A Taxonomy of Comments

Or a Critique of C and OS Code Through Comments

Yoann Padiolean and Lin Tan

September 10, 2008

Contents

Overview
Meta Information()

Past and Future()

3.1 Todo() « o v v
3.2 Reminder() e
3.3 Trigger, deprecated and obsolete() L
3.4 OldCode() . .« v v v o
3.5 Log() . - o o o

Explanation()
4.1 Example() . . .« o
4.2 Specific Explanations()
4.2.1 For Explanations()
4.2.2 Bit Explanations()
4.2.3 List Explanations()
4.3 Other specific explanations() L
4.4 ShortNameExlain ()
45 Ref() . . o o
4.6 Diagram()o
47 Font() . . o o
4.8 Other e
4.8.1 Brief
4.8.2 SUMMATY« v v e e e
4.83 Long e e

Type()
5.1 NULL() . . . oot e
52 Bound()
5.3 Range() . . . oo
54 UNI) o oo
5.5 State type()
5.6 Regilon pointers()
5.7 Dependent types()« i
5.7.1 Array dependent types()
5.7.2 Union dependent types() e
5.8 Relation types() e
5.9 Memory types()
5.10 Bit and bytes()

5.10.1 Bitset 36

5.10.2 cpplint oL e 37
5.10.3 Group e 37
5.10.4 Devil. . . . o L 38
5.11 Polymorphism, template types() 41
5.12 Shape o o e 41
5.13 Abuse int(), Abuse string() 41
5.14 Not seen in comments 41
Interface() 42
6.1 Preconditions(). 42
6.2 InOut() o o 43
6.3 Context() 45
6.3.1 Context Lock() e 45
6.3.2 Context Caller() e 49
6.3.3 Context Interrupt() 49
6.3.4 Other context e e 50
6.3.50 SmPL e 52
6.3.6 Buffer Ownership() 52
6.4 Effects() e 52
6.5 Error() 53
6.6 Magic number() 57
6.7 Module interface() 59
6.8 Time and Space properties() 60
6.9 Other interface() e 61
Code Relationships() 62
7.1 File organization() 63
7.1.1 Visual organization() L 63
7.1.2 Grouping()o 64
7.2 EndOfXXX() © o oo oo 65
7.3 Control Flow() e 66
7.3.1 Caller Callee() e 66
7.3.2 Before After() 67
7.3.3 Other 68
7.3.4 Unreached()« o o i 69
7.3.5 ProblematicControl() and FALLTHRU() 69
7.3.6 Else Explanation() e 70
74 DataFlow() 70
7.4.1 Unused() and ARGSUSED() 72
7.5 Other code-data correlations() 73
7.5.1 DataClump() o oo 73
7.5.2 StructInitialize() 74
7.5.3 Lock variables correlations() L L 75
7.5.4 Protocol() 7
7.6 Repeat() o o 78
7.6.1 Repeat type() o o o 78
7.6.2 Repeat parameters()o 78
7.7 Designator() 79
7.7.1 DesignatorField() 80
7.7.2 DesignatorMethod() L 81
7.7.3 DesignatorArray() 82

7.7.4 DesignatorHashArray()

7.8 ByteRange()
7.9 ByteAddress()
7.10 Crossref() o o
711 Clone() . . . o v o
712 Aspect() oo
T3 MISC() « v v o e e e
8 Other()
9 Discussions
9.1 C vs other programming languages Lo
9.1.1 Ada . .. e
0.1.2 CH . o e
9.1.3 Java . ..o
9.1.4 OCaml e
9.1.5 Other e
9.2 Proposed major improvements oL oL Lo Lo e
9.2.1 Migration tool L e
9.2.2 Unifying framework and generic frontend L oL
9.2.3 Extensible checker
9.2.4 CAP: Computer Assisted Programming
9.2.5 cpp-lint ... e
9.2.6 Source code visualizer and browser oo
9.2.7 NewC e e
9.2.8 COP: Copy-paste Oriented Programming
9.2.9 Relationship L
9.2.10 Anti-devil
9.2.11 Semantic VCS oL

10 Conclusion

91

92
92
92
92
92
92
92
92
92
93
93
93
93
93
94
94
94
94
94

95

Chapter 1

Overview

There are different ways to classify comments, depending on the questions we are interested in:

What? What is inside the comment 7 Why it was written 7 Does it contain useful information 7 If
yes who is the target of the comment, the programmer working with (client) or working on the code
(implementer), or possibly a tool ?

