ())
∗ We s t i l l use [MAXNUMNODES] and not [1] or [0] because cache cache
∗ i s s t a t i c a l l y de f ined , so we re s e r v e the max number o f nodes .
∗/

/∗
∗ This code i s i n t e n t i o n a l l y commented . The window proc
∗ f o r the l i s t box implements WMSETREDRAW to i n v a l i d a t e
∗ and erase the widge t . This i s undocumented behav ior .
∗ The commented code below shows what i s a c t u a l l y happening
∗ and reminds us t ha t we are r e l y i n g on t h i s undocumented
∗ behav ior .
∗/

// i n t f l a g s = OS.RDW ERASE | OS.RDWFRAME | OS.RDW INVALIDATE;
// OS.RedrawWindow (handle , nu l l , 0 , f l a g s) ;

12

3.3 Trigger, deprecated and obsolete()

Deprecated and triggers are both about software evolution and the two sides of the same problem. One
is used to indicate that some code should not be used anymore, and the other to indicate that some code
should be added if an “event” happens. This “event” can be a complex condition.

my bool unused0 ; /∗ Please remove wi th the next incompat i b l e ABI change . ∗/

/∗
∗ Sc r i p t s f o r SYMBIOS−Processor
∗
∗ We have to know the o f f s e t s o f a l l l a b e l s b e f o r e we reach
∗ them (f o r forward jumps) . Therefore we dec l a r e a s t r u c t
∗ here . I f you make changes i n s i d e the s c r i p t ,
∗
∗ DONT FORGET TO CHANGE THE LENGTHS HERE!
∗/

! ! /∗ This i s deprecated , FIOGETOWN shou ld be used in s t ead . ∗/
case TIOCGPGRP:

! !# d e f i n e SAL ERR FEAT LOG SBES 0x2 // o b s o l e t e

Note that gcc allows to annotate some functions as ’deprecated’. People also use cpp ifdef tricks to
achieve the same result. Java also allows this, as API evolution is a very important problem. Thanks to the
annotation, a warning message is displayed at compilation time to warn the programmer to evolve his code.
But there is no support to mark cpp macro as deprecated, as in the preceding comment. This shows again
that many comments are about cpp and that there is no tool working at cpp level.

! ! /∗
∗ These are the b inary opera tor s t ha t are supported by the expre s s i on
∗ e va l ua t o r . Note t ha t i f suppor t f o r d i v i s i o n i s added then we a l s o
∗ need short−c i r c u i t i n g boo leans because o f d i v ide−by−zero .
∗/

stat ic int o p l t (int a , int b) { return (a < b) ; }

! ! /∗ WARNING: I f you change any o f t h e s e de f ine s , make sure to change the
∗ d e f i n e s in the X se r v e r f i l e (radeon sarea . h)
∗/

#i f n d e f RADEON SAREA DEFINES
#d e f i n e RADEON SAREA DEFINES

// p l an e t s t r u c t u r e
// ! ! ! i f t h i s i s changed , i t must be changed in q shared . h too ! ! !
#define pl normal 0
#define p l d i s t 12

/∗ Shouldn ’ t t h i s be in a header f i l e somewhere? ∗/
#define BYTES PER WORD s izeof (void ∗)

13

In this case, with a special annotation, a tool connected to a VCS could regularly check if the same func-
tionality could be covered by an existing more general macro (instead of duplicating the same functionality
in many files), and warn the user if this situation happens. In this case the tool could search for a macro
with a similar definition by clone detection. The use of the VCS could allow to do this clone detection only
on new code, which is an information only the VCS has, which would avoid to rerun expensive analysis on
the whole source tree. It’s yet another example of possible synergy, here between a clone detection tool and
a version control system.

Programmers could also use a tag which is the opposite of deprecated: ’new’. If someone introduces a
new functionality, there is often a very long time before the other programmers know about this functionality
and refactor old code to make use of this better function or macro. This tag could be used by a tool to make
the computer more pro-active. If new code is added and recognized as similar to a functionality provided
in a library function tagged with a new, then the IDE could warn the programmer to remove his code and
instead use the library function. The comment in the library could help to specify what kind of code should
be re-written:

/* @evo: n & (n-1) ====> IS_POWER_OF_2(n) */
#define IS_POWER_OF_2 (n) (n) & ((n) -1)

The pattern could be written as a SmPL program (cf section ??).

3.4 OldCode()

Even if many people can now use advanced version control system (VCS), allowing to go back in time, many
programmers still prefer to keep some old code in the file in comment. But this clutter code. If there is too
many such comments, then it is visually more tedious to understand the code as one is visually bothered by
the old code.

Maybe it shows a problem of VCS. The steps to see the old version of some code is maybe too long for
the programmer, who prefers to keep at sight this code in comment. Maybe also when he remembers some
old code that could be used back, the VCS does not provide any help to find this old code. Also not old
code are interesting. Maybe a source code visualizer with the help of the VCS could show old interesting
code under the recent code (with some transparency effects one could see both at the same time).

/∗ f o r c e r e s e t on ∗/
va l |= INFINIPATH SERDC0 RESET PLL

! ! /∗ | INFINIPATH SERDC0 RESET MASK ∗/
;

i ++;
! ! /∗ DELAY(100) ; ∗/

s = STATUS(m) ;

Note that people may ask what is the unit of DELAY, 100 seconds or milliseconds or nanoseconds ? See
the Unit category later.

Those old code, sometimes storing debugging instructions, are unfortunately not compiled and as the code
evolves, the compiler can not detect legitimate potential errors in such code. In fact, such old commented
code may stay in the code for years, and the reason it was put in comment may gradually be forgotten
by the original developer or maintainer. Instead of using comments programmers can also used advanced
macro like DEBUG or ifdef that can be easily enabled or disabled to generate or not debugging information
at run-time. Note also, again because the use of cpp, that gcc has not the opportunity to check such code
when the option is disabled.

We didn’t find that much OldCode comments, which is a little surprising. It would also be interesting to
know the age of such comments, as well as the age of TODO comments and their evolution.

14

3.5 Log()

Programmers add changelog information in comments, for collaboration, for summarizing the set of features
added on top of each other.

/∗ . . .
∗ ChangeLog
∗ Jun 11 2001 Takashi Iwai <t iwai@suse . de>
∗ − Recoded & debugged
∗ − Added t imer i n t e r r u p t f o r midi ou tpu t s
∗ − hwports i s between 1 and 8 , which s p e c i f i e s the number o f hardware por t s .
∗ The th ree g l o b a l ports , computer , adat and broadcas t ports , are crea t ed
∗ always a f t e r h/w and remote por t s .
∗
∗/

#inc lude <l i nux / i n i t . h>
#inc lude <l i nux / i n t e r r u p t . h>

! ! /∗
∗ Ok, demand−l o ad ing was easy , shared pages a l i t t l e b i t t r i c k e r . Shared
∗ pages s t a r t e d 02 .12 .91 , seems to work . − Linus .
∗
∗ Tested shar ing by execu t ing about 30 / bin / sh : under the o ld k e rne l i t
∗ would have taken more than the 6M I have f ree , but i t worked we l l as
∗ f a r as I cou ld see .
∗
∗ Also co r r ec t ed some ” i n v a l i d a t e ()” s − I wasn ’ t doing enough o f them .
∗/

/∗
∗ Real VM (paging to /from d i s k) s t a r t e d 18 . 12 . 91 . Much more work and
∗ though t has to go in t o t h i s . Oh, w e l l . .
∗ 19 .12 .91 − works , somewhat . Sometimes I g e t f a u l t s , don ’ t know why .
∗ Found i t . Every th ing seems to work now .
∗ 20 .12 .91 − Ok, making the swap−dev i c e changeab le l i k e the roo t .
∗/

/∗
∗ 05 .04 .94 − Multi−page memory management added f o r v1 . 1 .
∗ Idea by Alex B l i gh (a lex@cconcepts . co . uk)
∗
∗ 16 .07 .99 − Support o f BIGMEM added by Gerhard Wichert , Siemens AG
∗ (Gerhard . Wichert@pdb . siemens . de)
∗
∗ Aug/Sep 2004 Changed to four l e v e l page t a b l e s (Andi Kleen)
∗/

/∗
∗ l i n u x / i n i t /main . c
∗
∗ Copyright (C) 1991 , 1992 Linus Torvalds
∗

15

∗ GK 2/5/95 − Changed to suppor t mounting roo t f s v ia NFS
∗ Added i n i t r d & change root : Werner Almesberger & Hans Lermen , Feb ’96
∗ Moan ea r l y i f gcc i s old , avo id ing bogus k e rn e l s − Paul Gortmaker , May ’96
∗ S imp l i f i e d s t a r t i n g o f i n i t : Michael A. G r i f f i t h <grif@acm . org>
∗/

Unfortunately one can not click on those different log entries to see to what code they correspond too.
There is no formal connexion to the VCS. One would like to add some formal log comments that when
clicked show the corresponding modifications in a smart way, to view or to filter such modifications.

Of course some VCS can now auto-generate some of those information, and even provide a good color
interface where one can see for each line who is the author. But, the comment in the file, the log, is put
to insist; to insist that this modification is important. Not every commit is important to understand the
code, but some are as they add a feature that has multiple implications on the code. Log comments are
often very synthetic whereas commit message in VCS are usually very specific. A log comment is usually
an agglomeration and summary of multiple commits. If those logs were more formal, it could help to
better understand the code. One could see which parts of the code correspond to which added feature or
optimizations, or even temporarily remove this feature or optimization to be able to better understand the
original, simpler, code.

Firefox includes directly in his repository code from externally developed librairies. They also do a few
modifications on those librairies and add comments to keep track of their changes.

p o s i t i o n P t r = bu f f e r Pt r ;
/∗ BEGIN MOZILLA CHANGE (always s e t eventPtr /eventEndPtr) ∗/

eventPtr = bu f f e rPt r ;
eventEndPtr = bu f f e rPt r ;

/∗ END MOZILLA CHANGE ∗/
return r e s u l t ;

16

Chapter 4

Explanation()

The Explanation category allows the programmer to express his basic need to explain his code. This is the
category most people associate with comments. A common wisdom is that comments are useful for program
understanding and maintaining and so “explain code”. But the term “explain code” is fuzzy. We have
already seen many comments which are specialized forms of explanation, and that some could be supported
by tools.

The explanation either repeat the code (which is bad), or summarize it by giving an higher-level idea.
Note that the better the PL, the more the programmer can directly express high-level ideas in code and so
does not need comments.

Tools like Javadoc have been invented to automatically extract the useful documentation from the com-
ment. PL like LISP go even one step further by making the documentation, and some hypertext capabilities,
part of the language (the docstring format of Lisp).

4.1 Example()

r p c g s s p r i n c i p a l t c l i e n t p r i n c i p a l ;
! ! char ∗ s v c p r i n c i p a l ; /∗ serv i ce@server , e . g . n f s@car ibe ∗/

r p c g s s s e r v i c e t s e r v i c e ;

4.2 Specific Explanations()

C constructs can be used for many things and sometimes programmers feel the need to put a comment
to explain which one of the possibilities they use. Without this comment the reader can not fastly know
visually by just looking at the construct what is the code for. For instance, if C provided only a control
structure called iffor(), that can be used both for a if() and a for(), then programmers probably would add a
comment each time to explain which one of the possibility they use. Fortunately, C provides both forms and
so visually the programmer gets already lots of information by seeing the name of the keyword; his brain is
better prepared for understanding the rest of the code. Providing a minimal set of general features is a good
thing for a programming language, but adding the possibility to specialize them is also good.

• In C a loop can be used for many things: to iterate over numbers, over a list, a tree, to find an element
in a list, to iterate over the elements, to erase some elements, etc.

• In C a void* can be used for many things

• In C bit operations can be used for many things

17

4.2.1 For Explanations()

A for() can be (ab)used to find an element, by using a goto or a break to stop the loop when the element is
found. This is a common idiom [] (a kind of very basic design pattern []).

! ! /∗
∗ Firs t , see i f t h e r e i s an a c t i v e t u r n s t i l e f o r the l o c k i nd i c a t e d
∗ by the address .
∗/

l o ck = (struct l o c k o b j e c t ∗) addr ;
tc = TC LOOKUP(lock) ;
LIST FOREACH(ts , &tc−>t c t u r n s t i l e s , t s ha sh)

i f (ts−>t s l o c k o b j == lock)
goto found ;

! ! /∗ does d e v t in l i s t match dev ∗/
cnt = 0 ;
while (cnt < re tndevs) {

i f (∗ dev == md expldev (dd i devs [cnt]))
break ;

cnt++;

! ! /∗ Look f o r the t r a n s l a t i o n ∗/
for (t rans = t a b l e ; trans−>from ; t rans++)

i f (trans−>from == from)
return t rans ;

Note that they use each time a different kind of code to provide a similar functionality. This hurts
program understanding. If C provided a construct for find(), then the programmer would not even have
to understand the code; by just seeing for find() he would understand that the goal is to find an element
somewhere in the list.

In modern languages the programmer is not limited to basic control structures. He can extend in some
way the language by introducing new control structures. One way is to provide iterators [], a way to loop
easily over different kind of types. The other way is to define new kind of functions taking a special kind of
parameter, some code, more precisely closures []. Those functions are called higher-order functions. So, the
previous comments express the need in some way for such features. C++ now allows a basic form of closure.
C# and Java also both support now closures. Most scripting languages like Python or Ruby allow iterators
and closures.

// def
for_find(list, predicate) {
for(x = list; x != NULL; x = x-> next) {

if(code(x)) return x;
}

}
// use
xfound = for_find(mylist, fun(x) { x.size == 3 });
// xfound point to the element in mylist having a size of 3

Such code is shorter than the original ’for’, and as a consequence less buggy and more easy to understand.
It requires the ability to provide code as-is, to give code as a parameter.

Linux programmers have realized the need to define new control structures and have (ab)used cpp macros
to simulate that. For instance they use a special macro to iterate over a list instead of writing each time

18

the for. Unfortunately this can lead to mistakes as one has to take care to provide the good conditions each
time:

/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \

for (pos = (head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next)

/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \

for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
pos = pos->prev)

// example of use
...
list_for_each(x, mylist) {
if(x.field == 1)
break;

}

Here are other recurring comments concerning loops:

! ! /∗ Ca l i b ra t ed busy loop ∗/
while (count−− > 0 && ! (inb (i obase + UART LSR) & UART LSR TEMT))

udelay (1) ;

! ! /∗ busy wai t ∗/
for (t = 0 ; t < 0x1000 ; t++) {

i f ((x = e s r d (es , ES1371 REG SMPRATE, 4) & 0x00870000) ==
0x00000000)

break ;

! ! /∗ p o l l u n t i l codec v a l i d ∗/
for (i = 0 ; i < 1000 ; i++) {

i f (v i a r d (via , VIA AC97 CONTROL, 4) & VIA AC97 CODEC00 VALID)
return (0) ;

DELAY(1) ;
}

! ! /∗ d e l e t e a l l d e s t i n a t i o n addres se s excep t the source ∗/
TAILQ FOREACH(net , &stcb−>asoc . nets , s c tp nex t) {

i f (net != s r c n e t) {

19

! ! /∗ Seek to the end o f the r u n l i s t . ∗/
while (r l−>l ength)

r l ++;

4.2.2 Bit Explanations()

4.2.3 List Explanations()

struct d e v i n f o {
struct d e v i n f o ∗ dev i pa r ent ; /∗ my parent node in t r e e ∗/
struct d e v i n f o ∗ d e v i c h i l d ; /∗ my ch i l d l i s t head ∗/
struct d e v i n f o ∗ d e v i s i b l i n g ; /∗ next e lement on my l e v e l ∗/
. . .

}

4.3 Other specific explanations()

4.4 ShortNameExlain ()

A very important number of comments are in this category. The programmers seem to want to use short
names for variables in the program, for fields, and especially for symbolic macro constant, to make it more
compact to read, but at the same time feel the need to document in comment to what this short name
correpond to. Maybe the IDE could use this information to provide a tooltip. Maybe an option could be
used to switch between a short and long format when reading some code. A variable would have two possible
names. This may be part of the PL.

struct bus opt i ons {
! ! u8 irmc ; /∗ I so Resource Manager Capable ∗/

u8 cmc ; /∗ Cycle Master Capable ∗/
u8 i s c ; /∗ I so Capable ∗/
u8 bmc ; /∗ Bus Master Capable ∗/
u8 pmc ; /∗ Power Manager Capable (PNP spec) ∗/
u8 c y c c l k a c c ; /∗ Cycle c l o c k accuracy ∗/

! ! unsigned char dp e s e c t ; /∗ end s e c t o r ∗/
unsigned char dp ehd ; /∗ end head ∗/

#d e f i n e LCSR IUU 0x00000080 /∗ Input FIFO Under−run Upper ∗/
! ! /∗ pane l ∗/

#d e f i n e LCSR OOL 0x00000100 /∗ Output FIFO Over−run Lower ∗/
/∗ pane l ∗/

#d e f i n e LCSR OUL 0x00000200 /∗ Output FIFO Under−run Lower ∗/
/∗ pane l ∗/

! !# d e f i n e HD TMC 1 0x55 /∗ t ime cons tant r e g i s t e r chan 1 ∗/
#d e f i n e HD CMD 0 0x2c /∗ command r e g i s t e r chan 0 , wo ∗/
#d e f i n e HD CMD 1 0x4c /∗ command r e g i s t e r chan 1 , wo ∗/

20

4.5 Ref()

Programmer use references to RFC, manuals, or websites to point to documentations that may be useful to
understand the code.

/∗
∗ This code i s r e f e r d to RFC 2367
∗/

! ! /∗
∗ De f i n i t i o n s f o r ID TECH (www. id t−net . com) dev i c e s
∗/

#d e f i n e IDTECH VID 0x0ACD /∗ ID TECH Vendor ID ∗/

! ! /∗ Read the data v ia the i n t e r n a l p i p e l i n e through CDSN IO
r e g i s t e r , see P ipe l i ned Read Operat ions 11.3 ∗/

MemReadDOC(docptr , buf , 1054) ;

! ! /∗
∗ ISO/IEC 9899:1999
∗ 7 .18 .3 Limits o f o ther i n t e g e r t ype s
∗/

/∗ Limits o f p t r d i f f t . ∗/
#d e f i n e PTRDIFF MIN INT32 MIN
#d e f i n e PTRDIFF MAX INT32 MAX

/∗ Improve fragment d i s t r i b u t i o n and reduce our average
∗ search time by s t a r t i n g our next search here . (see
∗ Knuth vo l 1 , sec 2 .5 , pg 449) ∗/

/* ...
* For more details look to AC ’97 component specification revision 2.2
* by Intel Corporation (http://developer.intel.com) and to datasheets
* for specific codecs. ... */

But those informal description are not directly usable. It would be better to have a special annotation
to crossref that can be directly clicked on to go to the relevant site (for paper documentation of course it
may be harder). Maybe a rfc://, commit://, news://, blog://, mail://, file://, etc.

4.6 Diagram()

! ! /∗
∗ Error l o g scra tchpad r e g i s t e r format .
∗
∗ +−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+
∗ |ASI EIDR | PA to l o g g i n g bu f | # of err |
∗ +−−−−−−−−+−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+
∗ 63 50 49 6 5 0
∗
∗/

21

/* --------CMU1---------- */
/* --CS0-----|--CS1------ */
/* -H-|--L-- | -H- | -L-- */

Those ascii art diagrams could be used as-is to define types and accessors. In fact some domain specific
languages like PADL [] are dedicated to the easy specification of formats (for network IP packet, or the CPU
tables for virtual memory bit layout). Unfortunately they are not used by OS programmers. Note that ascii
art diagrams have the benefit to be easily embedded in the code. They may be tedious to write but at least
programmers can use regular text editors to understand the diagram.

An IDE could either help to visualize such diagrams, and/or provide plugins to help write them.
Literate programming [] can go very far in the ability to have complex drawing associated with the code

as one can use the full power of TeX in comment (allowing to have TeX tabulars, or xypic pictures). But
people don’t use literate programming and the editors do not understand such special comment and so do
not provide an easy way to see the diagram on the fly. One has first to compile with a special tool the source
to be able to see the diagrams.

We found very few diagrams, except Font diagrams (explained later) which turns out to be mostly auto-
generated from a program. We found very few ascii art diagrams in the sample. The CodeMap paper [] says
that drawing diagrams is not well supported. This paper also shows that programmers to not stick to UML.

/∗ . . .
∗ then the s t a r t o f t h a t ho l e w i l l be the new head . The
∗ s imple case l o o k s l i k e
∗ x | x . . . | x − 1 | x
∗ Another case t ha t f i t s t h i s p i c t u r e would be
∗ x | x + 1 | x . . . | x
∗ In t h i s case the head r e a l l y i s somewhere at the end o f the
∗ log , as one o f the l a t e s t w r i t e s a t the beg inn ing was
∗ incomple te .
∗ One more case i s
∗ x | x + 1 | x . . . | x − 1 | x
∗ This i s r e a l l y the combination o f the above two cases , and
∗ the head has to end up at the s t a r t o f the x−1 ho l e at the
∗ end o f the l o g .
∗ . . . ∗/

The following comment is not about a diagram, but the comment refers to a state that must be interpreted
in the context of a state machine described by a kind of diagram in a comment a few lines before in the
source code.

i f (! i s newentry) {
i f ((! o l l a d d r && l l a d d r != NULL) | | /∗ (3) ∗/

(o l l a d d r && l l a d d r != NULL && l l cha nge)) { /∗ (5) ∗/
do update = 1 ;
newstate = ND6 LLINFO STALE ;

! ! } else /∗ (1−2 ,4) ∗/
do update = 0 ;

} else {
do update = 1 ;
i f (l l a d d r == NULL) /∗ (6) ∗/

newstate = ND6 LLINFO NOSTATE;

And here is the diagram:

/∗

22

∗ newentry o l l a d d r l l a d d r l l c h ang e (∗=record)
∗ 0 n n −− (1)
∗ 0 y n −− (2)
∗ 0 n y −− (3) ∗ STALE
∗ 0 y y n (4) ∗
∗ 0 y y y (5) ∗ STALE
∗ 1 −− n −− (6) NOSTATE(= PASSIVE)
∗ 1 −− y −− (7) ∗ STALE
∗/

It is similar to a state machine. The programmer then manually encoded this machine via a set of optimal
if/then/else and refers back to the original specification via comment annotations.

It would be better to let the programmer write directly in the language the state machine via some
PL features, which would then be automatically compiled into an efficient set of if. In fact PL like OCaml
provide such features, called pattern matching compilation. Another way would be to add to C some compile-
time reflexion capabilities so that such extensions could be added without modifying gcc. Here is how the
preceding state machine can be encoded in OCaml. Note that even ’ ’ noted ’ ’ in the comment is actually
a feature of OCaml:

match newentry, olladdr, lladdr, llchange with
| 0, false, false, _ -> do_update = 0;
| 0, true, false, _ -> do_opdate = 0;
| 0, false, true, _ -> do_update = STALE;
...