Where? Where is the comment? In our case in which OS (Linux, FreeBSD, OpenSolaris), in which
subsystem (core, driver, filesystem, network protocol, etc), in an implementation (.c) or header (.h)
file, and its place in the file (in a header, function, structure, macro, etc).

When? When the comment was written? It can be the absolute time (10 years ago), or the time
relative to the file creation (2 months after file creation). The last information can give a hint about
the development phase (design, maintenance, etc) the comment was written for, the first if those kinds
of comment are still relevant today.

Who? Who is the author of the comment ? A core developer? A maintainer? A tester? A beginner?
An expert? Or maybe it was auto-generated by a tool ?

From those four general and comprehensive questions, the last three can be to some extent automatically
answered; they are mainly quantitative. Some previous works partially studied those three questions, for
instance [] was interested in the difference between expert and beginners comments. Section ?? discusses
those related works. We present the results of our own study where we analyze the source code repositories
of the three OS in Section 77?.

In this section we are interested in the first question, the what, arguably the most important one
considering our main goal which is to listen to programmers. This question is mainly qualitative and as such
more difficult, which may explain why nobody before to the best of our knowledge have really studied in
depth this question. For this we have manually examined 1050 comments randomly sampled from the three
OS and classified them in a taxonomy we gradually refined, as explained in Section 77.

The toplevel categories of our taxonomy are:

Meta Information
Past and Future
Ezplanation

Type

Interface

Code Relationships

e Other

The following sections will detail each of those toplevel categories. The most interesting one for bug-checking
are Type, Interface, and Code Relationships.

One way to view those toplevel categories is that they roughly correspond to the order in which one can
see them in a file. The header of the file usually contain a copyright notice and other Meta Information, then
come some log about the history of the file, its Past and Future, then a summary or high-level Explanation,
then come some data-structures and Type definitions, and then some functions and their Interface. The
primary purpose of comments is to help understand code, and as such the last two categories are used to
help the programmer understand an entity in isolation, without even looking at the implementation. But
at some point, to understand a program, one has to understand how entity works together and so need to
understand Code Relationships. In some way Past and Future can also be seen as describing relationships,
how the current code relates to its past and future.

This is of course only a rough correspondence. In practice some notions crosscut; a copyright can for
instance also be attached to a specific function. As opposed to the 'where’, 'when’, and 'who’, which lead
to obvious classifications, the 'what’ is more difficult to classify as comments are used for a wide range of
purpose.

Also, some operating system notions crosscut those categories. We repeatedly encountered mainly four
topics in OS comments:

e Resource management: especially about memory and buffer handling

e Timing: concurrency, complex flow interaction, lock, interrupt

e Low-level interaction: bit and byte layout, hardware register interaction, network format, endianess
e Protection: address space, scope

For instance concurrency comments are sometimes used in Interface, to describe the assumptions made by a
function about locking, but also to describe Code relationship, such as how a lock variable is related to and
protect other variables.

Note that some comments may be obsolete or even misleading, but for our purpose, which is to identify
programmer needs, this is not an issue. Indeed those comments were certainly at one point correct and so
expressed a valid programmer need.

In the same way even if we only analyze the comments present in the current version of the three OS,
and so may miss some comments that have disappeared, we think that they were probably not important
comments. They may have disappeared because they expressed a past programmer need that was fulfilled
by a programming language extension or tool.

By looking at those comments, we found that many of them could or should be supported by better or
existing:

e Programming languages (PL), especially:
— better type system
— programming features

e Software development tools, especially:

— Bug detection tools (checkers)
— Source code visualization

— Source code navigation

Version control system (VCS)

Bug database

Collaboration tools

— Debugger and Profiler
— Tester (regression testing framework)

— Integrated Development Environment (IDE) which encompasses most of the preceding items
e Software process methodologies