4.7 Font()

An OS provides some terminal capabilities and as such has to deal with fonts.

/∗−
∗ This f on t l i v e s in the pu b l i c domain . I t i s a PC font , IBM encoding ,
∗ which was des igned f o r use wi th syscons .
∗/

const struct g f b f o n t bold8x16 = {
8 ,
16 ,
{
/∗ 6 ∗/
0x00 , /∗ ∗/
0x00 , /∗ ∗/
0x3c , /∗ . . ∗ ∗ ∗ ∗ . . ∗/
0x60 , /∗ . ∗ ∗ ∗/
0xc0 , /∗ ∗ ∗ ∗/
0xc0 , /∗ ∗ ∗ ∗/
0 xfc , /∗ ∗∗∗∗∗∗ . . ∗/
0xc6 , /∗ ∗ ∗ . . . ∗ ∗ . ∗/
0xc6 , /∗ ∗ ∗ . . . ∗ ∗ . ∗/
0xc6 , /∗ ∗ ∗ . . . ∗ ∗ . ∗/
0xc6 , /∗ ∗ ∗ . . . ∗ ∗ . ∗/
0x7c , /∗ . ∗ ∗ ∗ ∗ ∗ . . ∗/
0x00 , /∗ ∗/

23

0x00 , /∗ ∗/
0x00 , /∗ ∗/
0x00 , /∗ ∗/

. . .
}

Programmers even used different formats for font comments:

! ! 0 xfe , /∗ 11111110 ∗/

! ! 0 x40 , /∗ X ∗/

0x10 , /∗ 000 0000 ∗/

Some (or maybe all) of those comments are generated by tools, which shows that comment can also be
the target of a tool, not only its input. In the first comment the tool is named ’syscons’. The 0/1 variant is
auto-generated from a very old AmigaOS program ’cpi2fnt’ and some programmers on the linux mailing list
actually complain that they wanted to modify the font but could not find and use the AmigaOS tool.

If C could provide an easier way to build directly in the source such complex “objects”, then it would
be also easier to modify them directly. This may be done again if C would provide some compile-time
reflexion capability (like in MetaOCaml [], or maybe Xoc []) to enable the programmer to write the font in a
convenient format (like**....), which would then at compile-time be translated efficiently in the pair
of integers (like 0x3, 0x3) shows in the previous comment.

That may be one of the goal of Intentional Programming []: enabling the programmer to not manipulate
source code as text but as a complex document, like a Word document, where one can embed spreadsheets,
diagrams, around text, and for each of those embedded objects use the appropriate tool. Some research tools
allow to add comments via voice or to associate videos to parts of code leading to multimedia “comments”.

This need to build complex objects directly in the code, is also presents for pixmaps, but in this case
they don’t use comments but the initializer capability of C and strings.

/* XPM data of Open-File icon */
static const char * xpm_data[] = {
"16 16 3 1",
" c None",
". c #000000000000",
"X c #FFFFFFFFFFFF",
" ",
" ",
" .XXX.X. ",
" .XXX.XX. ",
" .XXX.XXX. ",
" .XXX..... ",
" .XXXXXXX. ",
" .XXXXXXX. ",
" .XXXXXXX. ",
" .XXXXXXX. ",
" .XXXXXXX. ",
" .XXXXXXX. ",
" .XXXXXXX. ",
" ",
" ",
" "};

24

4.8 Other

Many explanation comments also just explain code, put words, usually corresponding to high-level concept,
instead of sometimes obscure macro name. There are lots of such comments.

4.8.1 Brief

i f (f s−>f s r e c l a i m & FS CHECKCLEAN)
! ! /∗

∗ noth ing d i r t y was found in the b u f f e r or inode cache
∗/

i f ((i sbusy == 0) && (i s r e c l a i m == 0) &&

! ! /∗ i f t h e r e i s a f r on t f i l e ∗/
i f (cp−>c metadata . md f lags & MD FILE) {

i f (fgp−>f g d i r v p == NULL)
goto out ;

4.8.2 Summary

! ! /∗
∗ Read in the d i s k b l o c k con ta in ing the d i r e c t o r y entry (d i r c l u , d i r o f s)
∗ and re turn the address o f the bu f header , and the address o f the
∗ d i r e c t o r y entry w i th in the b l o c k .
∗/

int
readep (pmp, d i r c l u s t , d i r o f f s e t , bpp , epp)

! ! /∗ conver t l e a f index to l og2 l e a f va lue ∗/
#d e f i n e LITOL2BSZ(n ,m, b) ((((n) == 0) ? (m) : cnt t z ((n))) + (b))

4.8.3 Long

! ! /∗
∗ Bui ld Transmit Segment Desc r i p to r s
∗
∗ This func t i on w i l l t ake a supp l i e d b u f f e r chain o f data to be t ransmi t t ed
∗ and b u i l d the t ransmi t segment d e s c r i p t o r s f o r the data . This w i l l i n c l ude
∗ the dreaded opera t ion o f ensur ing t ha t the data f o r each transmi t segment
∗ i s f u l l −word a l i gned and (excep t f o r the l a s t segment) i s an i n t e g r a l number
∗ o f words in l en g t h . I f the data i sn ’ t a l r eady a l i gned and s i z e d as
∗ requ ired , then the data must be s h i f t e d (copied) in t o p l ace − a sure
∗ performance k i l l e r . Note t ha t we r e l y on the f a c t t ha t a l l b u f f e r data
∗ areas are a l l o c a t e d wi th (at l e a s t) f u l l −word a l i gnments / l e n g t h s .
∗
∗ I f any e r ro r s are encountered , the b u f f e r chain w i l l be f r e ed .
∗
∗ Arguments :

25

∗ fup po in t e r to dev i c e un i t
∗ m po in t e r to output PDU bu f f e r chain head
∗ hxp po in t e r to hos t t ransmi t queue entry
∗ segp po in t e r to re turn the number o f t ransmi t segments
∗ l enp po in t e r to re turn the pdu l en g t h
∗
∗ Returns :
∗ m bu i l d s u c c e s s f u l , po in t e r to (p o s s i b l y new) head o f
∗ output PDU bu f f e r chain
∗ NULL bu i l d f a i l e d , b u f f e r chain f r e ed
∗
∗/

stat ic KBuffer ∗
f o re xmit segment (fup , m, hxp , segp , lenp)

! ! /∗
∗ I t i s okay t ha t we muck wi th the new un i t here ,
∗ s ince no one e l s e w i l l know about the un i t s t r u c t
∗ u n t i l we commit i t . I f we crash , the record w i l l
∗ be au t oma t i c a l l y purged , s ince we haven ’ t
∗ committed i t ye t and the o ld un i t s t r u c t w i l l be found .
∗/

/∗ copy in the user ’ s un i t s t r u c t ∗/
e r r = ddi copy in ((caddr t) (u i n t p t r t)mgp−>mdp, (caddr t) new un ,

(s i z e t)mgp−>s i z e , mode) ;
i f (e r r) {

! ! /∗
∗ s e q u en t i a l append at t a i l : append wi thout s p l i t
∗
∗ I f s p l i t t i n g the l a s t page on a l e v e l because o f appending
∗ a entry to i t (s k i p i s maxentry) , i t ’ s l i k e l y t h a t the acces s i s
∗ s e q u en t i a l . Adding an empty page on the s i d e o f the l e v e l i s l e s s
∗ work and can push the f i l l f a c t o r much h i gher than normal .
∗ I f we ’ re wrong i t ’ s no b i g deal , we ’ l l j u s t do the s p l i t the r i g h t
∗ way next time .
∗ (I t may look l i k e i t ’ s e q u a l l y easy to do a s im i l a r hack f o r
∗ r e v e r s e so r t ed data , t h a t i s , s p l i t the t r e e l e f t ,
∗ but i t ’ s not . Be my gues t .)
∗/

i f (nextbn == 0 && s p l i t−>index == sp−>header . next index) {

! ! /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ EEPROM BANDS ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ The iwl3945 eeprom band d e f i n i t i o n s be low prov ide the mapping from the
∗ EEPROM conten t s to the s p e c i f i c channel number supported f o r each
∗ band .
∗
∗ For example , iw l3945 pr i v−>eeprom . band 3 channe l s [4] from the band 3
∗ d e f i n i t i o n below maps to p h y s i c a l channel 42 in the 5.2GHz spectrum .

26

∗ The s p e c i f i c geography and c a l i b r a t i o n in format ion f o r t ha t channel
∗ i s conta ined in the eeprom map i t s e l f .
∗
∗ During i n i t , we copy the eeprom informat ion and channel map
∗ in format ion in t o pr iv−>channe l i n f o 24 /52 and pr iv−>channel map 24 /52
∗
∗ channel map 24 /52 prov ide s the index in the channe l i n f o array f o r a
∗ g iven channel . We have to have two separa t e maps as t he r e i s channel
∗ over l ap wi th the 2.4GHz and 5.2GHz spectrum as seen in band 1 and
∗ band 2
∗
∗ A va lue o f 0 x f f s t o r ed in the channel map i n d i c a t e s t ha t the channel
∗ i s not suppor ted by the hardware at a l l .
∗
∗ A va lue o f 0 x f e in the channel map i n d i c a t e s t ha t the channel i s not
∗ v a l i d f o r Tx with the curren t hardware . This means t ha t
∗ whi l e the system can tune and r e c e i v e on a g iven channel , i t may not
∗ be a b l e to a s s o c i a t e or t ransmi t any frames on t ha t
∗ channel . There i s no corresponding channel in format ion f o r t ha t
∗ entry .
∗
∗∗ ∗/

! ! /∗
∗ Notes on re f e r ence t r a c i n g on i l l , i p i f , i re , nce data s t r u c t u r e s :
∗
∗ The curren t model o f r e f e r enc e s on an i p i f or i l l i s pure l y based on threads
∗ acqu i r ing a r e f e r ence by doing a lookup on the i l l or i p i f or by c a l l i n g a
∗ r e f h o l d func t i on on the i l l or i p i f . In p a r t i c u l a r any data s t r u c t u r e t ha t
∗ po in t s to an i p i f or i l l does not e x p l i c i t l y c on t r i b u t e to a r e f e r ence on the
∗ i l l or i p i f . More d e t a i l s may be seen in the b l o c k comment above i p i f down () .
∗ Thus in the qu i e s c en t s t a t e an i l l or i p i f has a r e f c n t o f zero . S im i l a r l y
∗ when a thread e x i t s , t h e r e can ’ t be any r e f e r enc e s on the i p i f or i l l due to
∗ the e x i t i n g thread .
∗
∗ As a debugg ing aid , the r e f h o l d and r e f r e l e f unc t i on s c a l l i n t o t r a c i n g
∗ f unc t i on s t ha t record the s t a c k t race o f the c a l l e r and the r e f e r enc e s
∗ acqu i red or r e l e a s e d by the c a l l i n g thread , hashed by the s t r u c t u r e address
∗ in thread−s p e c i f i c−data (TSD) . On thread ex i t , i p t h r e a d e x i t d e s t r oy s the
∗ hash , and the d e s t r u c t o r f o r the hash e n t r i e s (t h t r a c e f r e e) v e r i f i e s t h a t
∗ t h e r e are no ou t s tand ing r e f e r enc e s to the i p i f or i l l from the e x i t i n g
∗ thread .
∗
∗ In the case o f i r e s and nces , the model i s s l i g h t l y d i f f e r e n t . Typ i c a l l y each
∗ i r e po in t i n g to an nce c on t r i b u t e s to the n c e r e f cn t . S im i l a r l y a conn t
∗ po in t i n g to an i r e a l s o c on t r i b u t e s to the i r e r e f c n t . Exc luding the above
∗ s p e c i a l cases , the t r a c i n g behav ior i s s im i l a r to the t r a c i n g on i p i f / i l l .
∗ Traces are ne i t h e r recorded nor v e r i f i e d in the excep t i on cases , and the code
∗ i s c a r e f u l to use the r i g h t r e f h o l d and r e f r e l e f unc t i on s . On thread e x i t
∗ i r e t h r e a d e x i t , n c e t h r e a d e x i t does the v e r i f i c a t i o n t ha t are no
∗ ou t s tand ing r e f e r enc e s on the i r e / nce from the e x i t i n g thread .

27

∗
∗ The re f e r ence v e r i f i c a t i o n i s dr i ven from the TSD de s t r u c t o r which c a l l s
∗ i n t o IP ’ s v e r i f i c a t i o n func t i on i p t h r e a d e x i t . This debugg ing aid may be
∗ h e l p f u l in t r a c i n g miss ing r e f r e l e ’ s on a debug k e rne l . On a non−debug
∗ kerne l , t h e s e miss ing r e f r e l e ’ s are n o t i c e a b l e on ly when an i n t e r f a c e i s
∗ be ing unplumbed , and the unplumb hangs , long a f t e r the miss ing r e f r e l e . On a
∗ debug kerne l , the t r a c e s (t h t r a c e t) which conta in the s t a c k back t race s can
∗ be examined on a crash dump to l o c a t e the miss ing r e f r e l e .
∗/

28

Chapter 5

Type()

The Type category allows the programmer to express his need to specify more semantic properties about
some data-structures. People use comments for Type because the C type system is not expressive enough.
It does not allow to define specific constraints on the set of values a variable can take. For instance the ’int’
type is too general.

Many of the following comments can be supported by existing type-based annotation language or ad-
vanced PL (like Ada). So, in the following I will only indicate if the comment can not be supported by an
existing language.

Those annotations can be used to statically check or in some case only dynamically check and can also
used as an help for debugging at run-time.

A Type express a property on the value and in some sense can be seen as a specific case of the Interface
category described later, but a type is more focused on the property of a value instead of a function. It is
also a specific kind of invariant.

5.1 NULL()

People abuse pointers and NULL to represent an option (they should use instead an ’optional type’ as in
OCaml) and so then need special annotations to warn about such use. Pointers can be used for too many
things and so the comment is here to describe which of those use of pointers the programmer use.

This leads to lots of bloated code, where tests for NULL are inserted at many places (the number of
such tests may be really huge for OS code). Tools like Coverity try to warn about the missing of such tests,
adding even more bloats, but a better solution would be to not require such test at all.

/∗
∗ @param wrch p layback channel (op t i ona l ; may be NULL)
∗ @param rdch record ing channel (op t i ona l ; may be NULL)
∗ @param song song name g e t s cop ied from here
∗/

. . .
stat ic int
d s p o s s s e t s o n g (struct pcm channel ∗wrch , struct pcm channel ∗ rdch , os s longname t ∗ song)

struct page ∗mr page ; /∗ owning page , i f any ∗/

STATIC int /∗ error ∗/
x f s bmap add extent ho l e de l ay (

x f s i n o d e t ∗ ip , /∗ incore inode po in t e r ∗/

29

xfs extnum t idx , /∗ e x t en t number to update / i n s e r t ∗/
! ! x f s b t r e e c u r t ∗cur , /∗ i f nu l l , not a b t r e e ∗/

/∗ . . .
! ! ∗ I f i x l s t p IS NOT nu l l AND i s not the f i r s t compi led i x l command and
∗ i s not an i x l l a b e l command , re turns an error .
∗ I f i x l s t p IS nu l l , uses the f i r s t compi led i x l command (i x l f i r s t p)
∗ in p l ace o f i x l s t p .
∗
∗ I f no e x e cu t e a b l e x f e r found a long exec path from i x l s t p , r e turns error .
∗/

int
h c i 1 3 9 4 i x l s e t s t a r t (h c i 1 3 9 4 i s o c t x t t ∗ ctxtp , ixl1394 command t ∗ i x l s t p)
{

! ! ∗ Copy a l i s t o f a t t r i b u t e names in to the b u f f e r
! ! ∗ provided , or compute the b u f f e r s i z e r equ i r ed .
! ! ∗ Buf f e r i s NULL to compute the s i z e o f the b u f f e r r equ i r ed .
∗/

int
e x t 4 x a t t r l i s t (struct inode ∗ inode , char ∗ bu f f e r , s i z e t b u f f e r s i z e)
{

} else {
/∗
∗ . . .

! ! ∗ Note t ha t the t s i n h e r i t o r f o r the t u r n s t i l e
∗ may be NULL. I f one e x i s t s , i t s t p r i o i n v
∗ chain has to be updated .
∗/

ASSERT(ts−>t s w a i t e r s == 1) ;
i f (ts−>t s i n h e r i t o r != NULL) {

! ! /∗
∗ Obtain the t r an sac t i on wrapper and tw w i l l be
∗ NULL fo r the dummy and f o r the rec la im TD’ s .
∗/

i f (. . .) {
tw = . . . Get TD(o ld td−>hctd trans wrapper)) ;
ASSERT(tw == NULL) ;

Note that the NULL problem, the fact that pointers may or may not point to a valid memory, is also
present in Java where we can have variables without binding, leading to the infamous NullPointerException.
This would not happen if Java made a better design choice, like in OCaml, where every variables must have
a binding, a value. C does not force the programmer to provide such a default value, as it may lead to
some inefficiencies in very few cases where people don’t want to initialize data (but note that many checkers
like Valgrind considers most of those occurrences of code as buggy code, especially if the uninitialized data
is then used as-is by the program). But C could provide such a possibility maybe by just changing the
default behavior. C could force (by construction) the programmer to provide a value, and in some cases
allow uninitialized variable but forcing the programmer to provide an explicit annotation. C could also

30

differentiate such variables by giving them a different type which would make it clear that it’s a special kind
of variable.

int x = 1;
int *p = &x;
int *q; // compiler error
int_unitialized *q;

int f(int *x) {
...

}
int f(int_unitialized *x) {
...

}

Then functions would never need to provide /* assumes not NULL */ annotations as every variables
and every pointers, would by default have a binding.

int f (int ∗x) ; /∗ assumes x not NULL ∗/

Surprisingly we didn’t find that many NULL comments, whereas it is a focus of multiple annotation
languages and bug checker. Maybe because they were using previously such comments, to describe what
they assume from the caller, but now instead add concrete tests in the code. Maybe Coverity had a influence
(a bad one) on this aspect.

Ada 2005 has a ’not null’ feature.

5.2 Bound()

Most comments expressing the condition on the bounds of arrays are added on parameters of functions. See
the Deputy later below.

5.3 Range()

short charhe ight ; /∗ l i n e s per char (1−32) ∗/

Such range data types can be handled by Ada which either statically prove the correctness of code or
insert few dynamic checks for the places where the static analysis failed.

#define WSIZE 0x8000 /∗ window s i z e−−must be a power o f two , and ∗/
/∗ at l e a s t 32K fo r z i p ’ s d e f l a t e method ∗/

#d e f i n e RX RING SIZE (FEC ENET RX FRPPG ∗ FEC ENET RX PAGES)
! !# d e f i n e TX RING SIZE 16 /∗ Must be power o f two ∗/

#d e f i n e TX RING MOD MASK 15 /∗ f o r t h i s to work ∗/

The preceding comment is not really a range but still an extra condition on the domain of the value. It
is also at a cpp-level which again would make it hard to check by regular tools.

The constraint can also be on the format of a strng:

r p c g s s p r i n c i p a l t c l i e n t p r i n c i p a l ;
! ! char ∗ s v c p r i n c i p a l ; /∗ serv i ce@server , e . g . n f s@car ibe ∗/

r p c g s s s e r v i c e t s e r v i c e ;
} r p c g s s r a w c r e d t ;

31

5.4 Unit()

Unit types, also known as dimension types [], have their origin in physics where programmers manipulate
different values of different dimensions, such as speed, distance, time, that can be combined together to build
value of other dimensions. For instance, a distance can be divided by a time and can then be compared
with a speed value as they have the same dimension (the same type). Without dimension types, one can
compare a speed value with a distance value, which does not make sense, but which can not be detected by
type system like C where every value would have the same (too general) type: ’int’.

In OS code, programmers seem to use mainly

• time dimension. They sometimes use seconds, milliseconds, micro seconds (usec), nanoseconds, or
weeks. They always use the same type, ’int’, for all of this. Maybe timing error can be made.

• byte dimension, with either kilo-bytes, sectors, byte ranges, or words.

They sometimes also use an hertz dimension type and bandwidth dimension type.

! ! xge os mdelay (50) ; // wai t 50 m i l l i s e ond s

It would be better to have instead:

xge_os_mdelay(50ms);

/*
* The default maximum commit age, in seconds.
*/

#define JBD_DEFAULT_MAX_COMMIT_AGE 5
In fact they sometimes define macros for such purpose like

/* milli second, micro second, nano second */
#define MSsec * 1000000
#define USsec * 1000
#define NSec * 1
delay(100 MSec);

But again, macros are error prone and not type-checked. Note that the delay(10ms), delay(10s), could be
done via OO classes with different time constructors: delay(new Seconds(1)), delay(new Msec(1000)). But
maybe we could have a more lightweight solution based on unit types.

Note that TeX forces programmers to add unit to numbers as in 2.8in.

! ! stat ic long t i c k d e l t a s u m ; /∗ Accumulated t i c k d i f f e r e n c e (usec) . ∗/

! !# d e f i n e RNG RETRY HLCHK USECS 100000 /∗ r e t r y every .1 seconds ∗/

#d e f i n e DQ FTIMELIMIT (7 ∗ 24∗60∗60) /∗ 1 week ∗/

/∗ . . .
∗ S p l i t t imeout and the re turned va lue are in bus
∗ c y c l e s .
∗/

stat ic u i n t t
h c i 1 3 9 4 a s y n c t i m e o u t c a l c (hc i 1394 a sync hand l e t async handle ,

u i n t t cu r r ent t ime)
{

32

! ! a i c p c i w r i t e c o n f i g (pci , PCIR COMMAND, command , /∗ b y t e s ∗/ 1) ;
ahc−>bugs |= AHC PCI MWI BUG;

case ’K ’ :
! ! i f (num > max bytes / 1024) /∗ w i l l o ve r f l ow ∗/

return (EINVAL) ;

! ! /∗ Check s i z e ∗/
i f (d a t a b u f f e r l e n g t h > TW MAX IOCTL SECTORS ∗ 512) {

int mem; /∗ memory in 128 MB un i t s ∗/

If we use annotation /* @@unit: 128MB */, or if the C language lets programmers specify a unit as an
extended type, then we can perform type checking on units to detect such mistakes.

unsigned char d p s s e c t ; /∗ s t a r t i n g s e c t o r ∗/
unsigned char dp shd ; /∗ s t a r t i n g head ∗/
unsigned short dp scy l ; /∗ s t a r t i n g c y l i n d e r ∗/

! ! unsigned char dp e s e c t ; /∗ end s e c t o r ∗/
unsigned char dp ehd ; /∗ end head ∗/
unsigned short dp ecy l ; /∗ end c y l i n d e r ∗/
unsigned char dp name [1 6] ;

} ;

sc->config.synth.n = 52; /* 52.000 Mbs */

5.5 State type()

A variable can go through multiple states. Some functions accept only a variable when it is in a specific
state. Protocols works like this. The sing# [] language allows to specify complex protocols and ensure that
the code conforms to this protocol.

int f (int fd) ; /∗ must be opened ∗/

But we didn’t find such comment in the sample.