The line between a bug detection tool (checker), a (type-based) annotation language, and a programming
language type system is a very thin line. What is put inside the compiler and type system and what is put
outside of it in external tools may change. Also, even programming language features can now be put
in external tools like Xoc [1]. That’s why annotation languages are not part of the preceding list. Also,
“annotation” is a too general term. Annotations are not used only for bug finding. Annotations crosscut
the preceding list. Multiple tools already use special annotations in comments:

e Documentation tools use special annotations for authorship
e CVS use special annotations ($Id:$, $Log:$)

e Editors like Eclipse or Emacs use special annotations to better visualize the source code or manage
TODO items

e Some research work on debugging (KStruct []) proposed to add annotations on fields in structure to
help debugging, and MicroDriver || proposed annotations to specify what part of the driver must be
put in kernel space and what part can be in user-space

This in fact shows that special annotations in comments are already used for a wide range of purpose,
and we think may be generalized to more uses. Comment annotations can be used as a special artifact in
the code for different tools to collaborate with each other: comments can be the ring that rule them all.
For instance the bugzilla tool could extract automatically, thanks to a special comment annotation, the
maintainer name of a file to automatically send the bug report to the right person.

/x
This comment is parsed by configure to create ctype.c,
so don’t change it unless you know what you are doing.

.configure. strzfrm_multiply_cp932=1
.configure. mbmaxlen_cp932=2

* % X X ¥

*/

if (ip-sock = INVALID_SOCKET)
{
DBUGPRINT(” error” ,(” Got_error : Yd_from._socket ()” ,socket_errno));
sql_perror (ER(ERIPSOCK ERROR)); /x purecov: tested */
unireg_abort (1); /* purecov: tested x/

}

So, in the rest of the rest paper, the terms comments, special comments, special annotations, or annota-
tions are considered equivalent.

Remember that comments are mostly used as an escape door by the programmer, because there is no
other way (no PL feature, no tool) to express what the programmer has in his mind.

Chapter 2

Meta Information()

The Meta category allows the programmer to express his need to identify and protect his work. Programming
languages (PLs) do not allow to express such needs, except maybe Eiffel [].
There are mainly 3 subcategories but they are mostly used at the same time in the same comment:

o Author
o Copyright

e Date

$Id: mntfunc.c,v 1.19.6.4 2005/01/81 12:22:20 armin Ezp §

N
*

Driver for Ficon DIVA Server ISDN cards.
Maint module

Copyright 2000—2003 by Armin Schindler (mac@melware. de)
Copyright 2000—2003 Cytronics & Melware (info@melware. de)

This software may be used and distributed according to the terms
of the GNU General Public License, incorporated herein by reference.

S SR G S S CORE SR SR

*
N

Ve

* Send bug reports and improvements to <boggs@boggs.palo—alto.ca.us>.

*/

Those kinds of comments are now more formally supported by tool like Javadoc (@author, @copyright,
etc), which confirms that the repeated use of special comments in the past led to the invention of special
annotations and tools.

Also, tools like CVS can automatically adjust some comments containing special tags ($Id:$, $Log:$)
to display for instance the last person who modified the file, which shows that comments can be used as the
basis for tool cooperation.

Some copyright notice are sometimes enclosed by special tags, like in OpenSolaris (/* CDDL HEADER END */),
which can be used for instance by tool like Emacs to automatically hide the copyright if the programmer
want to focus on the code.

1 /s
« CDDL HEADER START

The contents of this file are subject to the terms of the
Common Development and Distribution License, Version 1.0 only
(the ”License”). You may not use this file except in compliance
with the License.

* X X X ¥

x CDDL HFADER END
*/
Ve
x Copyright 2002 Sun Microsystems, Inc. All rights reserved.
x Use is subject to license terms.

*/

But those meta-information are right now mainly used for doc-generation. One could imagine that if a
bug-database tool like bugzilla knew about those meta-information, then a bug report could be automatically
forwarded to the right person, providing the comment also contains email information, if not of the author
maybe of the maintainer of the file. If one would like to do a survey and ask questions to kernel programmers,
those annotations may also be useful to automate the process.

Also, even if some file may be owned by multiple authors, with different copyright, there is no easy
way to actually know which parts belong to which authors by just inspecting the current version. Some
meta-information can and are sometimes associated to specific functions to identify fine-grained ownership,
but it is rarely used as it is tedious to repeat to dozen of functions.