/∗∗
∗ Given a connected NdbMgmHandle , turns i t i n t o a t r an spo r t e r
∗ and re turns the socke t .
∗/

NDB SOCKET TYPE connect ndb mgmd (NdbMgmHandle ∗h) ;

5.6 Region pointers()

register INT32 ∗ bptr ; /∗ po in t e r in t o b e s t d i s t [] array ∗/

JSAMPLE ∗ cptr ; /∗ po in t e r in t o b e s t c o l o r [] array ∗/

33

5.7 Dependent types()

Dependent types are used to specify that the type of a variable depends on the value of another variable.
For instance, given a function taking an array of int, and a length, one would like to say that the type of
the array is of a specific length:

int foo(int *xs /* array[length] */, int length);

With this type information the type-checker can then try to detect out-of-bounds array access. This can
be very useful as an OS manipulates lots of resources, and usually bounded resources.

C++ allows a form of dependent type as one can give in the type of a template an integer as in
vector<10> x;. But it does not use this opportunity to statically check out-of-bounds array access.

I think Pascal allows to have flexible-arrays where the size is known at run-time and checks are done
dynamically.

typedef struct x f s d i r e n t { /∗ data from readd i r () ∗/
x f s i n o t d ino ; /∗ inode number o f entry ∗/
x f s o f f t d o f f ; /∗ o f f s e t o f d i s k d i r e c t o r y entry ∗/

! ! unsigned short d r e c l e n ; /∗ l e n g t h o f t h i s record ∗/
char d name [1] ; /∗ name o f f i l e ∗/

} x f s d i r e n t t ;

5.7.1 Array dependent types()

/*
* PARAMETERS: AmlBuffer - Pointer to the resource byte stream
* AmlBufferLength - Size of AmlBuffer

...
*/

ACPI_STATUS
AcpiRsGetListLength (

UINT8 *AmlBuffer,
UINT32 AmlBufferLength,
ACPI_SIZE *SizeNeeded)

{
In the preceding comment an additional parameter is passed with an array to give the length of this

array. We didn’t find that much such comments whereas such “checks”, for bound checking, is a hot topic
among annotation languages. Maybe it is important, but we didn’t find that many such comments. Maybe
programmers don’t use comment to document such a dependency.

5.7.2 Union dependent types()

typedef struct { /∗ Aux i l i a r y vec to r entry on i n i t i a l s t a c k ∗/
! ! long a type ; /∗ Entry type . ∗/

union {
long a v a l ; /∗ In t e g e r va lue . ∗/
void ∗ a pt r ; /∗ Address . ∗/
void (∗ a f c n) (void) ; /∗ Function po in t e r (not used) . ∗/

} a un ;

34

union { /∗ chunk memory hand les ∗/
! ! struct ib mr ∗ r l mr ; /∗ i f r e g i s t e r e d d i r e c t l y ∗/

struct rpcrdma mw { . . . } /∗ i f r e g i s t e r e d from reg ion ∗/
}
. . . .
u64 mr base ; /∗ r e g i s t r a t i o n r e s u l t ∗/

Note that in the comment above the condition (“if registered from region”) is fuzzy and may require
thinking to map it to a code condition.

struct a u g e n e r i c t i d {
! ! uchar t g t type ; /∗ AU IPADR, AU DEVICE , . . . ∗/

union {
a u i p t a t i p ;
a u p o r t t at dev ;

} gt adr ;
} ;

u i n t 8 t ID type ; /∗ Layer 3 p ro t o co l d i s c r im ina to r ∗/
union { /∗ Layer 3 p ro t o co l ∗/

u i n t 8 t s imple ID ; /∗ ITU ∗/
u i n t 8 t IPI ID ; /∗ ISO IPI ∗/

! ! struct { /∗ IEEE 802.1 SNAP ID ∗/
u i n t 8 t OUI [3] ;
u i n t 8 t PID [2] ;

} SNAP ID ;
u i n t 8 t u s e r d e f i n e d I D ; /∗ User−de f ined ∗/

} ID ;

The Deputy [] dependent type system can provide such annotations for union using the following syntax:
WHEN(tag ==0). The annotation describes on which condition the member of an union must be used.

struct foo
{
int tag;
union foo {
int *p; WHEN(tag == 0);
int n; WHEN(tag == 1);

} u;
};

Some functional languages like OCaml or Haskell with advanced abstract types can directly support such
alternatives without needing to relate multiple variables together with tags. The tag is generated internally
by the compiler.

type foo =
| Pointer of int *p
| Int of int n

5.8 Relation types()

35

! ! /∗ ARL Structure , one per l i n k l e v e l d ev i c e ∗/
typedef struct a r l s {

struct a r l s ∗ a r l n e x t ; /∗ ARL chain at a r l g h e ad ∗/
queue t ∗ a r l r q ; /∗ Read queue po in t e r ∗/
queue t ∗ ar l wq ; /∗ Write queue po in t e r ∗/

struct {
! ! GUID b i r th vo lume id ; /∗ Unique id o f volume on which

the f i l e was f i r s t c rea t ed . ∗/
GUID b i r t h o b j e c t i d ; /∗ Unique id o f f i l e when i t was

f i r s t c rea t ed . ∗/
GUID domain id ; /∗ Reserved , zero . ∗/

Note the use also of a range constraint “zero”.
This notion of uniqueness may be related to SQL and relational database systems. In a database the

system enforces such constraints. UML also allows to annotate relations between classes with arity constraints
like 1-to-1, 1-to-n, etc.

5.9 Memory types()

An OS manages multiple address space: its own kernel space and the address space of different process. At
some point I think some pointers were qualified in comments as referring to either kernel pointers or user
pointers (/* kernel space variable */). The Sparse [] annotation language introduced specific annota-
tions (user, kernel) to ensure that such pointers were used only through specific functions. This may
explain why we didn’t find any comment anymore about the address space property of a pointer.

! ! /∗ Conversion to new PCI API :
∗ Convert an address in a ke rne l b u f f e r to a bus/phys/dma address .
∗ This work ∗ only ∗ f o r memory fragments par t o f lp−>page vaddr ,
∗ because i t was prope r l y DMA a l l o c a t e d v ia p c i a l l o c c o n s i s t e n t () ,
∗ so we j u s t need to ” r e t r i e v e ” the o r i g i n a l mapping to bus/phys/dma
∗ address − Jean I I ∗/

5.10 Bit and bytes()

The following comments show that the C language is in fact not low-level enough. It does not make it
very easy to manipulate bits and bytes. The C language proposes bitwise operators (&, |, ^) and shifting
operators (>>, <<), but they are tedious to use for doing complex bits and bytes manipulations.

#d e f i n e IRASH 0x4E000000 /∗ mask f o r changeab le a t t r i b u t e s ∗/
! !# d e f i n e ATTRSHIFT 25 /∗ b i t s to s h i f t to move a t t r i b u t e

s p e c i f i c a t i o n to mode po s i t i o n ∗/

5.10.1 Bitset

! ! /∗ Clock f l a g s ∗/
#d e f i n e RATE CKCTL (1 << 0) /∗ Main f i x e d r a t i o c l o c k s ∗/
#d e f i n e RATE FIXED (1 << 1) /∗ Fixed c l o c k ra t e ∗/
#d e f i n e RATE PROPAGATES (1 << 2) /∗ Program ch i l d r en too ∗/

36

#d e f i n e VIRTUAL CLOCK (1 << 3) /∗ Composite c l o c k from t a b l e ∗/
#d e f i n e ALWAYS ENABLED (1 << 4) /∗ Clock cannot be d i s a b l e d ∗/

C++ now provides a special template library for bitset that I guess offer better type guarantees (but
template are harder to use than such simple cpp macros).

5.10.2 cpplint

As we have seen in previous sections, lots of comments are not attached to C entities but cpp entities like
macros, and express some conditions on macros. Most static analysis tools work at the C level and so lose
the opportunity to detect bugs due to misuse of cpp. Most tools get rid of comments and cpp, so they can’t
really find some opportunity, such as the #define grouping type opportunity presented later. They only
“see” integers instead of symbolic constants coming from lots of different macros. A paper [] studied the
different usage and bugs coming from the use of cpp []. So, it would be useful to invent a lint for cpp, a
cpplint.

Macro variables like #define X 1, are used for many things: to represent a symbolic constant, to be
part of a bitset, to represent a magic number, a bitmask, to be used to align bits, etc. There are lots of
opportunities to misuse such variables, e.g., to use an align macro variable instead of a bitset macro variable.

Another paper [] proposed a new kind of pre-processor. This pre-processor is safer, and also makes it it
easier to implement program-transformation tools, like refactoring tools over C, as the use of the actual cpp
is one of the biggest barrier [?] for the development of such tools.

! ! /∗
∗ s t r i n g i f y doesn ’ t l i k e s enums , so use SOCK DCCP (6) and IPPROTO DCCP (33)
∗ va l u e s d i r e c t l y , Also cover the case where the p ro t o co l i s not s p e c i f i e d ,
∗ i . e . net−pf−PF INET−proto−0−type−SOCK DCCP
∗/

MODULE ALIAS NET PF PROTO TYPE(PF INET , 33 , 6) ;
MODULE ALIAS NET PF PROTO TYPE(PF INET , 0 , 6) ;

5.10.3 Group

! ! /∗
∗ EATA Command & Reg i s t e r d e f i n i t i o n s
∗/

#d e f i n e PCI REG DPTconfig 0x40
#d e f i n e PCI REG PumpModeAddress 0x44
. . .

! ! /∗
∗ MBOX r e g i s t e r s
∗/

#d e f i n e HE REGO CS STPER0 0x000
#d e f i n e HE REGO CS STPER(G) (HE REGO CS STPER0 + (G))

! ! /∗
∗ Superv i sory LLC commands
∗/

#d e f i n e LLC RR 0x01
#d e f i n e LLC RNR 0x05
#d e f i n e LLC REJ 0x09

37

There is no assurance that those macros are used on the good variables or that they get mixed up with
orthogonal macros.

5.10.4 Devil

Here are some read/write specifications that could be leveraged by some tools:

! !# d e f i n e EHCI CONF CF 0x00000001 /∗ RW con f i gu r e f l a g ∗/

#d e f i n e EHCI PORTSC(n) (0 x40+4∗(n)) /∗ RO, RW, RWC Port S ta tus reg ∗/
. . .
#d e f i n e EHCI PS PP 0x00001000 /∗ RW,RO por t power ∗/
#d e f i n e EHCI PS LS 0 x00000c00 /∗ RO l i n e s t a t u s ∗/

#define E1000 CTRL 0x00000 /∗ Device Contro l − RW ∗/
#define E1000 CTRL DUP 0x00004 /∗ Device Contro l Dup l i ca te (Shadow) − RW ∗/
#define E1000 STATUS 0x00008 /∗ Device S ta tus − RO ∗/
! !# d e f i n e E1000 MCC 0x0401C /∗ Mul t i p l e Co l l i s i o n Count − R/ c l r ∗/

#d e f i n e E1000 LATECOL 0x04020 /∗ Late Co l l i s i o n Count − R/ c l r ∗/

!! /* Clear any pending interrupt events. */
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
icr = E1000_READ_REG(hw, E1000_ICR);

/∗ 0x0042 − 0x0047 : r e s e rved ∗/
#d e f i n e B0 XM2 ISRC 0x0048 /∗ 16 b i t ro XMAC 2 In t e r rup t S ta tus Reg ∗/

/∗ 0x004a − 0 x004f : r e s e rved ∗/
#d e f i n e B0 XM2 PHY ADDR 0x0050 /∗ 16 b i t r/w XMAC 2 PHY Address Reg i s t e r ∗/

/∗ 0x0052 − 0x0053 : r e s e rved ∗/
! !# d e f i n e B0 XM2 PHY DATA 0x0054 /∗ 16 b i t r/w XMAC 2 PHY Data Reg i s t e r ∗/

/∗ 0x0056 − 0 x005f : r e s e rved ∗/

Here are complex bit and bytes layout as well as conditions:

#d e f i n e PCI ASPM FORCE CLKREQ ENA BIT 4 /∗ Force CLKREQ Enable (A1b only) ∗/
#d e f i n e PCI ASPM CLKREQ PAD CTL BIT 3 /∗ CLKREQ PAD Contro l (A1 only) ∗/

! !# d e f i n e PCI ASPM A1 MODE SELECT BIT 2 /∗ A1 Mode S e l e c t (A1 only) ∗/
#d e f i n e PCI CLK GATE PEX UNIT ENA BIT 1 /∗ Enable Gate PEX Unit Clock ∗/

typedef enum {
! ! PMUGPIO MBC, /∗ Boston MBC FPGA GPIO − 8− b i t ∗/

PMUGPIO CPLD, /∗ S e a t t l e CPLD GPIO − 8− b i t ∗/
PMUGPIO OTHER /∗ Chalupa − 8− b i t ∗/

} pmugp io acce s s type t ;

! ! /∗ [RW 16] a l l producer and consumer o f por t 0 accord ing to the f o l l ow i n g
addres se s ; U prod : 0−15; C prod : 16−31; U cons : 32−47; C cons :48−63;
De fou l t p rod : U/C/X/T/Attn−64/65/66/67/68; De fou l t cons :
U/C/X/T/Attn−69/70/71/72/73 ∗/

#d e f i n e HC REG P0 PROD CONS 0x108200
/∗ [RW 16] a l l producer and consumer o f por t 1 accord ing to the f o l l ow i n g

addres se s ; U prod : 0−15; C prod : 16−31; U cons : 32−47; C cons :48−63;

38

Defou l t p rod : U/C/X/T/Attn−64/65/66/67/68; De fou l t cons :
U/C/X/T/Attn−69/70/71/72/73 ∗/

#d e f i n e EB2 CAW 8 0x00000000 /∗ SDRAM ex t e rna l bank column address width = 8 b i t s ∗/
#d e f i n e EB2 CAW 9 0x00100000 /∗ SDRAM ex t e rna l bank column address width = 9 b i t s ∗/

! !# d e f i n e EB2 CAW 10 0x00200000 /∗ SDRAM ex t e rna l bank column address width = 9 b i t s ∗/
#d e f i n e EB2 CAW 11 0x00300000 /∗ SDRAM ex t e rna l bank column address width = 9 b i t s ∗/

! ! /∗ Timer r e g i s t e r s ∗/
#d e f i n e HPET TIMER CAP CNF(x) ((x) ∗ 0x20 + 0x100)
#d e f i n e HPET TCAP INT ROUTE 0 x f f f f f f f f 0 0 0 0 0 0 0 0
#d e f i n e HPET TCAP FSB INT DEL 0x00008000
#d e f i n e HPET TCNF FSB EN 0x00004000
#d e f i n e HPET TCNF INT ROUTE 0 x00003e00

#d e f i n e PIOD ASR (0 xa00 + 112) /∗ Se l e c t A r e g i s t e r ∗/
! !# d e f i n e PIOD BSR (0 xa00 + 116) /∗ Se l e c t B r e g i s t e r ∗/

#d e f i n e PIOD ABSR (0 xa00 + 120) /∗ AB Se l e c t s t a t u s r e g i s t e r ∗/
#d e f i n e PIOD OWER (0 xa00 + 160) /∗ Output Write enab l e r e g i s t e r ∗/
#d e f i n e PIOD OWDR (0 xa00 + 164) /∗ Output wr i t e d i s a b l e r e g i s t e r ∗/

/∗ AC97 SINGLE(” D i g i t a l Audio Mode” , AC97 AD MISC, 12 , 1 , 0) , ∗/ /∗ seems prob l emat i c ∗/
AC97 SINGLE(”Low Power Mixer” , AC97 AD MISC , 14 , 1 , 0) ,
AC97 SINGLE(” Zero F i l l DAC” , AC97 AD MISC , 15 , 1 , 0) ,

! ! AC97 SINGLE(”Headphone Jack Sense ” , AC97 AD JACK SPDIF , 9 , 1 , 1) , /∗ i n v e r t e d ∗/
AC97 SINGLE(” Line Jack Sense ” , AC97 AD JACK SPDIF , 8 , 1 , 1) , /∗ i n v e r t e d ∗/

} ;

#d e f i n e PERF MON CNTH REG regpt r (MSP SLP BASE + 0x148)
! ! /∗ Perf monitor counter h igh ∗/

#d e f i n e PERF MON CNTL REG regpt r (MSP SLP BASE + 0x14C)
/∗ Perf monitor counter low ∗/

#d e f i n e IXGB TPTH 0x02104 /∗ Tota l Packets Transmitted (High) ∗/
! !# d e f i n e IXGB GPTCL 0x02108 /∗ Good Packets Transmitted Count (Low) ∗/

#d e f i n e IXGB GPTCH 0x0210C /∗ Good Packets Transmitted Count (High) ∗/
#d e f i n e IXGB BPTCL 0x02110 /∗ Broadcast Packets Transmitted Count (Low) ∗/

#d e f i n e EMU DOCK MAJOR REV 0x25 /∗ 0000 xxx 3 b i t Audio Dock FPGA Major rev ∗/
! !# d e f i n e EMU DOCK MINOR REV 0x26 /∗ 0000 xxx 3 b i t Audio Dock FPGA Minor rev ∗/

#d e f i n e EMU DOCK BOARD ID 0x27 /∗ 00000 xx 2 b i t s Audio Dock ID pins ∗/
#d e f i n e EMU DOCK BOARD ID0 0x00 /∗ ID b i t 0 ∗/

39

!!/*
* Error log scratchpad register format.
*
* +--------+-------------------+----------+
* |ASI_EIDR| PA to logging buf | # of err |
* +--------+-------------------+----------+
* 63 50 49 6 5 0
*
*/
#define ERRLOG_REG_LOGPA_MASK INT64_C(0x0003ffffffffffc0) /* PA to log */
#define ERRLOG_REG_NUMERR_MASK INT64_C(0x000000000000003f) /* Counter */
#define ERRLOG_REG_EIDR_MASK INT64_C(0x0000000000003fff) /* EIDR */

#define PCI_ROMBASE_MSK 0xfffe0000L /* Bit 31..17: ROM Base address */
#define PCI_ROMBASE_SIZ (0x1cL<<14) /* Bit 16..14: Treat as Base or Size */
#define PCI_ROMSIZE (0x38L<<11) /* Bit 13..11: ROM Size Requirements */

!! /* Bit 10.. 1: reserved */

! ! /∗ RX Descr ip tor Base Low/High .
∗
∗ These two r e g i s t e r s s t o r e the 53 most s i g n i f i c a n t b i t s o f the base address
∗ o f the RX de s c r i p t o r t a b l e . The 11 l e a s t s i g n i f i c a n t b i t s are always
∗ zero . As a r e s u l t , the RX de s c r i p t o r t a b l e must be 2K a l i gned .
∗/

#d e f i n e CCM REG CCM INT MASK 0xd01e4
/∗ [R 11] I n t e r rup t r e g i s t e r #0 read ∗/
#d e f i n e CCM REG CCM INT STS 0xd01d8

! ! /∗ [RW 3] The s i z e o f AG con tex t reg ion 0 in REG−pa i r s . Des ignates the MS
REG−pa i r number (e . g . i f r eg ion 0 i s 6 REG−pa i r s ; the va lue shou ld be 5) .
I s used to determine the number o f the AG con tex t REG−pa i r s wr i t t en back ;
when the input message Reg1WbFlg i sn ’ t s e t . ∗/

The preceding comments could be better handled by the domain specific language (DSL) Devil [] which
makes it easier to manipulate bit and bytes, to combine bit, and to do it in a safe way with an advanced
specific type checker.

Here is an example of a Devil specification:

TODO

One may ask why Devil, or more generally DSLs didn’t “make it” into the OS community. Multiple DSLs
have been developed but none of them worked, be it for low-level bit manipulation with Devil [] for device
drivers code, or for low-level byte format specification for network packets with PADL [] and Melange [] for
network protocols code. In the case of Devil one may think that the problem does not exist anymore as
devices have now simpler standard interface which does not require to play with ports. In the past maybe
some drivers have to do everything with 2 ports which require lots of tricks to provide lots of functionality
through 2 ports, but maybe now device can have lots of ports as some memory or past constraints have
vanished. Another explanation is that OS programmers don’t want to learn new languages and prefer to
stick with C, even if the low-level bit and byte manipulation are not as easy as in some DSL. DSL have, on
the opposite, been quite successful in another domain, also dealing with a big system: compilers. Yacc, Lex,
Burg [] are often used by compiler programmers. But, compiler programmers, who are often language lovers
in the first place, are certainly more inclined to learn new languages, including DSLs.

40

5.11 Polymorphism, template types()

struct z f c p u n i t {
struct dev i c e s y s f s d e v i c e ; /∗ s y s f s dev i c e ∗/

! ! struct l i s t h e a d l i s t ; /∗ l i s t o f l o g i c a l un i t s ∗/
atomic t r e f count ; /∗ r e f e r ence count ∗/
wai t queue head t remove wq ; /∗ can be used to wai t f o r

This comment may have lead to the introduction of template in C++, a better way to type-check container
structures like list, tree, or hash.

list<logical_unit> units;

There is very few such comments in our sample as Linux programmers rarely use the generic list head
structure. They instead redefine each time different list structures like struct list node, struct list cpu, which
is tedious and lead to duplication of code or bad type checking if they want to factorize functionalities. Also
when they use list head, they don’t use comments but instead encode the type of the list in the name of the
variable (which are also not type-checked by the compiler to find errors). So, it is very easy to mix list of
oranges and list of apples in C.

5.12 Shape

5.13 Abuse int(), Abuse string()

This section is not about the name of a specific category but a theme that often repeats in the previous
categories. OS programmers use the ’int’ type for many things (for dimensions, for range, for bitset, even for
memory address), and as one can manipulate an int with many different kinds of operators in C (arithmetic,
logical, or even use pointer arithmetic) it may be very easy to make mistakes.

Some annotations may help a little like the attribute __attribute(bitwise) or the bitwise annotation
of Splint(?).

In fact a similar abusing problem happens with char* pointers, which are used to represent byte regions,
string, filename, or directory names. In Java this problem has been partially solved by introducing different
classes, first a real String class, but also a File class, Directory class, that makes it more difficult to mix
up things. For instance if a function takes both a filename and a string, in C if one use char* for both
parameters, then there is no way for the typechecker to check that the argument are in the right order at
the caller site. In Java those kinds of mistakes can be detected.

This is similar to some of the problems that beginners have with the C library. Many C functions take
2 parameters of the same type, for instance strcpy(), but some of those functions take first the source and
then the destination while other functions do the opposite (inconsistencies in the API). This lead to lots of
mistakes as one has to remember the different conventions.

Abusing ’int’ or ’string’ have also some advantages, which is the reason why people use them: it does
not require to know the name of different types (or classes) and it does not require to remember the name of
the conversion functions (or to call any conversion function at all). It’s a quick and dirty technique, which
makes it appealing for programmers.