/*
x David H rdeman <david@Z2gen.com>
x The key makes the SCSI stack print confusing (but harmless) messages
*
/
UNUSUALDEV(0x4146, Oxba0l, 0x0100, 0x0100,
”Tomega” ,
” Micro_Mini.1GB” ,
US_SC_.DEVICE, USPR_DEVICE, NULL, USFLNOTLOCKABLE),

There is no easy way to describe the scope of the code owned by different authors. As such it can also be
difficult for tools to identify the copyright of a specific part of a multi-authors code, which depending on the
license, for instance GPL or public domain, may have a strong impact. Some companies for instance want
to detect if the code of their employees are actually copy-paste of codes with restrictive (like GPL) license.

In fact more recently advanced VCS allow for each line of a file to easily know who has written this line
and when (with cvs annotate foo.c) which can be very useful when debugging code with lots of authors
to know who is responsible for a buggy code and so who should be contacted to fix it. But the algorithm
used is line oriented and may be messed by simple cut and paste. It is actually difficult to track the author
of a line by just using the information in a VCS [?]. Maybe some support from the IDE may help, where
the authorship will be more explicit, but hidden from the programmer that would not like to be bothered
by such authorship marks. But with those marks in the text, it would be trivial to track the author through
cut and paste.

The emacs library used a special format of comments which can be understood by some tools to help
programmers find plugins.

;;; dircolors.el — provide the same facility of ls —color inside emacs
;5 Emacs Lisp Archive Entry

;5 Filename: dircolors. el

;3 Author: Padioleau Yoann <padiolea@irisa . fr>

;3 Version: 1.0

Microsoft [] have proposed also to add manifest to code as self-describing artifact, specifying what the
code is for.

/x
DO NOT EDIT THIS DOCUMENT !!! THIS DOCUMENT IS GENERATED BY
mozilla/intl/unicharutil/util/genbidicattable. pl

*/

Chapter 3

Past and Future()

The Past and Futur category allows the programmer to express his need to refresh his own memory. Robery
Warren [] said: ”comments are both a memory aid to the original developers and a guide to future source
code readers”. It can also be a guide for futur changes.

Programmer use comments for such purpose as programming language offer few features to talk about
the past and future of the code. An exception may be the Eiffel programming language which allows to
annotate functions as deprecated.

Even if people can now use version control system (VCS) to go back in time, programmer still prefer or
at least still use comments for talking about the past, be it to show old code statements, changelogs (which
could be extracted from commit messages), or notes about the past.

3.1 Todo()

Programmers use different forms of TODO (/* TODO */, /* FIXME */, /* XXX */).

buf-—>vb. field = field; // FIXME: check this

/+«FIXME: wusing G rates.x/

addr = addr >> 2; /x temporary hack. x/

1 /%
x Update parameters of an IPv6 interface address.
x If necessary, a mew entry is created and linked into address chains.
x This function is separated from in6_control().
x* XXX: should this be performed under splnet()?
«/
int
in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq xifra ,

struct ... {

/x XXX — most fields in ki_rusage_ch are not (yet) filled in x/
struct rusage ki_rusage_ch; /+ rusage of children processes x/
struct pcb xki_pch; /x kernel wvirtual addr of pcb */

10

The preceding comment also expressed a data-flow condition.

rpn—>param_mask = htolel6 (param_mask); /+ XXX x/

/*

* XXX — would be nice if we could do this without suspending...

*/

txg_suspend (dp);

I /* Original seq number I used ??questionable to keep?? x/
uint32_t init_seq_number;

Some of those comments even have authors name attached to and so are used as a communication medium
for collaborative work.

/+x FIXME: Source route IP option packets —RR x/
if (nf_conntrack_checksum && hooknum = NF_INET PRE ROUTING &&

Tools like Eclipse now enable to gather many of those special comments in a special “TODO view” with
cross-reference capability, a small improvment over manual grepping.

There is no connexion right now between TODO, bugzilla, and VCS. So, there is no way to check that
a TODO erased in the past was erased because of a bugfix and that it was legitimate to erase it. It would
require of course to understand the TODO, but maybe TODO could have a better format precising more
the kind of TODO or priority. For instance We could have a refactoring TODO annotation that could be
automatically removed when the refactoring action is performed under the IDE.

Some TODO are also present as macro and used in the concrete code, generating a warning at run-time
about the lack of a feature.

linux/drivers/net/wireless/bcm43xx/bcmé3xx_debugfs.h

#define TODO() \

do { \

printk (KERN_INFO PFX "TODO: Incomplete code \
in %s() at %s:%d\n", \

__FUNCTION__, __FILE__, __LINE__); \

} while (0)

#define FIXME(Q) \

do { \

printk(KERN_INFO PFX "FIXME: Possibly \
broken code in %s() at %s:%d\n", \
__FUNCTION__, __FILE__, __LINE__); \

} while (0)

Some tools like logdj [] for Java provide more advanced functionalities.

3.2 Reminder()

1! Ve
x We kmem_alloc () the sigaction array because
* 1t 15 so big it might blow the kernel stack.

11

*/
sap = kmem_alloc ((NSIG—1) * sizeof (struct sigaction), KMSLEEP);

Some of the bugfix reminder comments could be connected to a bug database to clearly show what bug
they fixed.

Some comments are also used to describe the absence of something because as something is absent, there
is no other way than using comments to talk about what is missing.

1/
x* We used to declare this array with size but gcc 3.3 and older are not able
x to find that this expression is a constant, so the size is dropped.
*/

extern pgd_-t swapper_pg_dir [];

Sometimes people also use comments to specify that there is nothing, to represent the emptiness, like in
Yacc for some empty rules, to make it clear that it’s not an error that the rule is empty but it was done on
purpose:

NOT FROM SAMPLE (parser_c.mly)

struct_decl_list_gcc:

| struct_-decl_list { $1
{]

}
| /+ empty x/ Y /% gecext: allow empty struct x/

while (...;...;...)
/* mothing =/,

} else if ((codec72==0x8000) && (codec6c==0x0080)) {
/* nothing */
}

struct kmem_list3 xnodelists [MAXNUMNODES] ;

/*

x Do not add fields after nodelists|[]

*/

/%
We put nodelists [] at the end of kmem_cache, because we want to size
this array to nr_node_ids slots instead of MAXNUMNODES
(see kmem_cache_init())
We still use [MAXNUMNODES] and not [1] or [0] because cache_cache
is statically defined, so we reserve the max number of nodes.

* X X X X

*/

x This code is intentionally commented. The window proc
x for the list box implements WMSETREDRAW to invalidate

* and erase the widget. This is undocumented behavior.

* The commented code below shows what is actually happening
* and reminds us that we are relying on this undocumented
x behavior.

// int flags = OS.RDW.ERASE | OS.RDWFRAME | OS.RDW_INVALIDATE;
// OS. RedrawWindow (handle, null, 0, flags);

12

3.3 Trigger, deprecated and obsolete()

Deprecated and triggers are both about software evolution and the two sides of the same problem. One
is used to indicate that some code should not be used anymore, and the other to indicate that some code
should be added if an “event” happens. This “event” can be a complex condition.

my_bool unused0; /+* Please remove with the next incompatible ABI change. x/

/x
Scripts for SYMBIOS-Processor

*
*
x We have to know the offsets of all labels before we reach
x them (for forward jumps). Therefore we declare a struct
x here. If you make changes inside the script,

*

*

DONT FORGET TO CHANGE THE LENGTHS HERE!
*/

I /% This is deprecated , FIOGETOWN should be used instead. x/
case TIOCGPGRP:

I'# define SAL_ERR_FEAT_LOG_SBES 0x2 // obsolete

Note that gcc allows to annotate some functions as ’deprecated’. People also use cpp ifdef tricks to
achieve the same result. Java also allows this, as API evolution is a very important problem. Thanks to the
annotation, a warning message is displayed at compilation time to warn the programmer to evolve his code.
But there is no support to mark cpp macro as deprecated, as in the preceding comment. This shows again
that many comments are about cpp and that there is no tool working at cpp level.

1 /x
x These are the binary operators that are supported by the expression
* evaluator. Note that if support for division is added then we also
x need short—circuiting booleans because of divide—by—=zero.
*/

static int op_lt (int a, int b) { return (a < b); }

'l /x. WARNING: If you change any of these defines, make sure to change the
x defines in the X server file (radeon_sarea.h)
+/
#ifndef __RADEON_SAREA _DEFINES__
#define __RADEON_SAREA _DEFINES__

// plane_t structure

J/ ! if this is changed, it must be changed in q_-shared.h too !!!
#define pl_normal 0

#define pl_dist 12

/% Shouldn’t this be in a header file somewhere? x/
#define BYTES PER WORD sizeof (void x)

13

In this case, with a special annotation, a tool connected to a VCS could regularly check if the same func-
tionality could be covered by an existing more general macro (instead of duplicating the same functionality
in many files), and warn the user if this situation happens. In this case the tool could search for a macro
with a similar definition by clone detection. The use of the VCS could allow to do this clone detection only
on new code, which is an information only the VCS has, which would avoid to rerun expensive analysis on
the whole source tree. It’s yet another example of possible synergy, here between a clone detection tool and
a version control system.