5.14 Not seen in comments

We didn’t find anything about information flow or privacy annotations. Maybe because information flow is
a very new topic; what OS programmers don’t know, they can not write comments about it. This may show
also a limitation of our approach; some programmer needs may not be learned from comments.

41

Chapter 6

Interface()

The Interface category allows the programmer to express his need to specify how entities should be used,
usually via some semantic properties. How to correctly use a value, a structure, a function ? What can
be assumed and what can not be assumed ? What are the responsibilities ? What the caller/callee are
responsible for ? What is the contract ?

6.1 Pre conditions()

There are lots of works to specify pre-conditions and post-conditions (larch, JML, ESC, etc) on parameters,
such as “this function must take an integer that is more than 10 to work”. But we didn’t find that many
such comments. We found pre-condition comments, but not on parameters. The comments we found were
more about higher level pre conditions. Maybe because an OS is about managing state and time, it is less
“functionnal” and so an OS maybe need lesss pre and post conditions on parameters and return value.

/∗ . . .
∗ Note t ha t we r e l y on the f a c t t h a t a l l b u f f e r data
∗ areas are a l l o c a t e d wi th (at l e a s t) f u l l −word a l i gnments / l e n g t h s .
∗

. . .
s t a t i c KBuffer ∗
f o re xmi t s egment (fup , m, hxp , segp , l enp)

! ! /∗ This breaks i f a hash t a b l e grows above 32MB
∗/

hash sc ra t ch = ((v m o f f s e t t) th−>th hashtab l e) | ((v m o f f s e t t)(1<<th−>t h s h i f t)) ;

! ! /∗ must be c a l l e d wi th n e t l i n k t a b l e grabbed ∗/
stat ic void net l i nk update socke t mc (struct n e t l i n k s o c k ∗nlk ,

∗ Convert an address in a ke rne l b u f f e r to a bus/phys/dma address .
∗ This work ∗ only ∗ for memory fragments part o f lp−>page vaddr ,
∗ because i t was proper ly DMA a l l o c a t e d v ia p c i a l l o c c o n s i s t e n t () ,
∗ so we j u s t need to ” r e t r i e v e ” the o r i g i n a l mapping to bus/phys/dma
∗ address − Jean I I ∗/

stat ic i n l i n e dma addr t v i r t t o w h a t e v e r (struct n e t d e v i c e ∗dev , u32 ∗ ptr)

42

∗ requ i red , then the data must be s h i f t e d (copied) in to p lace − a sure
! ! ∗ performance k i l l e r . Note that we r e l y on the f a c t that a l l b u f f e r data
∗ areas are a l l o c a t e d with (at l e a s t) f u l l −word al ignments / l eng th s .
. . .

stat ic KBuffer ∗
f o re xmit segment (fup , m, hxp , segp , lenp)

! ! /∗ ∗/
/∗ WARNING: I t ’ s the r e s p o n s i b i l i t y o f the c a l l e r to make sure t he r e ∗/
/∗ i s enough room in r s b u f f o r the ba s i c RPC message ”preamble ” . ∗/
/∗ −−

∗/
stat ic int
i ppr rpcb decoderep (f in , nat , rs , rm , rxp , i f s r p c b)

/∗ . . .
∗ This func t i on assumes the curren t con t ex t i s s topped !
∗

i n t
h c i 1 3 9 4 i x l s e t s t a r t (h c i 1 3 9 4 i s o c t x t t ∗ c tx tp , ix l1394 command t ∗ i x l s t p)
{

i f (pool == NULL) {
! ! /∗ The −1 assumes c a l l e r has done a s v c g e t () ∗/

nr s e rv s −= (serv−>sv nrthreads −1);
} else {

/∗
∗ This must be c a l l e d on ly on pages t ha t have
∗ been v e r i f i e d to be in the swap cache .
∗/

Note that such pre-conditions may not be easy to formalize. They correspond to high level concepts that
does not map to C code directly. Maybe researchers need to study this: see if we can find ways to describe
those high-level properties easily.

6.2 InOut()

/∗ −− ∗/
/∗ Function : f r p r ah ∗/
/∗ Returns : vo id ∗/

! ! /∗ Parameters : f i n (I) − po in t e r to packe t in format ion ∗/
/∗ ∗/
/∗ Analyse the packe t f o r AH prop e r t i e s . ∗/
/∗ The minimum l eng t h i s taken to be the combination o f a l l f i e l d s in the ∗/
/∗ header be ing pre sen t and no au t h en t i c a t i on data (n u l l a l gor i thm used .) ∗/
/∗ −− ∗/
stat ic INLINE void f r p r a h (f i n)
f r i n f o t ∗ f i n ;

43

{

/∗∗
∗ no l o c k h o l d l v b − ho ld on to a l o c k va lue b l o c k
∗ @lock : the l o c k the LVB i s a s s o c i a t e d wi th

! ! ∗ @lvbp : re turn the lm l v b t here
∗
∗ Returns : 0 on success , −EXXX on f a i l u r e
∗/

stat ic int n o l o c k h o l d l v b (void ∗ lock , char ∗∗ lvbp)

/∗
∗ PARAMETERS: AmlBuffer − . . .
∗ AmlBufferLength − . . .

! ! ∗ SizeNeeded − Where the s i z e needed i s re turned
∗/

ACPI STATUS
AcpiRsGetListLength (

UINT8 ∗AmlBuffer ,
UINT32 AmlBufferLength ,
ACPI SIZE ∗SizeNeeded)

{

/∗ ds t (I) − po in t e r to by t e sequence to search ∗/
/∗ s l en (I) − match l en g t h ∗/
/∗ d len (I) − l e n g t h a v a i l a b l e to search in ∗/

/∗ −− ∗/
/∗ Function : f r f i x s k i p ∗/
/∗ Returns : Ni l ∗/

! ! /∗ Parameters : l i s t p (IO) − po in t e r to s t a r t o f l i s t wi th s k i p ru l e ∗/
/∗ rp (I) − r u l e added/removed wi th s k i p in i t . ∗/
/∗ addremove (I) − adjustment (−1/+1) to make to s k i p count , ∗/
/∗ depending on whether a ru l e was j u s t added ∗/

void f r f i x s k i p (l i s t p , rp , addremove)
f r e n t r y t ∗∗ l i s t p , ∗ rp ;
int addremove ;
{

Note in the last comment another case of abuse of int for the adjustment parameter.
Note that the preceding comments are mostly all from the same file. Because our tool currently analyzes

each comment block in separation, there will be 6 comments in the preceding example, one for each line.
They are not currently agglomerated. So, the sample is biased to more often list comments from this file.

Those comments are here mainly because C can not return multiple values (tuples), and so pointers are
used for that purpose. Pointers can be used both to modify an argument and to pass more effectively big
arguments. Then programmers need to specify which modality they use by writing the role of each argument
(is it an input or output). Functional languages don’t have this problem and have thus far more cleaner
function interface, closer to mathematics. A function takes only input arguments and can return multiple
values.

44

This notion of in and out about arguments is also present in Interface Definition Languages (IDLs) like
Corba. Pascal and Ada also directly support in the language those annotations.

foo(in int x, out int y) return int
begin
...
end

C++ and C supports the ’const’ qualifier which can be used to say what is ’in’ and must not be modified.
The absence of ’const’ could be interpreted as an ’out’ but this absence is sometimes due to sloppiness. Also,
sometimes the parameter is both ’in’ and ’out’ in which case it can not be put as ’const’. Const alone can
not fulfill the 3 possibilities which are ’in’, ’out’, and ’in out’. The splint [] annotation language can also
support such annotations.

! ! struct i f queue inq ; /∗ queue o f incoming mbuf ’ s ∗/
struct i f queue outq ; /∗ queue o f outgo ing mbuf ’ s ∗/

#d e f i n e BT3C DEFAULTQLEN 12 /∗ XXX max . s i z e o f out queue ∗/
} ;

The preceding annotations can be used for parameters, but not for the specification of fields in structure
as in the comment above. For such comment can a tool also ensure that the in and out queues are used in
the good way ?

6.3 Context()

The conditions on the context of a call can not be expressed easily in C because it requires reflexion capa-
bilities, such as the ability to go through all the set of functions calling another function. Lisp for instance
provides such a capability.

One can use global variables and assert to mimic such a need (setting the global in the caller function
and checking it in the callee). But, maybe because of the complex control-flow in an OS (with interrupts),
it may not work well. Or maybe there are too many entry points that would need at each place to modify
this global variable which makes the whole process more difficult.

/∗ read a key ’ s data (op t i ona l)
∗ − permiss ion checks w i l l be done by the c a l l e r
∗ − the key ’ s semaphore w i l l be read locked by the c a l l e r
∗ − shou ld re turn the amount o f data t ha t cou ld be read , no matter how
∗ much i s cop ied in to the b u f f e r
∗ − shouldn ’ t do the copy i f the b u f f e r i s NULL
∗/

long (∗ read) (const struct key ∗key , char u s e r ∗ bu f f e r , s i z e t bu f l en) ;

6.3.1 Context Lock()

Note in the following comments the variety of use of words to express locking requirements (must, assume,
hold, acquire, etc).

/∗ Lock must be acqu i red on entry to t h i s f unc t i on . ∗/

/∗ c a l l e r must ho ld in s tance l o c k ∗/

45

/∗
∗ . . .
∗ Assume we ho ld the l o c k .
∗/

stat ic void
f a tm check hear tbeat (struct f a t m s o f t c ∗ sc)
{

u i n t 3 2 t h ;

/∗ Te l l common . c t ha t B channel has been c l o s ed . ∗/
! ! /∗ cs−>l o c k must not be l o cked ∗/

stat ic i n l i n e void g igaset bchanne l down (struct b c s t a t e ∗bcs)
{

/∗ in format ion on the codec i t s e l f , p l u s f unc t i on po in t e r s ∗/
struct c o d e c i n f o {

. . .
/∗ c a l l e d when pcm stream i s opened , probab l y not implemented
∗ most o f the time s ince i t i sn ’ t too u s e f u l ∗/

int (∗ open) (struct c o d e c i n f o i t e m ∗ c i i ,
struct snd pcm substream ∗ substream) ;

. . .
! ! /∗ s top () i s c a l l e d a f t e r data i s no l onger pushed to the codec .

∗ Note t ha t s top () must be atomic ! ∗/
int (∗ stop) (struct c o d e c i n f o i t e m ∗ c i i ,

struct snd pcm substream ∗ substream) ;

/∗ −− ∗/
/∗ Function : f r a u t h f l u s h ∗/
/∗ Returns : i n t − number o f auth e n t r i e s f l u s h e d ∗/
/∗ Parameters : None ∗/

! ! /∗ Locks : WRITE(i p f a u t h) ∗/
/∗ ∗/
/∗ This func t i on f l u s h s the f r a u t h p k t s array o f any packe t data wi th ∗/
/∗ r e f e r enc e s s t i l l t h e r e . ∗/

! ! /∗ I t i s expec ted t ha t the c a l l e r has a l r eady acqu i red the co r r e c t l o c k s or ∗/
/∗ s e t the p r i o r i t y l e v e l c o r r e c t l y f o r t h i s to b l o c k out o ther code paths ∗/
/∗ i n t o t h e s e data s t r u c t u r e s . ∗/
/∗ −− ∗/
int f r a u t h f l u s h ()
{

Those kinds of comments are supported by iComment []. They represent 0.5% of the total number of
comments and when grouped with the caller/callee comments they may add-up to the 1% number written
in the iComment paper.

Sparse [] also supports the require, and release annotations to describe the requirements or effects
regarding locks of functions. Lock lint also provide lots of annotations regarding locks:

// from lock_lint manual

46

NOTE(MUTEX_ACQUIRED_AS_SIDE_EFFECT(MutexExpr))
NOTE(READ_LOCK_ACQUIRED_AS_SIDE_EFFECT(RwlockExpr))
NOTE(WRITE_LOCK_ACQUIRED_AS_SIDE_EFFECT(RwlockExpr))
NOTE(LOCK_RELEASED_AS_SIDE_EFFECT(LockExpr))
NOTE(LOCK_UPGRADED_AS_SIDE_EFFECT(RwlockExpr))
NOTE(LOCK_DOWNGRADED_AS_SIDE_EFFECT(RwlockExpr))
NOTE(NO_COMPETING_THREADS_AS_SIDE_EFFECT)
NOTE(COMPETING_THREADS_AS_SIDE_EFFECT)

In the following the condition is not on the context before the call but on what must be done by the
caller after the call.

/∗ −− ∗/
/∗ Function : i p f f i n d t o k e n ∗/
/∗ Returns : i p f t o k e n t ∗ − NULL i f no memory , e l s e po in t e r to token ∗/
/∗ Parameters : type (I) − the token type to match ∗/
/∗ uid (I) − uid owning the token ∗/
/∗ p t r (I) − con t ex t po in t e r f o r the token ∗/
/∗ ∗/
/∗ This func t i on l oo k s f o r a l i v e token in the l i s t o f curren t tokens t ha t ∗/
/∗ matches the t u p l e (type , uid , p t r) . I f one cannot be found then one i s ∗/
/∗ a l l o c a t e d . I f one i s found then i t i s moved to the top o f the l i s t o f ∗/
/∗ cu r r en t l y a c t i v e tokens . ∗/
/∗ ∗/
/∗ NOTE: I t i s by des i gn t ha t t h i s f unc t i on re turns ho l d ing a read l o c k on ∗/

! ! /∗ i p f t o k e n s . Ca l l e r s must make sure they r e l e a s e i t ! ∗/
/∗ −− ∗/
i p f t o k e n t ∗ i p f f i n d t o k e n (type , uid , ptr)
int type , uid ;
void ∗ptr ;
{

. . .
MUTEXDOWNGRADE(& i p f t o k e n s) ;

return i t ;
}

In the following the comment is put at the call site as it is not easy from the name of the function to
know that a side effect of the function is to release a lock:

! ! /∗ r e l e a s e the ho ld on the c h i l d ∗/
n d i r e l e d e v i (dip) ;

. . .

! ! /∗∗
∗ e1000 ge t hw semaphore gener ic − Acquire hardware semaphore
∗ @hw: po in t e r to the HW s t r u c t u r e
∗
∗ Acquire the HW semaphore to acces s the PHY or NVM
∗∗/

s32 e1000 get hw semaphore gener i c (struct e1000 hw ∗hw)
{

47

! ! /∗
∗ The aud i t worker thread i s r e s p on s i b l e f o r watching the event queue ,
∗ dequeueing records , conver t ing them to BSM format , and committing them to
∗ d i s k . In order to minimize l o c k thrash ing , records are dequeued in s e t s
∗ to a thread− l o c a l work queue . In add i t ion , the aud i t work performs the
∗ ac t ua l exchange o f aud i t l o g vnode po inter , as aud i t v p i s a thread− l o c a l
∗ v a r i a b l e .
∗/

stat ic void
audi t worker (void ∗ arg)
{

! ! /∗
∗ Make sure the caus ing IRQ i s b locked , then c a l l do IRQ . Af ter that , unb lock
∗ and jump to r e t f r om i n t r which i s found in entry . S .
∗
∗ The reason f o r b l o c k i n g the IRQ i s to a l l ow an s t i () b e f o r e the handler ,
∗ which w i l l acknowledge the in t e r rup t , i s run . The ac t ua l b l o c k i n g i s made
∗ by crisv32 do IRQ .
∗/

#d e f i n e BUILD IRQ(nr) \
void IRQ NAME(nr) ; \

asm (\

! ! /∗
∗ Recover an error repor t and c l e a r a t omi ca l l y
∗/

stat ic i n l i n e int s o c k e r r o r (struct sock ∗ sk)
{
. . .

e r r = xchg(&sk−>sk e r r , 0) ;
. . .
}

/*
* This function will acquire the lock and set the in_transition
* bit for the specified slot. If the slot is being used,
* we return FALSE; else set in_transition and return TRUE.
*/

static int
sysc_enter_transition(int slot) { ... }
...
/* mutex lock the whole list */
if (sysc_enter_transition(-1) != TRUE) {

Programmers have extended their lock library to provide debugging and self-defense capabilities. Open-
solaris provides the MUST HELD+ macro.

/* ...
* Assumes: tq->tq_lock is held.
*/

48

static void
taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
{

ASSERT(MUTEX_HELD(&tq->tq_lock));

Note that even with this macro, the programmer still felt the need to also put a comment about the
locking requirment. Indeed the ASSERT is in the body of the code and the clients of this function usually
read only the interface, that is the comment preceding the function.

/∗
∗ Move a page back to the l i s t s .
∗
∗ Must be c a l l e d wi th the s l a b l o c k he l d .
∗
∗ On e x i t the s l a b l o c k w i l l have been dropped .
∗/

/∗
∗ no l o c k i n g f o r t h i s , because i t does i t s own
∗ plus , i t does a kmal loc
∗/

/∗
∗ We’ re a l l owed to run s l e e p i n g l o c k page () here because we know the c a l l e r has
∗ GFP FS .
∗/

6.3.2 Context Caller()

The Java programming language provides a stack inspection mechanism [] to express conditions on the caller,
but they are enforced at run-time only.

6.3.3 Context Interrupt()

/∗ t h i s f unc t i on must not be c a l l e d from in t e r r u p t or comple t ion hand ler ∗/

! ! /∗
∗ Free TX resource s .
∗
∗ Assumes t ha t SGE i s s topped and a l l i n t e r r u p t s are d i s a b l e d .
∗/

stat ic void f r e e t x r e s o u r c e s (struct sge ∗ sge)
{

! ! /∗
∗ Cal l back f o r the Tx b u f f e r rec la im timer . Runs wi th s o f t i r q s d i s a b l e d .
∗/

stat ic void s g e t x r e c l a i m c b (unsigned long data)
{

49

/∗
∗ Need to run t h i s when i r q s are enabled , because i t wants
∗ to s e l f −t e s t [hard/ s o f t]− i r q s on/ o f f l o c k in v e r s i on bugs
∗ too :
∗/

A set of functions could contain in comments a tag to indicate, to mark, to which category they be-
long to, like /* @contextcategory: interrupt && completion */. Functions could then easily express
requirements by adding in their own comment like /* contextrequire: interrupt || completion */.

6.3.4 Other context

Some context conditions can also be expressed at a “module” level instead of function level, giving in one
comment a condition on a set of functions.

/∗
∗ Operat ions on bitmaps o f a r b i t r a r y s i z e
∗ A bitmap i s a vec to r o f 1 or more u l on g t ’ s .

! ! ∗ The user o f the package i s r e s p on s i b l e f o r range checks and keep ing
∗ t r ack o f s i z e s .
∗/

#i f d e f LP64
#d e f i n e BT ULSHIFT 6 /∗ l o g base 2 o f BT NBIPUL, to e x t r a c t word index ∗/

! ! /∗
∗ Refresh the HAT i smt t e cn t [] e lement f o r s i z e s z c .
∗ Ca l l e r must have s e t ISM busy f l a g to prevent mapping
∗ l i s t s from changing wh i l e we ’ re t r a v e r s i n g them .
∗/

pgcnt t
i s m t s b e n t r i e s (sfmmu t ∗sfmmup , int s zc)
{

/∗ . . .
∗ For t i g h t c on t r o l over page l e v e l a l l o c a t o r and p ro t e c t i on f l a g s
∗ use vma l l o c () in s t ead .
∗/

/∗
∗ This func t i on only removes the unlocked pages , i f you want to
∗ remove a l l the pages o f one inode , you must c a l l t r unca t e inode page s .
∗
∗ i n va l i da t e mapp ing page s () w i l l not b l o c k on IO a c t i v i t y . I t w i l l not
∗ i n v a l i d a t e pages which are d i r t y , locked , under wr i t e back or mapped in t o
∗ pa g e t a b l e s .
. . .

/∗
∗ A simple loop l i k e

50

∗ whi l e (j i f f i e s < s t a r t j i f f i e s +1)
∗ s t a r t = read cur r en t t imer () ;
∗ w i l l not do . As we don ’ t r e a l l y know whether j i f f y sw i t ch
∗ happened f i r s t or t imer va l u e was read f i r s t . And some asynchronous
∗ event can happen between the s e two even t s in t roduc ing e r ro r s in l p j
∗ . . . ∗/

// A l l o ca t e a S t r ing in the Arena and r e g i s t e r t ha t S t r ing so t ha t i t i s
// d e a l l o c a t e d at the same time as the Arena .
// DO NOT CALL DELETE ON THE RESULT!
JS : : S t r ing &JS : : newArenaString (Arena &arena)
{

St r ing ∗ s = new(arena) St r ing () ;
arena . r e g i s t e r D e s t r u c t o r (s) ;
return ∗ s ;

}

/∗
∗ Macros to make the co r r e c t C da ta t ype s f o r a new kind o f r ing .
∗
∗ To make a new r ing datatype , you need to have two message s t ru c tu r e s ,
∗ l e t ’ s say s t r u c t reques t , and s t r u c t response a l r eady de f ined .
∗
∗ In a header where you want the r ing da ta type dec lared , you then do :
∗
∗ DEFINE RING TYPES(mytag , s t r u c t reques t , s t r u c t response) ;
∗
∗ These expand out to g i v e you a s e t o f types , as you can see be low .
∗ The most important o f t h e s e are :
∗
∗ s t r u c t mytag sr ing − The shared r ing .
∗ s t r u c t my tag f r on t r i n g − The ’ f r on t ’ h a l f o f the r ing .
∗ s t r u c t mytag back r ing − The ’ back ’ h a l f o f the r ing .
∗
∗ To i n i t i a l i z e a r ing in your code you need to know the l o c a t i o n and s i z e
∗ o f the shared memory area (PAGE SIZE, f o r in s tance) . To i n i t i a l i s e
∗ the f r on t h a l f :
∗
∗ s t r u c t my tag f r on t r i n g f r o n t r i n g ;
∗ SHARED RING INIT((s t r u c t mytag sr ing ∗) shared page) ;
∗ FRONT RING INIT(& f r on t r i n g , (s t r u c t mytag sr ing ∗) shared page ,
∗ PAGE SIZE) ;
∗
∗ I n i t i a l i z i n g the back f o l l o w s s im i l a r l y (note t ha t on ly the f r on t
∗ i n i t i a l i z e s the shared r ing) :
∗
∗ s t r u c t mytag back r ing back r ing ;
∗ BACK RING INIT(&back r ing , (s t r u c t mytag sr ing ∗) shared page ,
∗ PAGE SIZE) ;
∗/

51

6.3.5 SmPL

The Semantic Patch Language [?]SmPL) could be used as an annotation language and programmers could
embed in comments SmPL scripts to detect bad code at the caller site, in the context.

/* @Smpl:
- foo(...);
+ error(); printf("use foobar instead foo");

...
bar(x)

*/
bar(int x)
{
...
}

SmPL could also make use of other annotations, to match over those annotations. This would require
that SmPL understand comments.

@@
function f;
@@
/* ... @context: interrupt ... */
f(...) {
+ foo();
...
}

6.3.6 Buffer Ownership()

This category allows the programmer to specify responsibilities.

i f (mp nce == NULL) {
! ! /∗ The c a l l e r w i l l f r e e mp ∗/

mutex exit (&nce−>nc e l o ck) ;

Note that I don’t know what is ’mp’. Maybe this comment is obsolete.

/∗ . . .
∗ I t i n c l u d e s pre−r e g i s t e r e d b u f f e r memory f o r send AND recv .

! ! ∗ The recv bu f f e r , however , i s not owned by t h i s s t ruc tu r e , and
∗ i s ” donated” to the hardware when a recv i s pos ted . When a
∗ r e p l y i s handled , the recv b u f f e r used i s g i ven back to the
∗ s t r u c t rpcrdma req a s s o c i a t e d wi th the r e que s t ∗/

There are type systems, like ownership types [], that try to solve such problems. Note that we found very
few examples of such comments.

6.4 Effects()

! ! /∗ r e con f i gu r e AGP hardware again ∗/
n v i d i a c o n f i g u r e () ;

52

! ! /∗ F i l l SG Array wi th new va lu e s ∗/
i v t v u d m a f i l l s g a r r a y (dma, y b u f f e r o f f s e t , u v b u f f e r o f f s e t , y s i z e) ;

! ! p c i r e ad co n f i g dw ord (tp−>pdev , PCI COMMAND, ®) ; /∗ f l u s h wr i t e ∗/
udelay (1 0 0) ;

/∗ t h i s f unc t i on c a l l e x i t (0) ∗/

Again, a SmPL script could easily detect such case if relevant annotations were provided:

@rule1@
function f;
@@
/* ... @kind: exit ... */
f() { ... }

// look for exit labeled function
@@ rule.f @@
f();

- S
+ { print dead code }

Some side effects are often described at the caller site. Indeed from the name of the function it is often
difficult to know that the function have side effects. In fact language like Scheme use some conventions in
the standard library to add a ? or ! to describe respectively predicate functions and functions with side
effects as in (is_digit? "45o") and (add_list! 1 xs). But those are only conventions. A checker could
enforce that such visual clues are indeed true.

6.5 Error()

Programmers use different conventions to signal an error or success. They can use NULL when returning
pointers (leading to NULL problems described in the NULL section), or an ’int’ code like -1, or sometimes
0, or sometimes something else. They can use the same conventions to signal a success. Sometimes an error
is a negative value, sometimes a positive value. As there is no PL mechanism to describe errors (like the
exception mechanism in C++) and as each programmer can use his own variant, comments are used to
specify the conventions for each functions. It is yet another case of abuse of ’int’ and yet another use of
comments to disambiguate situations because of the lack of enforced conventions.

Here is an interesting question asked on the kernel mailing list:

from http://www.ussg.iu.edu/hypermail/linux/kernel/0607.3/1252.html
> Hello,
>
> I’m looking at the source code of different drivers and wondering about
> request_irq() return value. It is used mostly in ’open’ routine of struct
> net_device. If request_irq() fails some drivers return -EAGAIN, some -EBUSY
> and some the return value of request_irq(). Is this intentional? Sample
> drivers code:

Correct practice is to propagate the error code of request_irq out to be
the return value of the open routine. This allows the request_irq to return

53

different values for overlapping irqs, or out of memory, etc.

> Besides request_irq() is arch dependent so depending on arch it has different
> set of possible return values. So ... does the return value matter or I
> misunderstood something here?

Each architecture should return something sane. If it doesn’t then it a problem
that should be addressed there.

! ! /∗
∗ Do a t ran sac t i on .
∗ re turn 1 i f ACK, 0 i f NAK, −1 i f e r ror .
∗/

stat ic int
s l h c i t r a n s a c t i o n (struct s l h c i s o f t c ∗ sc , usbd p ipe handle pipe ,

u i n t 8 t pid , int len , u char ∗buf , u i n t 8 t t o g g l e)

/∗
! ! ∗ Returns : 0 on success , −EXXX on f a i l u r e
∗/

stat ic int n o l o c k h o l d l v b (void ∗ lock , char ∗∗ lvbp)
{

∗ Return value :
∗ t a r g e t address on Success / 0 on Fa i l u r e
∗/

stat ic u64
g e t t a r g e t i d e n t i f i e r (p e i d x t a b l e t ∗peidx)
{

! ! /∗ ∗/
/∗ Returns : ∗/
/∗ 0 on success , p o s i t i v e va lue on f a i l u r e . ∗/
/∗ ∗∗ ∗/
stat ic int
bce nvram test (struct b c e s o f t c ∗ sc)

/∗
∗ @retva l EINVAL Operation not ye t suppor ted .
∗/

stat ic int
d s p o s s s e t s o n g (struct pcm channel ∗wrch , struct pcm channel ∗ rdch , os s longname t ∗ song)

plat cpu poweron (struct cpu ∗cp)
{

! ! return (ENOTSUP) ; /∗ not supported on t h i s p la t form ∗/
}

Note that in the last 2 examples the ”not yet supported” is represented as different macros.

54

i f (na−>a c l . f a t t r 4 a c l l e n != vs ace4 . v s a a c l c n t)
! ! e r r o r = −1; /∗ no match ∗/

else i f (ln ace4 cmp (na−>a c l . f a t t r 4 a c l v a l ,

/∗ −− ∗/
/∗ Function : memstr ∗/
/∗ Returns : char ∗ − NULL i f f a i l e d , != NULL po in t e r to matching by t e s ∗/
/∗ Parameters : s rc (I) − po in t e r to by t e sequence to match ∗/
/∗ ds t (I) − po in t e r to by t e sequence to search ∗/
/∗ s l en (I) − match l en g t h ∗/
/∗ d len (I) − l e n g t h a v a i l a b l e to search in ∗/
/∗ ∗/
/∗ Search d s t f o r a sequence o f b y t e s matching those at s rc and extend f o r ∗/
/∗ s l en by t e s . ∗/
/∗ −− ∗/
char ∗memstr (src , dst , s l en , d len)
const char ∗ s r c ;
char ∗dst ;
s i z e t s l en , d len ;
{

i f (p r i == 0)
goto done ;

! ! i f (p r i > 0) { /∗ error ∗/
scheme = &g par t nu l l s cheme ;
p r i = INT MIN ;

}

! ! STATIC int /∗ error ∗/
x f s bmap add extent ho l e de l ay (

The need for this last comment is that functions can also return actual numeric values resulting from
numerical computations. It would be better to have a clean error type to avoid such ambiguity, or to use
exceptions. A possibility would be to introduce an enum type for errors, as now ANSI C compilers report
as an error to use an int as an enum (there is no more implicit cast from and to enum).

Note that the use of signed vs unsigned should help gcc to detect errors. In practice it looks like gcc
does not do much static checks on this issue. Moreover, because of the preceding error requirement, most
numerical function returning a positive int use signed int instead of unsigned int to deal with errors. Errors
thus prevent some checking and limit the usefulness of the specific signed type.

The lack of exception in C also lead either to code bloats, as any caller of a function must insert code
each time to test for the return value and error code, or bugs, as some caller may forget to add such a test.

Note that the use of exceptions in the beginning also led to the introduction of comments (a new kind of
comment), Programmers put in comments next to the signature of the function the set of exceptions that
can be raised by the function, as it is indeed part of the interface:

int foo(int x); /* raise Not_Supported exn */

This comment in turn led to the introduction of a feature, the possibility to add in the interface those
information:

int foo(int x) raise Not_Supported;

55

This information can be used, for instance in Java, to check that the code indeed raises such an exception
and that each call sites or their parents handle at one point the situation. This is possible also in C++ but
many programmers still put such error interface information in comments.

The OCaml language provide an advanced static tools called ocamlexn [] that detects if some exceptions
are never “captured” and pop-up to the toplevel.

The lack of clean error types and exceptions and the impossibility to return multiple values makes the
interface of functions “unnatural”. Compare the C and Java version:

--
// C ugly code, requires lots of comments to make it bug-resistant:
// - in/out comment,
// - buffer ownership comment,
// - error comment

/* -1 means that the input string is not in a good format */
int int_of_string(/* in */ char* s, /* out */ int *x) {
...
}
/* return error code. This function allocates the memory for bar */
int foo(char *s, /* out */ struct *bar) {
int res;
int error = int_of_string(s);
if(error == -1) {
printf("int not in good format");
return error;

}
do_stuff;
bar = malloc(...);
bar.myint = 1;
return 0; /* everything is ok */

}

--
// Java code (better interface), and less error prone
// at caller site. No need for comment.
int int_of_string(String s) raise StringIntBadFormat {
...
}
Bar foo(String s) {

int i = int_of_string(s);
do_stuff;
Bar res = new Bar();
res.myint = i;
return res;

}

The introduction of exceptions enabled to really use the return type of a function for the return value,
which in turns made the use of in and out annotations useless. This makes the type of the function closer
to a mathematical specification.

In fact this problem is mentionned also in the C++ Mozilla project at http://weblogs.mozillazine.
org/roadmap/archives/2006/10/mozilla_2.html:

56

PRBool
nsXULDocument::OnDocumentParserError()
{
// don’t report errors that are from overlays
if (mCurrentPrototype && mMasterPrototype != mCurrentPrototype) {
nsCOMPtr<nsIURI> uri;
nsresult rv = mCurrentPrototype->GetURI(getter_AddRefs(uri));
if (NS_SUCCEEDED(rv)) {
PRBool isChrome = IsChromeURI(uri);
if (isChrome) {
nsCOMPtr os(
do_GetService("@mozilla.org/observer-service;1"));

if (os)
os->NotifyObservers(uri, "xul-overlay-parsererror",

EmptyString().get());
}

}
return PR_FALSE;

}
return PR_TRUE;

}

you’ll see code like this:

bool
XULDocument::OnDocumentParserError()
{
// don’t report errors that are from overlays
if (mCurrentPrototype && mMasterPrototype != mCurrentPrototype) {
IURI *uri = mCurrentPrototype->GetURI();
if (IsChromeURI(uri)) {
GetObserverService()->NotifyObservers(uri, "xul-overlay-parsererror");

}
return false;

}
return true;

}

6.6 Magic number()

Programmers should use types, variants, or at least symbolic constants to represent special conditions. If
not, then they need to repeat the convention in comments at multiple places. The special case value is
sometimes 0, sometimes -1, sometimes maxint.

! ! ld . ld magic = 0 ; /∗ i n d i c a t e end o f messages ∗/
dumpvp write(&ld , s izeof (ld)) ;

! ! /∗ Rejec t a p p l i c a t i o n s p e c i f i c i n t e r f a c e s
∗/

i f (h o s t i f−>desc . b I n t e r f a c e C l a s s != 255) {

57

! ! /∗ Set d e f a u l t s f o r nTxLock and nTxBlock i f unset ∗/
i f (nTxLock == −1) {

/∗
∗ A va lue o f 0 x f f s t o r ed in the channel map i n d i c a t e s t ha t the channel
∗ i s not suppor ted by the hardware at a l l .
∗
∗ A va lue o f 0 x f e in the channel map i n d i c a t e s t ha t the channel i s not
∗ v a l i d f o r Tx with the curren t hardware . This means t ha t . . . ∗/

! ! /∗ OFDM ra t e s ∗/
case 12 :
case 18 :

return 12 ;

s p i n l o c k (& c a d e t i o l o c k) ;
! ! outb (7 , i o) ; /∗ Se l e c t tuner con t r o l ∗/

outb (curvol , i o +1);

case 0x096 : /∗ Lens cursor ∗/
case 0x097 : /∗ Intuos3 Lens cursor ∗/

wacom−>t o o l [idx] = BTN TOOL LENS;
break ;

! ! case 0x82a : /∗ Eraser ∗/
case 0x85a :

lxpnp−>lxpr mode = 0500 ; /∗ read−search by owner only ∗/
break ;

. . .
case LXPR NETDIR:

vp−>v type = VDIR;
lxpnp−>lxpr mode = 0555 ; /∗ read−search by a l l ∗/
break ;

i f (dma > 3 | | dma < 0 | | dma == 2) {
. . .
} else {

! ! /∗ Extended mode DMA enab l e ∗/
c f g = 0x50 ;

i f (dma == 3) {
dma bits = 3 ;

} else {

! ! /∗
∗ IR == −1 i f DA < DB, IR == 0 i f DA == DB,
∗ IR == 1 i f DA > DB and IR == 3 i f unorderded
∗/

emu set CC (regs , (IR == −1) ? 1 : (IR == 1) ? 2 : IR) ;

58

void d o s y s c a l l t r a c e (void)
{

! ! /∗
∗ The 0x80 prov ide s a way f o r the t r a c i n g parent to d i s t i n g u i s h
∗ between a s y s c a l l s top and SIGTRAP d e l i v e r y
∗/

p t r a c e n o t i f y (SIGTRAP | ((current−>ptrace & PT TRACESYSGOOD) ? 0x80 : 0)) ;

For those comments, the only thing a tool could do is to try to detect them and warn the user that he
should define a symbolic constant, or an enum. Some tools like ArgoUML [] try to apply AI technique on
source code or model, in order to report bad design choices.

6.7 Module interface()

The C language does not have a real module system. Instead programmers use cpp and #include directives
to achieve more or less what a module system can provide. C does not know about cpp; cpp does not
know about C. cpp just “see” text, which has some advantages as the generic #include mechanism can be
(ab)used for other things than module handling (for instance to factorize parts of code). But it has also some
disadvantages. Comments are used to try to incorporate some of the advanced features of module system in
other PL.

#include <xxx . h> // pd f l u s h op e r a t i on ()

#include <l i nux / bu f f e r head . h> /∗ f o r t r y t o r e l e a s e p a g e () ,
b u f f e r h e a d s o v e r l i m i t ∗/

#include <n e t i n e t / in . h> /∗ For i n6 add r t ∗/
#include <sys / t s o l / l a b e l . h> /∗ For b range t ∗/
#include <sys / t s o l / labe l macro . h> /∗ For b range t ∗/

PL like Haskell or Perl provide advanced module import/export mechanisms. One can easily states which
function he wants to use from a module. If this function is not used anymore then the compiler could warn
the user who could delete the then useless import (actually I think those modern PL do not provide such a
warning). This is harder with cpp as most tools, again, do not work at the cpp level.

It’s yet another kind of comment related to the use and limitations of cpp. Many of the features of C++
can in fact be traced to the desire to replace the use of cpp by real PL features. In this case C++ namespace.
C++ inline helped avoiding using macros, C++ const helped avoiding defining constant via macros, etc.

! ! /∗
∗ For netgraph nodes t ha t are somehow as s o c i a t e d wi th f i l e d e s c r i p t o r s
∗ (e . g . , a dev i c e t ha t has a /dev entry and i s a l s o a netgraph node) ,
∗ we de f i n e a gener i c i o c t l f o r r e qu e s t i n g the corresponding node in fo
∗ s t r u c t u r e and f o r a s s i gn in g a name (i f t h e r e i sn ’ t one a l r eady) .
∗
∗ For the s e to you need to a l s o #inc l ude <sys / ioccom . h>.
∗/

#d e f i n e NGIOCGINFO IOR (’N ’ , 40 , struct node in fo) /∗ ge t node in f o ∗/
#d e f i n e NGIOCSETNAME IOW(’N ’ , 41 , struct ngm name) /∗ s e t node name ∗/

On the opposite to the first example, because one header can be used to provide signatures for multiple
files, one may add in comment also where to find the implementation of a function prototype:

59

/∗ t l s . c ∗/
extern int o s s e t t h r e a d a r e a (u s e r d e s c t ∗ i n fo , int pid) ;
extern int o s g e t t h r e a d a r e a (u s e r d e s c t ∗ i n fo , int pid) ;

! ! /∗ umid . c ∗/
extern int umid f i l e name (char ∗name , char ∗buf , int l en) ;

. f l u s h b u f f e r = i r c o m m t t y f l u s h b u f f e r ,
! ! . i o c t l = i r comm tty i oc t l , /∗ i r c omm t t y i o c t l . c ∗/

. t iocmget = ircomm tty t iocmget , /∗ i r c omm t t y i o c t l . c ∗/

. t i ocmset = ircomm tty t iocmset , /∗ i r c omm t t y i o c t l . c ∗/

. t h r o t t l e = i r comm tty thro t t l e ,

! ! extern const int s t n d r i v e t y p e s ; /∗ de f ined in s t c o n f . c ∗/
extern const struct s t d r i v e t y p e s t d r i v e t y p e s [] ;
extern const char s t c o n f v e r s i o n [] ;

The last two examples illustrate the problem of the flat namespace of the C language. There is no easy
way, seeing an entity, to know where it is defined. With C++ or other PL you can use namespaces to solve
this problem by qualifying variables as in:

St_conf::st_ndrivetypes;

An IDE could also colorize differently the functions depending on their provenance to help the user
understand the code.

! ! /∗
∗ This i s the l o ada b l e module wrapper .
∗/

#inc lude <sys /modctl . h>

6.8 Time and Space properties()

! ! /∗
∗ The TCP normal data output path .
∗ NOTE: the l o g i c o f the f a s t path i s dup l i c a t e d from t h i s f unc t i on .
∗/

stat ic void
tcp wput data (t c p t ∗ tcp , mblk t ∗mp, boo l ean t urgent)
{

Some functions in Linux are described as the slow or fast path. The fast being a specialized version of
the slow or normal one. A profiler could check such claims (if those functions were clearly annotated) that
indeed a version is faster than the other one. The iComment paper cites a paper on performance assertion [].

/∗
∗ Merge cpu f r e e l i s t i n t o f r e e l i s t . Typ i ca l l y we ge t here
∗ because both f r e e l i s t s are empty . So t h i s i s u n l i k e l y
∗ to occur .
∗/

60

NOT IN SAMPLE

/∗ swapof f spends a l o t o f time in t h i s loop ! . . . ∗/

6.9 Other interface()

/* Must not sleep. */
static void
t1_config(softc_t *sc)
{

61

Chapter 7

Code Relationships()

The Core Relationships category allows the programmer to understand how things work together. As op-
posed to the Type and Interface categories, here the programmer don’t want to understand something in
isolation but instead how an entity interacts with the other entities. Even if programmers try hard to isolate
functionalities, to separate concerns, so things can be developed and understood separately, at one point
functions or data-structures need to work together.

Unfortunately, as a human has only 2 eyes, when he looks at one place he can see only this place. A
comment can help to see other places without really seeing them by describing those other places. This notion
of focus+context is an important theme in the domain of information retrieval and data visualization. There
are better ways to offer focus+context than using comments. An IDE could provide an annotation-based
guided navigation capability where a programmer looking at some code, with special annotations, could
be offered automatically the contextual information that is described by the annotation (for instance via a
tooltip, or by reorganizing the source code view with some advanced fish-eye 2D effect). The IDE could be
more pro-active in helping the programmer to understand the code. Note that [] describes that programmers
spend a very significant portion of their time navigating in the code. Some annotations may help.

Note that there are already lots of implicit code relationships in the code (some functions calling other
functions, or using some data structures), that tool can also leverage. But as there is so many such relations,
the programmer usually use comments to insist on some of those relations, the most important one, and
mark them. One could also maybe infer those important relations, for instance if a function calls multiple
functions, maybe some of them are more important because less used (for install a call to kmalloc() is less
important, because less original, than a call to ext2 helper func()).

Code relation annotations can be used both for

• checking; check that the relation indeed holds

• code understanding; an editor and navigation tool can help the programmer by using those relation
information.

In some way many of the diagrams in UML allow to better understand code relationships. But such
relations are specified at the UML level and are generally not present at the code level. C++ can not
express arity conditions for instance.

A program is a very complex mathematical objects with lots of possible relations:

• how data structures work together, type relations, how multiple fields or variables work together

• how functions work together, what are the protocols

• how control flows

• how data flows, from which variables specific value come from,

62

• pointer relations

• header vs implementation relations, files or modules relations, how files use other files

• callback relations

• how high-level concepts maps to concrete implementation

• how all of this mix together

7.1 File organization()

7.1.1 Visual organization()

Programmers often use rudimentary mechanisms to navigate in a file, like scrolling, and so add some visual
clues in the file, some organizational delineates marks, to make it faster when scrolling to spot and separate
the different parts of the file.

! ! /∗ ∗∗
∗
∗ RSDP − Root System Descr ip t i on Pointer (S ignature i s ”RSD PTR ”)
∗
∗∗∗ ∗/

! ! /∗ −−−−−−−−−−−−−−−−−−−− EEPROM UTILITIES : ∗/

/∗ Of f s e t s o f data in the EEPROM ∗/
#d e f i n e EEPROM COPYRIGHT (0)

! ! /∗ −− ∗/

stat ic i n l i n e struct x e n c o n s i n t e r f a c e ∗ x e n c o n s i n t e r f a c e (void)

%#pragma mark −−−−− Local type d e f i n i t i o n s −−−−−

Programmers have invented very sophisticated tools to visualize complex data for physicians, statisticians,
but still visualize their own most important data, the source code, with very basic editors (as flat text files),
and use very basic navigation mechanisms. For instance I also use in this latex file some visual markers to
help me organize and navigate in my latex file.

Some editors now use some colors to mark different entities (function in blue, macros in yellow, etc)
helping to better understand the code structure thanks to those visual hints. Some editors, like Source
Insight [], also use different fonts to put in bigger font the header of function for instance. But those tools
are still quite basic. An exception may be Code Thumbnails [] which proposes a “map” of the code that can
be zoomed in and out, with colors, and allows the programmer to click on this map. This tool relies on the
visual memory capability of the human. SoftViz [] provides a similar functionnality.

Note that programmers may have different taste concerning visualization, and Emacs for instance uses
special comments (again) at the end of the file allowing the programmer to set some special variables
conditioning the layout of the code.

int main() {
...
}
/*

63

* Local Variables:
* mode:c
* comment-column:0
* comment-start: "/**"
* comment-end:"*/"
* c-basic-offset: 8
* End:
*/

Emacs also uses special comments at the beginning of the file (showing again that comments can be the
artifacts that tool can rely on to store meta information).

/* -*-mode: c; fill-column: 75; comment-column: 50; -*- */
/* foo.c
*
*/
int main()
{

/∗
\ \ / / () | | | | \ |)
\ \/\/ / ’ | | / −) | / \ | |) | \
\ /\ / | | | | \ \ | \ \ / | / | / ∗/

7.1.2 Grouping()

Another related use of comments, often used as a visual hint too, is to mark different entities as related by
putting them together under a “section”.

! ! /∗ Debugging rou t i n e s . ∗/
stat ic char ∗ g e t e l f p t y p e (Elf32 Word p type)
. . .