Programmers could also use a tag which is the opposite of deprecated: 'new’. If someone introduces a
new functionality, there is often a very long time before the other programmers know about this functionality
and refactor old code to make use of this better function or macro. This tag could be used by a tool to make
the computer more pro-active. If new code is added and recognized as similar to a functionality provided
in a library function tagged with a new, then the IDE could warn the programmer to remove his code and
instead use the library function. The comment in the library could help to specify what kind of code should
be re-written:

/* Q@evo: n & (n-1) ====> IS_POWER_QF_2(n) */
#define IS_POWER_OF_2 (n) (n) & ((n) -1)

The pattern could be written as a SmPL program (cf section ?7?).

3.4 0OldCode()

Even if many people can now use advanced version control system (VCS), allowing to go back in time, many
programmers still prefer to keep some old code in the file in comment. But this clutter code. If there is too
many such comments, then it is visually more tedious to understand the code as one is visually bothered by
the old code.

Maybe it shows a problem of VCS. The steps to see the old version of some code is maybe too long for
the programmer, who prefers to keep at sight this code in comment. Maybe also when he remembers some
old code that could be used back, the VCS does not provide any help to find this old code. Also not old
code are interesting. Maybe a source code visualizer with the help of the VCS could show old interesting
code under the recent code (with some transparency effects one could see both at the same time).

/x force reset on x/
val |= INFINIPATH_SERDCO_RESET_PLL
1 /* | INFINIPATH.SERDCO_-RESET_-MASK x/

)

1++;
! /* DELAY(100); x/
s = STATUS(m);

Note that people may ask what is the unit of DELAY, 100 seconds or milliseconds or nanoseconds 7 See
the Unit category later.

Those old code, sometimes storing debugging instructions, are unfortunately not compiled and as the code
evolves, the compiler can not detect legitimate potential errors in such code. In fact, such old commented
code may stay in the code for years, and the reason it was put in comment may gradually be forgotten
by the original developer or maintainer. Instead of using comments programmers can also used advanced
macro like DEBUG or ifdef that can be easily enabled or disabled to generate or not debugging information
at run-time. Note also, again because the use of cpp, that gcc has not the opportunity to check such code
when the option is disabled.

We didn’t find that much OldCode comments, which is a little surprising. It would also be interesting to
know the age of such comments, as well as the age of TODO comments and their evolution.

14

3.5 Log()

Programmers add changelog information in comments, for collaboration, for summarizing the set of features

ad

ded on top of each other.

x ChangeLog

* Jun 11 2001 Takashi Twai <tiwai@suse.de>

* — Recoded & debugged

* — Added timer interrupt for midi outputs

* — hwports is between 1 and 8, which specifies the number of hardware
* The three global ports, computer, adat and broadcast ports, are crq
* always after h/w and remote ports.

*

*/

#include <linux/init.h>
#include <linux/interrupt.h>

N
*

Ok, demand—loading was easy, shared pages a little bit tricker. Shared
pages started 02.12.91, seems to work. — Linus.

Tested sharing by executing about 30 /bin/sh: under the old kernel it
would have taken more than the 6M I have free, but it worked well as
far as I could see.

¥ X X ¥ X X X *

Also corrected some "invalidate()”s — I wasn’t doing enough of them.

*
™~

Real VM (paging to/from disk) started 18.12.91. Much more work and

thought has to go into this. Oh, well..

19.12.91 — works, somewhat. Sometimes I get faults, don’t know why.
Found 4t. FEverything seems to work now.

20.12.91 — Ok, making the swap—device changeable like the root.