! ! /∗ Scan commands and n o t i f i c a t i o n s ∗/
REPLY SCAN CMD = 0x80 ,
REPLY SCAN ABORT CMD = 0x81 ,

! ! /∗ Input s t u f f . ∗/
struct s t r i n g ∗prompt ; /∗ Output s t r i n g f o r input area . ∗/
struct s t r i n g ∗ input ; /∗ Input s t r i n g f o r read r e que s t . ∗/

! ! /∗
∗ con t r o l and s t a t u s r e g i s t e r s acces s macros
∗/

#d e f i n e CSR READ 1(sc , reg) \
bus space r ead 1 ((sc)−> s c s t , (sc)−>sc sh , (reg))

#d e f i n e CSR READ 2(sc , reg) \
bus space r ead 2 ((sc)−> s c s t , (sc)−>sc sh , (reg))

64

MODULE LICENSE(”Dual MPL/GPL”) ;

! ! /∗ Module parameters ∗/

Note that those meta-information, about the correlation between different entities put next to each other
in the file, is not used by any tool. Maybe one could check that those entities are indeed correlated in
practice, and indeed used together. If not, this may indicate a bug or a bad grouping that may hinder
program understanding.

/∗ debugg ing func t i on ∗/
. . .
/∗ he l p e r func t i on ∗/

. . .
/∗ g l o b a l s ∗/

. . .
/∗ pro to t ype s ∗/

. . .

7.2 EndOfXXX()

Some closing constructs in C are ambiguous, like ’}’, as they can be used to close many different kind of
statements (loops, if, switch). Programmers often feel the need to disambiguate those cases by adding a
comment:

rs−>sn , rs−>c a r d s i z e) ;
! ! } /∗ i f (! p c r am bu i l d r e g i o n l i s t s (r s)) ∗/

default :
break ;

! ! } ; // Switch
}

Some PL like Pascal or Ada actually enforce such disambiguations by having special constructs, which
also enable to check that the closing annotation is correct (it can avoid bugs related to dangling else).

if(x = 1) do
...

end if

for (x = 1 to 4) do
...
end for

Some editors also provide balancing capabilities allowing to fastly know to which statement a closing
statement corresponds to (and vice versa). Some editors also allow to automatically insert such comment
when the programmer start to type the start of the statement.

In OS code the EndOfXXX comments are mainly used with cpp constructs like ifdef as in those cases
there is no indentation information or easy balancing information that can be used to visually disambiguate.
It’s yet another example that shows how cpp constructs are badly supported, be it by checkers, or editors.

! !# else /∗ SHA2 UNROLL TRANSFORM ∗/

65

! !# e n d i f /∗ de f ined (FIRMWARE NEEDS FDISK) ∗/
{”a , raw” , 0 , S IFCHR} ,

#d e f i n e SWI IMBrange 0 xf00001

! !# e n d i f /∗ ! MACHINE SWI H ∗/

Note that those kinds of ifdef (as well as endif), are used in headers (.h) to deal with the fact that C does
not provide a real module system; people use cpp tricks to simulate a module system, which in turn also
require some comments as cpp can be used for many things. This is in fact a recurring theme. C provide
few constructs that can be used, and abused, for many different purposes; programmers then feel the need
many times to specify which one of those uses the construct is used for. Maybe a bigger set of constructs
would be better as the programmer would clearly see each time from the name of the construct the specific
use.

! !# e n d i f /∗ CONFIG PPC EARLY DEBUG 44x ∗/

! !# e n d i f /∗ DEBUG ∗/

In fact gcc and cpp do not provide much checks about ifdef. When Linus Torvalds wrote the Sparse
tool, he wrote also a C pre-processor and found that many ifdefs were in fact not closed. I don’t know if
dangerous bugs can come from such miss.

Such comments are also used to indicate the end of the file (I never really understood its use) like:

/∗ t h i s i s the end o f t l s . c ∗/

void Dbdih : : gcpsavereqLab ()
{

sendLoopMacro (GCP SAVEREQ, sendGCP SAVEREQ) ;
cgcpStatus = GCP NODE FINISHED;

}//Dbdih : : gcpsavereqLab ()

7.3 Control Flow()

In some way, the UML sequence diagram may help for the control flow part.

7.3.1 Caller Callee()

! ! /∗ ∗ I n i t CPU in f o − ge t CPU type in f o f o r p r o c e s s o r i n f o system
c a l l . ∗/ void i n i t c p u i n f o (struct cpu ∗cp) {

/*
* Line specific close routine, called from device close routine
* and from ttioctl at >= splsofttty().
* Detach the tty from the ppp unit.
* Mimics part of tty_close().
*/

static int
pppclose(tp, flag)

66

! ! ∗ used by : s imba detach () on suspends
∗
∗/

stat ic void
s i m b a s a v e c o n f i g r e g s (s imba devs ta t e t ∗ simba p)
{

! ! /∗
∗ c v c b b s r am s ta r t ()
∗ Allow acce s s e s to BBSRAM, used by c v c a s s i g n i o c pu () a f t e r
∗ BBSRAM has been mapped to a v i r t u a l address .
∗/

stat ic void
cvc bbsram star t (void)
{

/∗
∗ Cal l ed from cache reap () to r e g u l a r l y drain a l i e n caches round rob in .
∗/

/∗ i n s t a n t i a t e a key o f t h i s type
∗ − t h i s method shou ld c a l l k e y pay l oad r e s e r v e () to determine i f the
∗ user ’ s quota w i l l ho ld the pay load
∗/

int (∗ i n s t a n t i a t e) (struct key ∗key , const void ∗data , s i z e t data l en) ;

7.3.2 Before After()

Programmer feel the need to express the context of a call, what happens before and after to indicate where
this function fits in the general architecture.

/∗
∗ I n i t i a l i s a t i o n . Ca l l ed a f t e r the page a l l o c a t o r have been i n i t i a l i s e d and
∗ b e f o r e smp in i t () .
∗/

It could be useful to have a timeline view in the IDE. Also, the profiler could gives lots of information to
help understand the program. There are lots of latent information during runs of a program that could be
leveraged to help understand and check properties.

/∗ Cal l ed b e f o r e con f i g u r i n g an on−ch ip UART. ∗/
void ma uar t p r e con f i gu r e (unsigned chan , unsigned c f l a g s , unsigned baud)
{

/∗
∗ During i n i t , we copy the eeprom informat ion and channel map
∗ in format ion in t o pr iv−>channe l i n f o 24 /52 and pr iv−>channel map 24 /52
∗
∗/

67

! ! extern int ibmphp init devno (struct s l o t ∗∗) ; /∗ This func t i on i s c a l l e d from EBDA, so we need i t not be s t a t i c ∗/
extern int i bmphp do d i s ab l e s l o t (struct s l o t ∗ s l o t c u r) ;

i f (r v a l != DEVICE RESET) {
r v a l = COMMANDDONEERROR;

} else {
! ! /∗

∗ Returning DEVICE RESET w i l l c a l l
∗ error recovery .
∗/

s e v e r i t y = SCSI ERR INFO ;
break ; /∗ don ’ t s e t p o s i t i o n i n v a l i d ∗/

}

/∗
∗ Note t ha t i t ’ s ok to de lay the TLB shootdown t i l l t he en t i r e range i s
∗ f i n i s h ed , because i f ha t pageun load () were to unload a shared
∗ pag e t a b l e page , i t s h a t t l b i n v a l () w i l l do a g l o b a l TLB i n v a l i d a t e .
∗/

l = mmu. max page leve l ;
i f (l == mmu. max leve l)

! ! /∗
∗ Even though vp was ob ta ined v ia vn open () , we
∗ can ’ t c a l l v n c l o s e () on i t , s ince l o f s w i l l
∗ pass the VOP CLOSE() on down to the r ea l v p
∗ (which we are about to use) . Hence we merely
∗ drop the r e f e r ence to the l o f s vnode and ho ld
∗ the r ea l v p so t h i n g s behave as i f we ’ ve
∗ opened the r ea l v p wi thout any i n t e r a c t i o n
∗ with l o f s .
∗/

VN HOLD(lsp−>l s v p) ;
VN RELE(vp) ;

/∗∗
∗ Cal l ed by nsIconProtoco lHandler a f t e r i t c r e a t e s t h i s channel .
∗ Must be c a l l e d b e f o r e c a l l i n g any o ther func t i on on t h i s o b j e c t .
∗ I f t h i s method f a i l s , no o ther func t i on must be c a l l e d on t h i s o b j e c t .
∗/

NS HIDDEN (n s r e s u l t) I n i t (nsIURI∗ aURI) ;

7.3.3 Other

/∗ t h i s i s the main entry ∗/

! ! /∗
∗ Main IP Receive rou t ine .

68

∗/
int i p r c v (struct s k b u f f ∗skb , struct n e t d e v i c e ∗dev , struct packet type ∗pt , struct n e t d e v i c e ∗ o r i g dev)
{

struct iphdr ∗ iph ;
u32 l en ;

Programmers feel the need to annotate the main entry point of a module so that other programmers can
know where to start when they want to understand the code. A source code visualizer could highlight such
entry point if an annotation was present.

/∗
∗ Strange sw i z z l i n g func t i on only f o r use by shmem writepage
∗/

7.3.4 Unreached()

default : /∗ not reached ∗/

i f (smb mbc encode(&sr−>rep ly , fmt , ap) != 0) {
va end (ap) ;
smbsr encode e r ro r (s r) ;

! ! /∗ NOTREACHED ∗/
}
va end (ap) ;

i f (i p s o c k == INVALID SOCKET)
{

DBUG PRINT(” e r r o r ” , (”Got e r r o r : %d from socket () ” , s o c k e t e r r n o)) ;
s q l p e r r o r (ER(ER IPSOCK ERROR)) ; /∗ purecov : t e s t e d ∗/
un i r eg abo r t (1) ; /∗ purecov : t e s t e d ∗/

}

cf http://forge.mysql.com/wiki/DGCov doc. Like FALLTHRU, used to shut down the default test coverage
patch validator.

7.3.5 ProblematicControl() and FALLTHRU()

Some default behaviors of C are not always a good choice, especially for beginners. For instance in switch
statements, the lack of a ’break’ in a ’case’ is often the sign of a bug. The same is true for the use of ’=’
instead of ’==’ inside an if. Those are syntactically correct control structures that are likely to be buggy.
But, sometimes they are not buggy and this would be a false positive; a comment is then used to express
this:

case −EXDEV: /∗ p a r t i a l complet ion ∗/
g ig dbg (DEBUG ISO, ”%s : URB p a r t i a l l y completed ” ,

f u n c) ;
! ! /∗ f a l l through − what ’ s the d i f f e r e n c e anyway? ∗/

case 0 : /∗ normal comple t ion ∗/

A specific annotation FALLTHRU or FALLTHROUGH is often used, mainly in OpenSolaris, to formally
express those conditions. From the Lint manual [] /* FALLTHRU */ or /* FALLTHROUGH */: “Suppress

69

complaints about fall through to a case or default labeled statement. This directive should be placed
immediately preceding the label”.

Note that there is a strict condition on where the annotation must be put for the tool to be able to grab
it.

}
! ! /∗ FALLTHRU ∗/

default :
IOSRAM PUTB(tunnel , (u i n t 8 t ∗) buf ,

! ! /∗ FALLTHRU ∗/
case LEN: /∗ i : g e t l e n g t h / l i t e r a l / eob next ∗/

j = c−>sub . code . need ;

7.3.6 Else Explanation()

This comment just repeat, usually in simpler terms, the condition in the corresponding if that may be far
away.

i f (l i n k s t a t e != BMSR LSTATUS) {
/∗ l i n k down again ∗/
. . .

} else {
/∗ l i n k s t a y s up ∗/
i f (s lave−>delay == 0) {

i f (! have l o ck s)
return 1 ;

7.4 Data Flow()

Those comments are about the flow of value, not about the type of those values.

t i m e o u t i d t msd t imeout id ; /∗ i d re turned by t imeout () ∗/
! ! b u f c a l l i d t m s d r e i o c t l i d ; /∗ i d re turned by b u f c a l l () ∗/

b u f c a l l i d t msd resched id ; /∗ i d re turned by b u f c a l l () ∗/
int msd baud rate ; /∗ mouse baud ra t e ∗/

DONTCARE(tcp−>t cp xmit h iwate r) ; /∗ I n i t in t c p i n i t v a l u e s ∗/
! ! DONTCARE(tcp−>t c p t i m e r b a c k o f f) ; /∗ I n i t in t c p i n i t v a l u e s ∗/

DONTCARE(tcp−>t c p l a s t r e c v t i m e) ; /∗ I n i t in t c p i n i t v a l u e s ∗/
tcp−>t c p l a s t r c v l b o l t = 0 ;

! ! /∗ used by t r e e s . c : ∗/
/∗ Didn ’ t use c t d a t a t yp ede f be low to suppress compi ler warning ∗/
struct c t d a t a s d y n l t r e e [HEAP SIZE] ; /∗ l i t e r a l and l en g t h t r e e ∗/
struct c t d a t a s dyn dtree [2∗D CODES+1] ; /∗ d i s t ance t r e e ∗/

int nat rev ; /∗ 0 = forward , 1 = reve r s e ∗/
! ! int n a t r e d i r ; /∗ copy o f i n r e d i r ∗/
} nat t ;

70

unsigned f i r s t o f f s e t ; /∗ o f f s e t i n t o mapping [f i r s t] ∗/
unsigned l a s t t o ; /∗ amount o f mapping [l a s t] ∗/

! ! unsigned short o f f s e t ; /∗ o f f s e t i n t o r e c e i v ed data s t o r e ∗/
unsigned char unmarshal l ; /∗ unmarsha l l ing phase ∗/

! ! i b t l c q i m p l f l a g s t c q i m p l f l a g s ; /∗ dynamic b i t s i f cq ∗/
/∗ hand ler runs in a thread ∗/

int c q i n t h r e a d ; /∗ mark i f cq hand ler i s to ∗/
/∗ be c a l l e d in a thread ∗/

int z s a s o f t d t r = 0 ; /∗ i f nonzero , s o f t c a r r i e r r a i s e s d t r a t a t t ach ∗/
int zsb134 wei rd = 0 ; /∗ i f se t , o l d weird B134 behav ior ∗/

! ! int g z s t i c k s = 0 ; /∗ i f se t , becomes the g l o b a l z s t i c k s va lue ∗/
int g n o c l u s t e r = 0 ; /∗ i f se t , d i s a b l e s c l u s t e r i n g o f r e c e i v ed data ∗/

hrt ime t v d e v l a s t t r y ; /∗ l a s t reopen time ∗/
! ! boo l ean t vdev nowr itecache ; /∗ t rue i f f l u s hw r i t e c a c h e f a i l e d ∗/

The Spark Ada [] language allows to express advanced data-flow properties like describing how a value
must “derives” from other variables (like the other parameters or global variables), and only from those
variables, and checks if the implementation actually does this and only this. It also helps to understand the
program by knowing from where a complex value come. It is a sort of assert on data-flow properties. It is
like being able from the PL to interact with external static analysis data-flow checkers.

// Ada code, in the following count correspond to a global variable
procedure (int X, int *Y)
/* Y derives from X and count */
begin
...
end

This can useful for the interface of functions but also for fields in structure, to explain how a field is filled
in respect to other parts of the code.

struct d e v i n f o {
. . .

int dev i pm dev thresh ; /∗ ” dev i c e ” t h r e s h o l d ∗/
. . .

}

int xxx = 12 ; /∗ t h r e s h o l d f o r wai t time ∗/

In the preceding comments a tool could check that the variables are used only as a threshold, that is
used with specific comparison operators in an expression (“less than” C operator).

int f i l e s g i v e n ; /∗ i f t h i s i s zero , use s t d i n ∗/ ;

! ! /∗
∗ Mailbox message types , f o r use in mboxsc putmsg () and mboxsc getmsg () c a l l s .
∗ NOTE: C l i en t s shou ld not use the MBOXSC NUM MSG TYPES value , which
∗ i s used i n t e r n a l l y to s imp l i f y f u t u r e code maintenance .

71

∗/

#d e f i n e MBOXSC MSG REQUEST 0x01
#d e f i n e MBOXSC MSG REPLY 0x02
#d e f i n e MBOXSC MSG EVENT 0x04

/∗
∗ key under−cons t ruc t i on record
∗ − passed to the r e qu e s t k e y ac tor i f s upp l i e d
∗/

struct key cons t ruc t i on {

/∗ d e f a u l t pay load l en g t h f o r quota p r e c a l c u l a t i o n (op t i ona l)
∗ − t h i s can be used in s t ead o f c a l l i n g k e y pay l oad r e s e r v e () , t h a t
∗ f unc t i on only needs to be c a l l e d i f the r e a l da ta l en i s d i f f e r e n t
∗/

s i z e t d e f d a t a l e n ;

7.4.1 Unused() and ARGSUSED()

Those comments are not really used to describe a relationship but a lack of relationship.

unsigned int x : 2 ; /∗ unused b i t s ∗/

unsigned short c l o s i n g w a i t 2 ; /∗ no longer used . . . ∗/

#define ACE WORD SWAP BD 0x04 /∗ not a c t u a l l y used ∗/

Because this preceding comment annotate a cpp level entities, tools can not check the claim in the
comment.

int a i o l i o o p c o d e ; /∗ LIO opcode ∗/
! ! int a i o r e q p r i o ; /∗ Request p r i o r i t y −− i gnored ∗/

struct a i o c b p r i v a t e a i o c b p r i v a t e ;
} o a i o c b t ;

int h i s t c o u n t e r t y p e ; /∗ s i z e (in b i t s) and s i gn o f HISTCOUNTER ∗/
! ! int spare [2] ; /∗ r e s e rved ∗/
} ;

s i z e t p r l o cked ; /∗ pages o f l o cked memory ∗/
! ! s i z e t pr pad ; /∗ cu r r en t l y unused ∗/

u i n t 6 4 t p r h a t p a g e s i z e ; /∗ page s i z e o f the hat mapping ∗/

/*LINTED table used in scsb.o and system utilities*/
static uchar_t scb_10_fru_offset[] = {

! ! /∗
∗ I f t h i s module needs a p e r i o d i c hand ler f o r the i n t e r r u p t d i s t r i b u t i o n , i t
∗ can be added here . The argument to the p e r i o d i c hand ler i s not c u r r en t l y

72

∗ used , but i s r e se rved f o r f u t u r e .
∗/

stat ic void
a p i c p o s t c y c l i c s e t u p (void ∗ arg)
{
NOTE(ARGUNUSED(arg))

/∗ cpu l o ck i s he l d ∗/

A specific annotation ARGUSED is often used, mainly in OpenSolaris to more formally express those
conditions. From the Lint [] manual: /* ARGUSEDn *//: “Makes lint check only the first n arguments for
usage; a missing n is taken to be 0 ...”

! ! /∗ ARGSUSED ∗/
int
t 1 3 9 4 f r e e a d d r (t1394 hand l e t t1394 hdl , t 1394 addr hand l e t ∗ addr hdl ,

u i n t t f l a g s)
{

! ! /∗ARGSUSED3∗/
stat ic int
s e s i o c t l (dev t dev , int cmd , i n t p t r t arg , int f l g , c r e d t ∗ cred p , int ∗ rva lp)
{

s e s s o f t c t ∗ s s c ;

Note that lint use a different angle on annotations. Those annotations are used not to help the tool to
find bugs, but instead to shut-down lint to not report false positives, to not generate a warning about unused
args. The same was true with the FALLTHRU annotation described before.

7.5 Other code-data correlations()

When two pieces of code need to work together, and when the modification of one such piece must entail
the modification of the other piece, there is a coupling. Programmers try to avoid coupling, as one wants to
separate concerns as much as possible so local modifications do not entail a massive reorganization of the
source code. Nevertheless, it is hard to avoid coupling. In such cases, it is also hard to get support from the
PL to enforce coupling. It requires non-local reasoning and working at the C meta-level, which C does not
permit (but Lisp can).

/∗ . . .
∗ Note : The d e s c r i p t o r t y p e and Type f i e l d s must appear in the i d e n t i c a l
∗ po s i t i o n in both the s t r u c t acpi namespace node and union acp i op e rand ob j e c t
∗ s t r u c t u r e s .
∗/

/∗
∗ NOTE: I f you change the s i z e o f t h i s eachproc s t r u c t u r e you need
∗ to change the d e f i n i t i o n f o r EACH QUAD SIZE.
∗/

7.5.1 DataClump()

Some variables must sometimes work together. This is called by Martin Fowler [] the data-clump bad smell
(because it’s a bad practice, programmers should gather those variables in a separate class).

73

. . .
stat ic unsigned i n s i z e ; /∗ v a l i d b y t e s in inbu f ∗/
stat ic unsigned i n p t r ; /∗ index o f next by t e to be processed in inbu f ∗/
stat ic unsigned outcnt ; /∗ b y t e s in output b u f f e r ∗/
. . .

i n s i z e = 0 ; /∗ v a l i d b y t e s in inbu f ∗/
i n p t r = 0 ; /∗ index o f next by t e to be processed in inbu f ∗/
outcnt = 0 ; /∗ b y t e s in output b u f f e r ∗/

! ! u i n t 6 4 t xmitPackets ; /∗ number o f packe t s xmit ∗/
u i n t 6 4 t xmitOctets ; /∗ number o f o c t e t s xmit ∗/
u i n t 6 4 t recvPackets ; /∗ number o f packe t s r e c e i v ed ∗/
u i n t 6 4 t recvOctet s ; /∗ number o f o c t e t s r e c e i v ed ∗/

} ;

struct compstat {
! ! u i n t 3 2 t unc bytes ; /∗ t o t a l uncompressed by t e s ∗/

u i n t 3 2 t unc packets ; /∗ t o t a l uncompressed packe t s ∗/
u i n t 3 2 t comp bytes ; /∗ compressed by t e s ∗/
u i n t 3 2 t comp packets ; /∗ compressed packe t s ∗/

caddr32 t cm param ; /∗ mech . parameter ∗/
! ! s i z e 3 2 t cm param len ; /∗ mech . parameter l en ∗/
} crypto mechanism32 t ;

typedef struct x f s a t t r l e a f n a m e l o c a l {
be16 va lue l en ; /∗ number o f b y t e s in va lue ∗/
u8 namelen ; /∗ l e n g t h o f name by t e s ∗/

! ! u8 nameval [1] ; /∗ name/ va lue b y t e s ∗/
} x f s a t t r l e a f n a m e l o c a l t ;

! ! /∗ Input s t u f f . ∗/
struct s t r i n g ∗prompt ; /∗ Output s t r i n g f o r input area . ∗/
struct s t r i n g ∗ input ; /∗ Input s t r i n g f o r read r e que s t . ∗/
struct raw3270 request ∗ read ; /∗ S ing l e read r e que s t . ∗/
struct raw3270 request ∗ k r e s e t ; /∗ S ing l e keyboard r e s e t r e que s t . ∗/
unsigned char i n a t t r ; /∗ Vi s i b l e / i n v i s i b l e input . ∗/

7.5.2 StructInitialize()

When fields are related, the programmer sometimes must initiliaze all of them at the same time. In such case,
to make the difference with field tuning, the programmer put a comment before a set of related assignements.