05.04.94 — Multi—page memory management added for wvil.1.
Idea by Alex Bligh (alex@cconcepts.co.uk)

16.07.99

Support of BIGMEM added by Gerhard Wichert, Siemens AG
(Gerhard. Wichert@pdb . siemens . de)

Aug/Sep 2004 Changed to four level page tables (Andi Kleen)

linuz/init /main. c

Copyright (C) 1991, 1992 Linus Torvalds

15

ports.
ated

GK 2/5/95 — Changed to support mounting root fs wvia NFS

Added initrd & change_root: Werner Almesberger & Hans Lermen, Feb ’'96
Moan early if gcc is old, avoiding bogus kernels — Paul Gortmaker, May ’96
Simplified starting of init: Michael A. Griffith <grif@acm.org>

¥ X X ¥

*/

Unfortunately one can not click on those different log entries to see to what code they correspond too.
There is no formal connexion to the VCS. One would like to add some formal log comments that when
clicked show the corresponding modifications in a smart way, to view or to filter such modifications.

Of course some VCS can now auto-generate some of those information, and even provide a good color
interface where one can see for each line who is the author. But, the comment in the file, the log, is put
to insist; to insist that this modification is important. Not every commit is important to understand the
code, but some are as they add a feature that has multiple implications on the code. Log comments are
often very synthetic whereas commit message in VCS are usually very specific. A log comment is usually
an agglomeration and summary of multiple commits. If those logs were more formal, it could help to
better understand the code. One could see which parts of the code correspond to which added feature or
optimizations, or even temporarily remove this feature or optimization to be able to better understand the
original, simpler, code.

Firefox includes directly in his repository code from externally developed librairies. They also do a few
modifications on those librairies and add comments to keep track of their changes.

positionPtr = bufferPtr;

/+* BEGIN MOZILLA CHANGE (always set eventPtr/eventEndPtr) x/
eventPtr = bufferPtr;
eventEndPtr = bufferPtr;

/+ END MOZILLA CHANGE /
return result;

16

Chapter 4

Explanation()

The Fxplanation category allows the programmer to express his basic need to explain his code. This is the
category most people associate with comments. A common wisdom is that comments are useful for program
understanding and maintaining and so “explain code”. But the term “explain code” is fuzzy. We have
already seen many comments which are specialized forms of explanation, and that some could be supported
by tools.

The explanation either repeat the code (which is bad), or summarize it by giving an higher-level idea.
Note that the better the PL, the more the programmer can directly express high-level ideas in code and so
does not need comments.

Tools like Javadoc have been invented to automatically extract the useful documentation from the com-
ment. PL like LISP go even one step further by making the documentation, and some hypertext capabilities,
part of the language (the docstring format of Lisp).

4.1 Example()

rpc_gss_principal_t client_principal;
I char xsvc_principal; /x service@server, e.g. nfs@Qcaribe x/
rpc_gss_service_t service;

4.2 Specific Explanations()

C constructs can be used for many things and sometimes programmers feel the need to put a comment
to explain which one of the possibilities they use. Without this comment the reader can not fastly know
visually by just looking at the construct what is the code for. For instance, if C provided only a control
structure called iffor(), that can be used both for a if() and a for(), then programmers probably would add a
comment each time to explain which one of the possibility they use. Fortunately, C provides both forms and
so visually the programmer gets already lots of information by seeing the name of the keyword; his brain is
better prepared for understanding the rest of the code. Providing a minimal set of general features is a good
thing for a programming language, but adding the possibility to specialize them is also good.

e In C a loop can be used for many things: to iterate over numbers, over a list, a tree, to find an element
in a list, to iterate over the elements, to erase some elements, etc.

e In C a void* can be used for many things

e In C bit operations can be used for many things

17

4.2.1 For Explanations()

A for() can be (ab)used to find an element, by using a goto or a break to stop the loop when the element is
found. This is a common idiom [| (a kind of very basic design pattern []).

I /x
x First, see if there is an active turnstile for the lock indicated
* by the address.
*/
lock = (struct lock_object *)addr;
tec = TCLOOKUP(lock);
LIST FOREACH(ts , &tc—>tc_turnstiles , ts_hash)
if (ts—>ts_lockobj = lock)
goto found;

1 /% does dev_t in list match dev x/
cnt = 0;
while (cnt < retndevs) {
if (xdev =— md_expldev(ddi_devs[cnt]))

break;
cnt++;
1 /x Look for the translation */
for (trans = table; trans—>from; trans++)
if (trans—>from = from)

return trans;

Note that they use each time a different kind of code to provide a similar functionality. This hurts
program understanding. If C provided a construct for_find(), then the programmer would not even have
to understand the code; by just seeing for_find() he would understand that the goal is to find an element
somewhere in the list.