/∗
∗ se tup parameter s t a t u s
∗/

pcon . pc l en = SMT MAX INFO LEN ; /∗ max para l en g t h ∗/
pcon . p c e r r = 0 ; /∗ no error ∗/
pcon . pc badset = 0 ; /∗ no bad s e t count ∗/
pcon . pc p = (void ∗) (smt + 1) ; /∗ paras s t a r t here ∗/

74

We should then check that programmers don’t forget to set a field. C++ solves this problem by intro-
ducing the constructor concept.

7.5.3 Lock variables correlations()

Comments are used to describe in a structure which fields must be protected by which lock as OS code use
fine-grained locking.

/∗ update a key o f t h i s type (op t i ona l)
∗ − t h i s method shou ld c a l l k e y pay l oad r e s e r v e () to r e c a l c u l a t e the
∗ quota consumption
∗ − the key must be l o cked aga in s t read when modi fy ing
∗/

int (∗ update) (struct key ∗key , const void ∗data , s i z e t data l en) ;

struct us data {
/∗ The dev i c e we ’ re working wi th
∗ I t ’ s important to note :
∗ (o) you must ho ld dev mutex to change pusb dev
∗/

struct mutex dev mutex ; /∗ p r o t e c t pusb dev ∗/
struct usb dev i c e ∗pusb dev ; /∗ t h i s u s b d e v i c e ∗/

typedef struct dmu buf impl {
! ! /∗

∗ The f o l l ow i n g members are immutable , wi th the excep t i on o f
∗ db . db data , which i s p ro t e c t ed by db mtx .
∗/

! ! /∗
∗ Journal t a i l : i d e n t i f i e s the o l d e s t s t i l l −used b l o c k in the j ourna l .
∗ [j s t a t e l o c k]
∗/

unsigned long j t a i l ;

[frame=single]
/* Sequence number for this transaction [no locking] */
tid_t t_tid;

typedef struct s c sa2usb cpr {
c a l l b c p r t cpr ; /∗ f o r cpr r e l a t e d in f o ∗/
struct s c s a 2 u s b s t a t e ∗ s ta t ep ; /∗ f o r scsa2usb s t a t e i n f o ∗/

! ! kmutex t lockp ; /∗ mutex used by c p r i n f o t ∗/
} s c s a 2 u s b c p r t ;

! ! /∗∗
∗ no l o c k h o l d l v b − ho ld on to a l o c k va lue b l o c k
∗ @lock : the l o c k the LVB i s a s s o c i a t e d wi th
∗ @lvbp : re turn the lm l v b t here
∗
∗ Returns : 0 on success , −EXXX on f a i l u r e

75

∗/

stat ic int n o l o c k h o l d l v b (void ∗ lock , char ∗∗ lvbp)

! ! /∗∗
∗ s t r u c t r e f e r ence − TIPC ob j e c t r e f e r ence entry
∗ @object : po in t e r to o b j e c t a s s o c i a t e d wi th r e f e r ence entry
∗ @lock : s p i n l o c k c o n t r o l l i n g acces s to o b j e c t
∗ @data : r e f e r ence va lue a s s o c i a t e d wi th o b j e c t (or l i n k to next unused entry)
∗/

struct r e f e r e n c e {
void ∗ ob j e c t ;
s p i n l o c k t l ock ;

/∗−
∗ Locking key to s t r u c t s o c k e t :
∗ (a) cons tant a f t e r a l l o c a t i on , no l o c k i n g r equ i r ed .
∗ (b) l o cked by SOCK LOCK(so) .
∗ (c) l o cked by SOCKBUF LOCK(&so−>s o r c v) .
∗ (d) l o cked by SOCKBUF LOCK(&so−>so snd) .
∗ (e) l o cked by ACCEPT LOCK() .
∗ (f) not l o cked s ince i n t e g e r reads / wr i t e s are atomic .
∗ (g) used only as a s l e e p /wakeup address , no va lue .
∗ (h) l o cked by g l o b a l mutex s o g l o b a l m t x .
∗/

struct socke t {
int so count ; /∗ (b) r e f e r ence count ∗/
short so type ; /∗ (a) gener i c type , see soc ke t . h ∗/
short s o o p t i o n s ; /∗ from socke t c a l l , see sock e t . h ∗/

struct mbuf ∗ sb sndptr ; /∗ (c/d) po in t e r in t o mbuf chain ∗/
u i n t s b s n d p t r o f f ; /∗ (c/d) by t e o f f s e t o f p t r i n t o chain ∗/
u i n t sb cc ; /∗ (c/d) a c t ua l chars in b u f f e r ∗/

The preceding comment shows great informal annotations.
Lock lint can provide such functionality, but arguably with more tedious annotations:

// from lock_lint (solaris) manual
mutex_t lock1;
struct foo {

mutex_t lock;
int mbr1, mbr2;
struct {

int mbr1, mbr2;
char* mbr3;

} inner;
int mbr4;

};
NOTE(MUTEX_PROTECTS_DATA(lock1, foo::{mbr1 inner.mbr1}))
NOTE(MUTEX_PROTECTS_DATA(foo::lock, foo::{mbr2 inner.mbr2}))
NOTE(SCHEME_PROTECTS_DATA("convention XYZ", inner.mbr3))

76

! ! /∗
∗ Access to t h i s queue i s synchronized by the f r e e page queue l o c k .
∗/

stat ic TAILQ HEAD(, vm reserv) vm rvq partpop =
TAILQ HEAD INITIALIZER(vm rvq partpop) ;

/∗
∗ Pro tec t s updates to h u g e p a g e f r e e l i s t s , nr huge pages , and f r e e hug e pag e s
∗/

stat ic DEFINE SPINLOCK(h u g e t l b l o c k) ;

A comment can also be used to say that a variable does not need to be correlated to a lock.

int f r e e t o u c h e d ; /∗ updated wi thout l o c k i n g ∗/

Again, as this relation is at the struct definition level, C can’t express those kind of invariants. It requires
reflexivity

the MUVI [] tool tries to detect such correlations.
Maybe a better alternative to those comments would be to group related variables inside a monitor [].

That way access to those variables would be automatically protected without requiring any extra checking.
Why OS programmers don’t use monitors ? Because they are more heavyweight than locks which are more
quick and dirty.

/∗
∗ Hashtab le f o r mapping Object keys to i n t va l u e s . The methods o f t h i s
∗ ha sh t a b l e are not synchronized , and i f used concuren t l y must be e x t e r n a l l y
∗ synchronized
∗/

7.5.4 Protocol()

/∗
∗ Close a cache and r e l e a s e the kmem cache s t r u c t u r e
∗ (must be used f o r caches c rea t ed us ing kmem cache create)
∗/

/∗
∗ Note t ha t t h i s f unc t i on only works on the kmal loc node cache
∗ when a l l o c a t i n g f o r the kmal loc node cache .
∗/

If a formal annotation describing which functions must be used with which function (or which deallocator
to use after using a specific allocate), bugs could be found. For instance one can enforce that the programmer
do not call directly free but instead the appropriate wrapper.

/* @source: */
int kmalloc_node_cache();

/* @sink: kmalloc_node_cache() */
int free_node_cache();

Such protocols can be inferred by works from Dawson Engler [] or the PR-miner [] tool. But it may still
be better if programmer could provide formally such semantic information.

77

7.6 Repeat()

Programmers sometimes prefer to repeat some code, especially data structure definitions, and put it in
comments, so that they don’t need to have to switch between two places. This means that the navigation
and visualization capabilities of their editors, or their knowledge of it, are poor. Note that this is a dangerous
practice as there is nothing that enforces that the commented copy of the definitions is updated when the
original is updated. The CloneCode category has the same problem, and may also benefit from special
annotations, as described later.

Those kinds of comments may be obsolete and corresponds to very old code (to an older programming
era), now that modern programmers can have multiple windows and even multiple screens. But, even with
those features, advanced IDE or editors do not always make it useful or easy to efficiently use the provided
screen space.

asy−>a s y c f l a g &= ˜CBAUD;
! ! i f (asy−>asy b idx > CBAUD) { /∗ > 38400 uses the CBAUDEXT b i t ∗/

asy−>a s y c f l a g |= CBAUDEXT;

7.6.1 Repeat type()

Programmers sometimes repeat the typedef definition or structure definition.

compat caddr t ptr ; /∗ unsigned char∗ ∗/

In fact we didn’t find the typedef repetition in OS (but found some in Mozilla) maybe because for
instance Linus Torvalds advocates strongly against the use of typedefs for most cases (see the Linux coding
style document [?]).

int
e x t 2 i n a c t i v e (ap)

! ! struct v o p i n a c t i v e a r g s /∗ {
s t r u c t vnode ∗ a vp ;
s t r u c t thread ∗ a td ;

} ∗/ ∗ap ;
{

struct vnode ∗vp = ap−>a vp ;

An IDE can help by providing a tooltip to show the definition of the structure or typedef alias. The
Intellisense [] (intelligent completion) editor feature is also now very often used to assist programmers to
choose which field of a structure or which method they want to use. With this feature, the programmer does
not have to look at the documentation of the API, or navigate to the header file, or remember the name of
those fields and methods.

7.6.2 Repeat parameters()

i f (mode buf != NULL) {
s c s i mode s en s e (c s i o ,

! ! /∗ r e t r i e s ∗/ 4 ,
probedone ,

e r r o r = bus dma tag create (
/∗ parent ∗/ NULL,
/∗ al ignment ∗/ 1 ,

78

/∗ boundary ∗/ 0 ,
! ! /∗ lowaddr ∗/ ADV EISA MAX DMA ADDR,

/∗ highaddr ∗/ BUS SPACE MAXADDR,
/∗ f i l t e r ∗/ NULL,
/∗ f i l t e r a r g ∗/ NULL,
/∗ maxsize ∗/ BUS SPACE MAXSIZE 32BIT ,
/∗ nsegments ∗/ ˜0 ,

i f ((ccb−>ccb h . s t a t u s & CAM DEV QFRZN) != 0)
cam re l ease devq (ccb−>ccb h . path ,

! ! /∗ r e l s im f l a g s ∗/ 0 ,
/∗ reduc t ion ∗/ 0 ,
/∗ t imeout ∗/ 0 ,
/∗ g e t coun t on l y ∗/ 0) ;

This comment also shows yet another time the problem of using ’int’ for everything, and here maybe also
the need for unit type.

There are 2 solutions that can fulfill the need to know the parameter of a function, a tool-based one
and language-based one. The tool-based one, present in IDE like Eclipse, allows to automatically ,when
putting the cursor on the name of the function, to see in a tooltip the prototype of the function (and so of its
arguments). The language-based one, called labeled argument [], or keyword argument, or named argument,
is present in language like Smalltalk or OCaml. It allows at the call site to specify the name of the argument
as in:

int *p;
int *q;
strcpy(dest:p, src:q);
//strcpt(src:q, dest:p); is also valid.

This feature also allows to give the arguments in any order.
Another solution, when a function has a very long list of argument, is to introduce a structure representing

the arguments.

struct arg_foo = {
int timeout;
int* parent;
...
};

int main() {
struct arg_foo x = {
.timeout = 1;
.parent = new(1);

foo(x);
};

7.7 Designator()

C allows to construct complex structure or array via initializers. But, the first version of this feature was
not good enough and programmers added comments to make things clearer. Later a gcc extension called
designator was provided that almost makes such comment useless. This shows again that maybe the repeated

79

use of specific comments by programmers inspired a new programming feature. Maybe we can trace many
PL features as improvements over comments. Maybe the full history of PL and software engineering was to
turn comments into something that tools could use (we have of course no proof of that).

7.7.1 DesignatorField()

struct s e s s s e s s i o n 0 = {
&pid0 , /∗ s s i d p ∗/
0 , /∗ s l o c k ∗/
. . .

} ;

{
{ T DIRECT, SIP MEDIA FIXED , seagate , ”ST39140∗” , ”∗” } ,

! ! /∗ qu i r k s ∗/ 0 , /∗mintags ∗/ 2 , /∗maxtags ∗/2
} ,
{

! ! −1, /∗ . max r r e t r i e s [Note 3]
∗/

−1, /∗ . max wretr ies [Note 3]
∗/

{0x44 , 0x44 , 0x46 , 0x46 } , /∗ . d e n s i t i e s Densi ty codes [Note 1]
∗/

The need to build complex value as-is may be related to the Font category where one want to build a
complex font object but use comments for that purpose.

Note that the gcc extensions makes it possible to check for errors. It is very easy to mix-up entries, or
to forget to update the code if the order of the fields change in the structure definition.

This can be written, with the gcc extension as:

struct foo x = {
...
.max_rretries = -1,
.max_wretries = -1,
.densities = {0x44, 0x44, 0x46, 0x46}
...

};

This can be written also as a series of affectations, but this force the programmer to repeat the name of
the variable each time which is tedious. Note that PL like Pascal or OCaml provide the ’with’ feature that
avoids this problem. Also for C, the statement affections can not be used at the toplevel, for instance to set
global static variables.

Those kinds of comments appears mainly in OpenSolaris. Both Linux and FreeBSD use extensively the
gcc designator extension. The question is why OpenSolaris does not use this feature ? Maybe OpenSolaris
programmers wanted to make their code more portable and independent of gcc (maybe the Sun or Intel
compiler do not support such a feature). In that case it is maybe better to provide, instead of a special
feature, a comment annotation that can be used by external checkers. Another solution would be to extract
from the gcc compiler this feature and make it independent of gcc and plug-gable into different compilers.
This may be the approach advocated by extensible compilers like Xoc [1].

80

7.7.2 DesignatorMethod()

A specific use of field designators is to mimic object-oriented classes in C by using structures with different
function pointer fields to represent the different method of a class.

struct devmap ca l lback c t l agp devmap cb = {
! ! DEVMAP OPS REV, /∗ rev ∗/

agp devmap map , /∗ map ∗/
NULL, /∗ acces s ∗/
agp devmap dup , /∗ dup ∗/
agp devmap unmap , /∗ unmap ∗/

} ;

struct cpu func t i on s arm10 cpufuncs = {
. . .
/∗ CPU func t i on s ∗/
cpufunc nul lop , /∗ f l u s h p r e f e t c h b u f ∗/
armv4 dra in wr i tebuf , /∗ d r a i n wr i t e b u f ∗/
cpufunc nul lop , /∗ f l u s h b r n c h t g t C ∗/

! ! (void ∗) cpufunc nul lop , /∗ f l u s h b r n c h t g t E ∗/

! ! nodev , /∗ c b i o c t l ∗/
nodev , /∗ cb devmap ∗/
nodev , /∗ cb mmap ∗/
nodev , /∗ cb segmap ∗/
nochpol l , /∗ c b c h p o l l ∗/
ddi prop op , /∗ cb prop op ∗/

NULL, /∗ bus dma c t l ∗/
t p h c i c t l , /∗ b u s c t l ∗/

! ! dd i bus prop op , /∗ bus prop op ∗/
NULL, /∗ b u s g e t e v en t c o o k i e ∗/
NULL, /∗ b u s a d d e v en t c a l l ∗/

CB REV, /∗ rev ∗/
nodev , /∗ i n t (∗ cb aread) () ∗/

! ! nodev /∗ i n t (∗ c b awr i t e) () ∗/
} ;

This one is also an example of repeat type.
This can be written, with the gcc extension as:

struct cpu_functions arm10_cpufuncs = {
...
/* CPU functions */
.flush_prefetchbuf = cpufunc_nullop,
.drain_writebuf = armv4_drain_writebuf,
.flush_brnchtgt_E = cpufunc_nullop,
...

}

81

This can of course also be provided by another PL feature, object-oriented class. In C++ one does not
even need to use designators for this. One can simply inherit from a super-class and override or not, by
using the same method name, the different methods like this:

class arm10_cpufunc : cpu_functions {
void public flush_prefetchbuf(...) { ... }
void public drain_writebuf(...) {
// code of armv4_drain_writebuf directly, which avoid
// to introduce an extra name like armv4_drain_writebuf

}
...
}

So maybe comments led to the invention of designators, which later led to the invention of Object-oriented
(but I doubt that).

7.7.3 DesignatorArray()

Designators can also be used with arrays, but are less useful.

unsigned short s n d g f 1 a t t e n t a b l e [SNDRV GF1 ATTEN TABLE SIZE] = {
! ! 4095 /∗ 0 ∗/ ,1789 /∗ 1 ∗/ ,1533 /∗ 2 ∗/ ,1383 /∗ 3 ∗/ ,1277 /∗ 4 ∗/ ,

1195 /∗ 5 ∗/ ,1127 /∗ 6 ∗/ ,1070 /∗ 7 ∗/ ,1021 /∗ 8 ∗/ ,978 /∗ 9 ∗/ ,

0xc1b40000 , /∗ [1 47] −22.5 dB ∗/
! ! 0xc1b00000 , /∗ [1 48] −22.0 dB ∗/

0 xc1ac0000 , /∗ [1 49] −21.5 dB ∗/
0xc1a80000 , /∗ [1 50] −21.0 dB ∗/

{ 0 , (s y c a l l t ∗) l inux removexattr , AUE NULL, NULL, 0 , 0 } , /∗ 235 = l inux r emovexa t t r ∗/
! ! { 0 , (s y c a l l t ∗) l i nux l r emovexat t r , AUE NULL, NULL, 0 , 0 } , /∗ 236 = l i nu x l r emov e x a t t r ∗/

{ 0 , (s y c a l l t ∗) l i nux f r emovexat t r , AUE NULL, NULL, 0 , 0 } , /∗ 237 = l i nu x f r emov e x a t t r ∗/
{ AS(l i n u x t k i l l a r g s) , (s y c a l l t ∗) l i n u x t k i l l , AUE NULL, NULL, 0 , 0 } ,

/∗ 238 = l i n u x t k i l l ∗/

{ 0 , 0 , 0 , RW READER, 0 } , /∗ 0x5C 092 ∗/
{ 0 , 0 , 0 , RW READER, 0 } , /∗ 0x5D 093 ∗/

! ! { 0 , 0 , 0 , RW READER, 0 } , /∗ 0x5E 094 ∗/
{ 0 , 0 , 0 , RW READER, 0 } , /∗ 0x5F 095 ∗/

Note the use of both hexadecimals and numerals for the index.

! ! { 0xaa , 0xaa , 0xaa } , /∗ 7 2/3 2/3 2/3 White ∗/
{ 0x55 , 0x55 , 0x55 } , /∗ 8 1/3 1/3 1/3 Gray ∗/

{ 0x55 , 0x55 , 0 x f f } , /∗ 9 1/3 1/3 1 Brigh t Blue ∗/

Here it shows also maybe the need for a real color type (a Unit type comment example again).

! ! X86 SOCKET 754 , /∗ 0b00 ∗/
X86 SOCKET 940 , /∗ 0b01 ∗/
X86 SOCKET 754 , /∗ 0b10 ∗/
X86 SOCKET 939 /∗ 0b11 ∗/

} ,

82

! ! 12 , /∗ 0x2B : s e r i a l ∗/
0 , /∗ 0x2C : t imer / counter 0 ∗/
0 , /∗ 0x2D : t imer / counter 1 ∗/
14 , /∗ 0x2E : unco r r e c t a b l e ECC erro r s ∗/

/∗ 093 ∗/ { IPI DONTCARE, 0 , 0 , 0 , NULL, NULL } ,
! ! /∗ 094 ∗/ { IPI DONTCARE, 0 , 0 , 0 , NULL, NULL } ,

/∗ 095 ∗/ { IPI DONTCARE, 0 , 0 , 0 , NULL, NULL } ,

This can be written, with the gcc extension as:

int foo[] = {
...
[093] = { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
[094] = { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
[095] = { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
...
[100..110] = { IPI_DONTCARE, 0, 1, 0, NULL, NULL },
...
}

The use of designator arrays is useful when one use range array designator, like in the preceding example
for the range 100 to 110.

! ! /∗ 8 ∗/ 0xFE80 , 0xFE81 , 0xFE82 , 0xFE83 , 0xFE84 , 0xFE85 , 0xFE86 , 0xFE87 ,
0xFE88 , 0xFE89 , 0xFE8A, 0xFE8B , 0xFE8C, 0xFE8D, 0xFE8E , 0xFE8F ,

/∗ 9 ∗/ 0xFE90 , 0xFE91 , 0xFE92 , 0xFE93 , 0xFE94 , 0xFE95 , 0xFE96 , 0xFE97 ,
0xFE98 , 0xFE99 , 0xFE9A, 0xFE9B , 0xFE9C, 0xFE9D, 0xFE9E , 0xFE9F ,

/∗ A ∗/ 0xFEA0, 0xFEA1, 0xFEA2, 0xFEA3, 0xFEA4, 0xFEA5, 0xFEA6, 0xFEA7,
0xFEA8, 0xFEA9, 0xFEAA, 0xFEAB, 0xFEAC, 0xFEAD, 0xFEAE, 0xFEAF,

7.7.4 DesignatorHashArray()

int f oo [] = {
. . .

NULL, /∗ 0x03 , Reserved ∗/
! ! AcpiRsGetVendorLarge , /∗ 0x04 , ACPI RESOURCE NAME VENDOR LARGE ∗/

AcpiRsConvertMemory32 , /∗ 0x05 , ACPI RESOURCE NAME MEMORY32 ∗/
. . .

}

! ! ISPOPMAP(0 x03 , 0x03) , /∗ 0x71 : MBOX FABRIC LOGOUT ∗/
ISPOPMAP(0 x0f , 0 x0f) , /∗ 0x72 : MBOX INIT LIP LOGIN ∗/
ISPOPMAP(0 x00 , 0x00) , /∗ 0x73 : ∗/

stat ic char ∗ i p s e c p o l i c y f a i l u r e m s g s [] = {

! ! /∗ IPSEC POLICY NOT NEEDED ∗/
”%s : Dropping the datagram because the incoming packet ”
” i s %s , but the r e c i p i e n t expect s c l e a r ; Source %s , ”

83

” Des t inat i on %s .\n” ,

/∗ IPSEC POLICY MISMATCH ∗/
. . .

Programmers sometimes (ab)use the designator feature (or comment) to construct hash-tables (in fact to
mimic hash-tables) via arrays. As C does not provide any hash-table implementation by default, programmers
use the following trick:

This requires first to define the symbolic names that would be the keys to this hash-table:

#define IPSEC_POLICY_NOT_NEEDED 0x0
#define IPSEC_POLICY_MISMATCH 0x1
...

Then, with this hash-table/array built, the programmer can access from a given key the relevant infor-
mation:

char *message = ipsec_policy_failure_msgs[IPSEC_POLICY_NOT_NEEDED];

Note that even if this works (by using comments, or gcc designators), mistakes can be made. Indeed,
the use of cpp (again) is error-prone and nothing is really enforced about this special kind of hash-table.
For instance, nothing forbid to access those tables directly with integers instead of using the cpp symbolic
constants. It would be better to have a direct support for fast hash-tables that does not involve the use of
cpp macros.

7.8 ByteRange()

There are lots of such comments but they are almost all in the same few files. This shows again one of
the problem in our sampling approach: a file with lots of (possibly auto-generated) comments entail a bias.
Maybe the sampling should try to accommodate such case, for example by trying to modulate the sampling
by infering the difficulty of the comment, the time it takes to write it. A small comment, or in this case very
short comment, with no words at all should take normally less time to write.

Another example of auto-generated comments was described in the Font category.

stat ic const unsigned char char s e t2 l ower [2 5 6] = {
. . .

0x80 , 0x81 , 0x82 , 0x83 , 0x84 , 0x85 , 0x86 , 0x87 , /∗ 0x80−0x87 ∗/
! ! 0x88 , 0x89 , 0x8a , 0x8b , 0x8c , 0x8d , 0x8e , 0 x8f , /∗ 0x88−0x8 f ∗/

0x90 , 0x91 , 0x92 , 0x93 , 0x94 , 0x95 , 0x96 , 0x97 , /∗ 0x90−0x97 ∗/
0x98 , 0x99 , 0x9a , 0x9b , 0x9c , 0x9d , 0x9e , 0 x9f , /∗ 0x98−0x9 f ∗/

. . .
}

0xCD, 0 x40 , 0 x09 , 0 x18 , 0 x05 , 0xFD, 0xED, 0 x2C , /∗ 0C50 : @ . . . , ∗/
! ! 0xA2 , 0xFF, 0xCD, 0 x37 , 0 x0C , 0 x26 , 0 x00 , 0 xC3 , /∗ 0C58 : 7 .&. ∗/

0x12 , 0 x0D , 0xCD, 0 x40 , 0 x09 , 0 x26 , 0 x00 , 0 xC3 , /∗ 0C60 : . . @ .&. ∗/

! ! /∗ U+1FDB0 ∗/ IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , /∗ U+1FDBF ∗/
/∗ U+1FDC0 ∗/ IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , /∗ U+1FDCF ∗/
/∗ U+1FDD0 ∗/ IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , IL , /∗ U+1FDDF ∗/

84

Programmers, or tools, sometimes use a single byte address, or a range, or put the beginning of the
range in comment at the beginning of the line and another one for the end of range at the end of the line.
Sometimes the address is absolute, and sometimes relative to a constant as in U0x10+. The address is usually
in hexadecimal.

7.9 ByteAddress()

In big structures, programmers sometimes put the byte address of a field. This may show again that C may
not be low-level enough and that programmers want to express properties at the byte level.

u i n t 3 2 t mic ibdbar reg ; /∗ 60h − 63h ∗/
u i n t 8 t m i c i c i v r e g ; /∗ 64h − 64h ∗/

! ! u i n t 8 t m i c i l v i v r e g ; /∗ 65h − 65h ∗/
u i n t 1 6 t m i c i s r r e g ; /∗ 66h − 67h ∗/
u i n t 1 6 t m i c i p i c b r e g ; /∗ 68h − 69h ∗/

typedef struct txdma mai lbox t {
t x c s t t x c s ; /∗ 8 by t e s ∗/
tx dma pre s t t tx dma pre s t ; /∗ 8 by t e s ∗/
t x r i n g h d l t t x r i n g h d l ; /∗ 8 by t e s ∗/

! ! t x r i n g k i c k t t x r i n g k i c k ; /∗ 8 by t e s ∗/
u i n t 3 2 t t x r n g e r r l o g h ; /∗ 4 by t e s ∗/

OS code contains many comments about the precise byte layout of large structures such as the one above.
Such layouts about devices, network protocols, file systems, etc. are specified in external documents. Such
a structure has to follow a predefined layout, e.g., byte 65h must be the “Microphone In Last Valid Index
Value” (MICILVIV) register. Programmers usually put the specification of the layout in comments, e.g., /*
65h-65h */, and /* 66h-67h */. To follow the specification, programmers have to compute the exact number
of bytes and use the right integer type to declare the storage for each field, e.g., 66h-67h is 2 bytes therefore
it should use type uint16 t. Such calculation can be Given such specifications, it is tedious and error-prone
to write the structure defition when programmers need to handle lots of such structures, each with hundreds
of bytes. If the programmer makes a mistake in the calculation, the program can read or write values to the
incorrect field and mess up the layout, introducing bugs.

If we design an annotation tag to allow programmers to mark such important byte addresses, e.g., /*

@@byteaddr 66h-67h */, then we can compare if the code follows the layout specification easily and automat-
ically. Such annotations can make the bug detection process easier and more accurate. In addition, as it
is error-prone and inconvenient for developers to calculate how many bytes each field should be, it may be
useful to design a domain specific language to semi-automatically generate the structure based on the layout
specification.

As typedef are used for most of the fields, those sizes are not so easy to know. Programmers can not use
the sizeof() feature of gcc as they want to get the value at compile-time and print it in the file. Maybe the
need, again, for some advanced compile-time reflexion capability, is important.

struct o h c i r e g i s t e r s {
f w o h c i r e g t ver ; /∗ Version No. 0x0 ∗/
f w o h c i r e g t guid ; /∗ GUID ROM No. 0x4 ∗/
f w o h c i r e g t r e t r y ; /∗ AT r e t r i e s 0x8 ∗/

#define FWOHCI RETRY 0x8
f w o h c i r e g t c s r d a t a ; /∗ CSR data 0xc ∗/
. . .

#define FWOHCIGUID H 0x24
#define FWOHCIGUID L 0x28

85

f w o h c i r e g t g u i d h i ; /∗ GUID hi 0x24 ∗/
f w o h c i r e g t g u i d l o ; /∗ GUID lo 0x28 ∗/
. . .
f w o h c i r e g t dummy0 [2] ; /∗ dummy 0x2c−0x30 ∗/
f w o h c i r e g t conf ig rom ; /∗ con f i g ROM map 0x34 ∗/
. . .
f w o h c i r e g t h c c c n t l c l r ; /∗ HCC con t r o l c l r 0x54 ∗/

#define OHCI HCC BIBIV (1 << 31) /∗ BIBimage Val id ∗/
#define OHCI HCC BIGEND (1 << 30) /∗ noByteSwapData ∗/
#define OHCI HCC PRPHY (1 << 23) /∗ programPhyEnable ∗/

. . .
! ! f w o h c i r e g t i t i n t c l e a r ; /∗ 0x94 ∗/

f w o h c i r e g t i t i n t m a s k ; /∗ 0x98 ∗/

Note in the preceding comments the use of macros to access some entries by address rather than field
names, the use of dummy variables to pad bytes, the use of bitsets here put next to the corresponding
variable (a kind of code correlation), and the notion of low and high bytes.

u32 MacRxState ; /∗ 0x220 ∗/

u32 pad10 [7] ;

! ! u32 CpuBCtrl ; /∗ 0x240 ∗/
u32 PcB ;

u32 pad11 [3] ;

u32 SramBAddr ; /∗ 0x254 ∗/

Here the address is put at regular intervals, not for each field.
How to check that the comment is right ? Again it would require some reflexion capability over the

structure of the program itself.
C can be used to conveniently mmap disk data-structure in memory, and in that case there is a precise

disk format with bytes at specific place. Those byte address comments serve such a purpose. For instance
in JFS (a filesystem) one can find such code:

/*
* The journal superblock. All fields are in big-endian byte order.
*/

typedef struct journal_superblock_s
{
/* 0x0000 */
journal_header_t s_header;

/* 0x000C */
/* Static information describing the journal */
__be32 s_blocksize; /* journal device blocksize */
__be32 s_maxlen; /* total blocks in journal file */
__be32 s_first; /* first block of log information */

An extension of gcc (yet another one) called ’offsetof’ allows to know at compile-time the relative byte
address of fields which may make obsolete the previous comments.

struct foo {

86

int x;
float y;
int :4 z1; //bitfield
int :12 z2;
double w;
};
...
int address = offsetof(foo, y); // should be 4 on as int x takes 4 bytes

7.10 Crossref()

i f (pr iv−>wep i s on) {
! ! /∗ There ’ s a comment in the Atmel code to the e f f e c t t h a t t h i s

i s on ly v a l i d when s t i l l us ing WEP, i t may need to be s e t to
something to use WPA ∗/

memset (mib . key RSC , 0 , s izeof (mib . key RSC)) ;

/∗
∗ The ca s t to i n t 3 2 t does not r e s u l t in any l o s s o f in format ion because
∗ the number o f l o g i c a l b l o c k s in the f i l e system i s l im i t e d to
∗ what f i t s in an i n t 3 2 t anyway .
∗/

#d e f i n e lb lkno (f s , l o c) /∗ c a l c u l a t e s (l o c / f s−> f s b s i z e) ∗/ \
((i n t 3 2 t) ((l o c) >> (f s)−> f s b s h i f t))

! ! /∗
∗ The same argument as above a p p l i e s here .
∗/

! !# d e f i n e numfrags (f s , l o c) /∗ c a l c u l a t e s (l o c / f s−> f s f s i z e) ∗/ \

/∗ See ”auto” comment in i n i t s e t u p ∗/
for (i = 1 ; i < MAX INIT ARGS; i++)

/∗ see be low f o r va l u e s o f (t h i s v a r i a b l e) ∗/

/∗ see comment in s t r u c t sock d e f i n i t i o n to understand why we need
∗ s k p r o t c r e a t o r
∗/

7.11 Clone()

Programmers often copy-paste code but feels the need to describe from where the copy, the clone, come
from.

/∗
∗ FKS: This i s a one−on−one copy o f s b p r o aud i o s e t c h anne l s
∗ (∗) Modi f ied i t ! !

87

∗/
stat ic short e s s a u d i o s e t c h a n n e l s (int dev , short channe l s)
{

sb devc ∗devc = audio devs [dev]−>devc ;

p c i w r i t e c o n f i g d w o r d (de−>pdev , PCIPM, pmctl) ;

! ! /∗ de4x5 . c de lays , so we do too ∗/
msleep (1 0) ;

/∗ Simi lar to remap pfn range () (see mm/memory . c) . . . ∗/

/∗ der i v ed from mm/shmem. c and f s / ramfs/ inode . c . . . ∗/

! ! /∗
∗ The TCP normal data output path .
∗ NOTE: the l o g i c o f the f a s t path i s dup l i c a t e d from t h i s f unc t i on .
∗/

stat ic void
tcp wput data (t c p t ∗ tcp , mblk t ∗mp, boo l ean t urgent)
{

Note that this comment also express a performance semantic property that a profiler could check (see
the Time and Space properties category).

There are lots of tools for clone-detection like CP-miner [] that try to detect clones, blindly. But they
could also use the semantic information provided by the programmer which would make it far easier. Also,
after each change on a function clearly annotated with a CloneCode comment, it would be very fast to
detect his clones and warn the user that he should also maybe modify the other code in the “clone group”.
We could have a copy-paste oriented programming paradigm where copy-pasting would not be anymore a
problem but in fact embraced. Those annotations could even be for some parts auto-generated by the IDE
who knows when the user copy-paste big chunk of code (yet another example of synergy through annotations
between tools, here the IDE, VCS, and CP-miner).

#i f n d e f NO DUMMY DECL
struct i n t e r n a l s t a t e { int dummy; } ; /∗ f o r buggy compi l e r s ∗/
#e n d i f

#e n d i f
! ! /∗ −−− i n f u t i l . h ∗/

#i f n d e f NO DUMMY DECL
struct i n f l a t e c o d e s s t a t e { int dummy; } ; /∗ f o r buggy compi l e r s ∗/
#e n d i f

The comment indicates the end of a copy paste. It is also a EndOfXXX. Note that the code is copied
from another software (from gzip) and so keeping both version synchronized is even more harder. Some VCS
provide functionality to handle subsystems, and branches, but do not support such fine grained requirement.
As in open-source one can easily include code from another software, and that software evolves a lot, keeping
the version up-to-date and bug-free is harder.

88

/*...
** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
** and is currently maintained by
**
** Gerard Roudier <groudier@free.fr>
**
** Being given that this driver originates from the FreeBSD version, and
** in order to keep synergy on both, any suggested enhancements and corrections
** received on Linux are automatically a potential candidate for the FreeBSD
** version.
**
** The original driver has been written for 386bsd and FreeBSD by
** Wolfgang Stanglmeier <wolf@cologne.de>
** Stefan Esser <se@mi.Uni-Koeln.de>
**
** And has been ported to NetBSD by
** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
**
** NVRAM detection and reading.
** Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
**
** Added support for MIPS big endian systems.
** Carsten Langgaard, carstenl@mips.com
** Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
**
** Added support for HP PARISC big endian systems.
** Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
...

/**************** ORIGINAL CONTENT of ncrreg.h from FreeBSD ******************/
struct ncr_reg {
/*00*/ u8 nc_scntl0; /* full arb., ena parity, par->ATN */

/*01*/ u8 nc_scntl1; /* no reset */
#define ISCON 0x10 /* connected to scsi */
#define CRST 0x08 /* force reset */
#define IARB 0x02 /* immediate arbitration */

...
/*
* End of ncrreg from FreeBSD
*/

7.12 Aspect()

Configuration aspect.

/∗
∗ (DV) = only de f ined f o r Da Vinci
∗ (ML) = only de f ined f o r Monalisa
∗/

89

7.13 Misc()

int matched ; /∗ matched the va lue ∗/
! ! int s e enze ro ; /∗ saw a 0 b e s t f r e e entry ∗/

#e n d i f

! ! int x d f f b r e w r i t e s ; /∗ how many t imes was our f l u s h b l o c k r ewr i t t en ∗/

! ! /∗
∗ L i s t o f PMC owners wi th system−wide sampling PMCs.
∗/

stat ic LIST HEAD(, pmc owner) pmc ss owners ;

#d e f i n e ZSRR0 CD 0x08 /∗ CD input (l a t c h ed i f R15 CD) ∗/
! !# d e f i n e ZSRR0 SYNC 0x10 /∗ SYNC input (l a t c h ed i f R15 SYNC) ∗/

#d e f i n e ZSRR0 CTS 0x20 /∗ CTS input (l a t c h ed i f R15 CTS) ∗/
#d e f i n e ZSRR0 TXUNDER 0x40 /∗ (SYNC) Xmitter underran ∗/

! ! u char used ; /∗ # s l o t s in use ∗/
u char a v a i l ; /∗ where to s t a r t scanning ∗/
u char busy ;

90

Chapter 8

Other()

/∗ f p r i n t f (3) macros f o r unsigned i n t e g e r s . ∗/

#d e f i n e PRIoLEAST64 ” l l o ” /∗ u i n t l e a s t 6 4 t ∗/
! !# d e f i n e PRIoFAST8 ”o” /∗ u i n t f a s t 8 t ∗/

#d e f i n e PRIoFAST16 ”o” /∗ u i n t f a s t 1 6 t ∗/

91

Chapter 9

Discussions

We have seen in previous sections that many comments found an echo in a specific computer science research
work.

9.1 C vs other programming languages

It would be interesting to study the comments in modern PL like Csharp or OCaml or Haskell. Some of the
OS comments we found have a direct “solution”, a direct translation in some features of modern PLs (but
not that many maybe as for instance code correlations comments are also needed in OCaml), but the use of
those features may also have some limitations leading to different kinds of comments, leading maybe to the
invention of new feature for those modern PLs.

9.1.1 Ada

Ada is solution ?

9.1.2 C++

C++ is solution to many of those problems ? - inline - const - constructor/destructor model - template -
exn

9.1.3 Java

Java has solutions to some of the problem:
- exception handling

9.1.4 OCaml

OCaml, and other modern functional languages like Haskell, Fsharp, etc are the solution ?

9.1.5 Other

9.2 Proposed major improvements

Our database of examples can be used as a basis for each of the following works, as the starting point.

92

9.2.1 Migration tool

As a large percentage of comments could be supported if present in a more formal form, in an annotation,
then the first tool to build is a migration tool using probably NLP techniques to leverage such comments.
By making such comments less fuzzy the barrier of entry for other tools will be lower and tools can then
make use of those comments.

On the one hand, there are lots of existing comments containing useful information, on the other hand
there are lots of research work with lots of annotation based tools, advanced type systems, and even advanced
programming languages, but annotations are not that used, same for advanced type system, and there is only
a few mainstream programming languages that succeeded. Those research work ideas were rarely tested,
rarely backup by a user study and so it was difficult to see if they are really useful. They had very few
impacts on OS code. In fact, maybe the domain where they have the least impact is OS code which is
unfortunately arguably the most critical part that should be make more reliable. OS programmers still use
C. Maybe because of latency, but maybe there is more.

The works that really succeeded followed an evolutionary approach. C is extended from time to time
(lots of gcc extensions). C++ is all about extending C while maintaining backward compatibility. So, even
if lots of the previous research works on advanced type system or annotations languages are good, they may
have forget maybe one of the most important thing to succeed: provide a migration path that leverage the
existing information. Comments can be the basis for such migration.

I have started myself using tags in my own program :)

9.2.2 Unifying framework and generic frontend

Many tools, like Emacs, CVS, Eclipse already use special comments annotations in addition to all the type-
based annotation checkers. With so many annotations and tools, we need a unifying framework to make it
easier for the programmer to consistently use all those annotations. We need a generic annotation language,
possibly with a generic frontend where new checkers and annotations can be plugged-in. It would be useful
for instance to be able to use at the same time, as-is, SAL and sparse, or splint and deputy. Each of those
annotation languages have their own names for annotations as well as their own specification to place those
annotations in the code (before the statement, after, via a comment, via a macro). By having a generic
front-end one could easily feed the annotations to the different tools (on Linux using sparse and windows
using SAL), and so benefit from all those tools, and especially their internal static analysis algorithms, easily.

9.2.3 Extensible checker

9.2.4 CAP: Computer Assisted Programming

9.2.5 cpp-lint

See Section [?].

9.2.6 Source code visualizer and browser

There are lots of code relationships information that could be leveraged by a tool. An annotation-based
guided visualizer and navigation tool could be helpful to help programmers understand and maintain code.
I do not speak about hypertext capabilities; there are lots of tools that can already do this I think. I speak
about a better source code visualizer that can make the most use of the provided pixels on the screen to
display as much contextual information as possibly based on the information in the annotations to enable
some focus+context.

93

9.2.7 NewC

9.2.8 COP: Copy-paste Oriented Programming

9.2.9 Relationship

9.2.10 Anti-devil

9.2.11 Semantic VCS

9.3 Caveats

A typical problem of sampling from a large set of data is that infrequently appearing comments may rarely
show up, if show up at all, in the sample and are therefore not studied. Some of the concerns reflected by
these comments are important but are just not commonly documented in comments. Although we don’t
know the exact reason for the scarcity of comments for such concerns, we try to discuss one of them here.

9.3.1 User/Kernel Space

User provided data, especially strings, are generally considered untrusted. Thus, they are not allowed to be
passed into certain functions to in order to protect the kernel. We almost saw no comments about user/kernel
related concerns. The examples shown below are from comments close to our samples.

f r e eb sd /gnu/ f s / x f s / x f s r t a l l o c . h : 1 5 4 : 0

/∗
∗ Grow the r ea l t ime area o f the f i l e s y s t em . ∗/

i n t x f s g r o w f s r t (
struct xfs mount ∗mp, /∗ f i l e system mount s t r u c t u r e ∗/

! ! x f s g r o w f s r t t ∗ in) ; /∗ user supp l i e d growfs s t r u c t ∗/

o p e n s o l a r i s /common/ i n e t /nca/nca . h : 1 6 4 : 1 9

/∗
∗ S e r i a l i z a t i o n queue type (move to s t r s u b r . h (stream . h?) as a genera l
∗ purpose l i g h t w e i g h t mechanism fo r mb l k t s e r i a l i z a t i o n ?) . ∗/

typedef struct nca squeue s { u i n t 1 6 t s q s t a t e ; /∗ s t a t e f l a g s ∗/

u i n t 1 6 t sq count ; /∗ message count ∗/
. . . .
kcondvar t sq async ; /∗ async thread b l o c k s on ∗/
kmutex t s q l o c k ; /∗ l o c k b e f o r e us ing any member ∗/
c l o c k t sq awaken ; /∗ t ime async thread was awakened ∗/

! ! void ∗ s q p r i v ; /∗ user de f ined p r i v a t e ∗/
k t d i d t s q k t i d ; /∗ k e rne l thread id ∗/

} nca squeue t ;

Although Linux’s Sparse annotation user can express such concerns in code, and Linux developers
commonly do so (backed up by the large amount of annotations we saw in Linux’s code), programmers still
user comments to express such concerns sometimes as in the examples above. Note that the existence of

94

Sparse could be a reason that Linux has few such comments (as programmers use such annotations instead
of comments), but it does not explain why FreeBSD and OpenSolaris also do not have many such comments.

As a side note, although there are numerous concerns that cannot be expressed by the programming
language, programmers do not document all of them in comments. The question, why programmers choose
to document some instead of others, itself is an very interesting area (although beyond the scope of this
study).

95

Chapter 10

Conclusion

Here are general conclusions:

• The Type, Interface, and Code Relationships are surely the most interesting categories, at least for bug
findings.

• For most of the comments, including the one in Explanation, we can find something, a PL, a tool,
a research, that is related to the comment, and that shows that the comment is used because of the
limitation of something.

Here are conclusions about the numbers:

• Interface and Type represents 20% and are strongly related to bug finding. It is far more than 1% and
so confirm our hope from iComment that many comments have potential for bug detection.

• Type is 10%.

• More that 10% of comments could be covered by existing annotation languages, if they could be used
together (SAL+meca+splint+sparse+etc).

• Locking, which is spread in different categories (Context and CodeCorrelation), represents 5% of the
comments.

• Explanation is big, 50%, which confirms that people still use comment for “explanation”, but at the
same time shows that it’s not the full story. Many comments are not fuzzy explanation about the code,
and may be supported by tools.

• 40% (600 000 comments) could be used to improve software development and maybe reliability.

• even 1% is big as it may represent 14 000 comments

• The Explanation number is a lower bound. We classified many comments as explanation maybe because
we didn’t know or imagined that an existing research work could leverage this comment. For instance
if one has never heard about unit and dimensions type system (millisecond, speed, etc), then it’s easy
to classify such comments as explanation. So when we looked at comments, we had to be very open-
minded about the potentiality of the comment, which is very hard and so we may have missed some
opportunities. We don’t know about all research work done in programming languages or software
engineering.

• There is very few really stupid comments that just paraphrase the code like i++; /* increment i */

96

• There is a number of comments that are used because of really bad coding. For instance the use
of magic numbers should be translated at least in symbolic constant definition. In many cases the
comment translates to a limitation. So, the more the comments, the worse is the program or the
language, which goes against most criteria of software quality which argue for the use of abundant
comments.

• Most comments are short. There are very few design comments that explain at length how the code
works.

• Most comments are about code properties or organization, and not so much about Linux itself or how
an OS work.

97

Bibliography

[1] Cox, R., Bergan, T., Clements, A., Kaashoek, F., and Kohler, E. Xoc, an extension-oriented
compiler for systems programming. In ASPLOS (2008).

98