In modern languages the programmer is not limited to basic control structures. He can extend in some
way the language by introducing new control structures. One way is to provide iterators [|, a way to loop
easily over different kind of types. The other way is to define new kind of functions taking a special kind of
parameter, some code, more precisely closures [|. Those functions are called higher-order functions. So, the
previous comments express the need in some way for such features. C++ now allows a basic form of closure.
C# and Java also both support now closures. Most scripting languages like Python or Ruby allow iterators
and closures.

// def
for_find(list, predicate) {
for(x = list; x != NULL; x = x-> next) {
if(code(x)) return x;
}
}
// use
xfound = for_find(mylist, fun(x) { x.size == 3 });
// xfound point to the element in mylist having a size of 3

Such code is shorter than the original "for’, and as a consequence less buggy and more easy to understand.
It requires the ability to provide code as-is, to give code as a parameter.

Linux programmers have realized the need to define new control structures and have (ab)used cpp macros
to simulate that. For instance they use a special macro to iterate over a list instead of writing each time

18

the for. Unfortunately this can lead to mistakes as one has to take care to provide the good conditions each
time:

/*x

* list_for_each - iterate over a list

* Qpos: the &struct list_head to use as a loop cursor.
* Qhead: the head for your list.

*/
#define list_for_each(pos, head) \

for (pos = (head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next)

/**

* list_for_each_prev - iterate over a list backwards
* Q@pos: the &struct list_head to use as a loop cursor.
* Qhead: the head for your list.

*/

#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
pos = pos->prev)

// example of use
list_for_each(x, mylist) {

if(x.field == 1)
break;

Here are other recurring comments concerning loops:

11 /x Calibrated busy loop */
while (count— > 0 && !(inb(iobase + UARTLSR) & UARTLSR.TEMT))
udelay (1);

I /x busy wait *x/
for (t = 0; t < 0x1000; t++) {
if ((x = es_rd(es, ES1371.REG.SMPRATE, 4) & 0x00870000) —
0x00000000)
break;

1 /x poll wuntil codec wvalid */
for (i = 0; i < 1000; i++) {
if (via_rd(via, VIAACI7.CONTROL, 4) & VIA_AC97.CODEC00_VALID)
return (0);
DELAY (1);

I /x delete all destination addresses except the source x/
TAILQ FOREACH (net , &stcb—>asoc.nets, sctp_next) {
if (net != src.net) {

19

1 /% Seek to the end of the runlist. %/
while (rl—length)
rl++;

4.2.2 Bit Explanations()
4.2.3 List Explanations()

struct dev_info {

struct dev_info xdevi_parent; /x my parent node in tree * /
struct dev_info xdevi_child; /x my child list head %/
struct dev_info xdevi_sibling; /x next element on my level %/

4.3 Other specific explanations()
4.4 ShortNameExlain ()

A very important number of comments are in this category. The programmers seem to want to use short
names for variables in the program, for fields, and especially for symbolic macro constant, to make it more
compact to read, but at the same time feel the need to document in comment to what this short name
correpond to. Maybe the IDE could use this information to provide a tooltip. Maybe an option could be
used to switch between a short and long format when reading some code. A variable would have two possible
names. This may be part of the PL.

struct bus_options {

1 u8 irmc; /+* Iso Resource Manager Capable x/
u8 cmce; /x Cycle Master Capable x/
u8 isc; /% Iso Capable x/
u8 bmc; /* Bus Master Capable x/
us8 pmc; /x Power Manager Capable (PNP spec) x/
u8 cyc_clk_acc; /% Cycle clock accuracy */
I unsigned char dp_esect; /x end sector x/
unsigned char dp_ehd; /+ end head x/
#define LCSRIUU 0x00000080 /+ Input FIFO Under—run Upper */
I /* panel */
#define LCSR_-OOL 0x00000100 /x Output FIFO Over—run Lower */
/x panel */
#define LCSR_OUL 0x00000200 /x Output FIFO Under—run Lower */
/+ panel */
'# define HD.TMC_1 0x55 /x time constant register chan 1 x/
#define HD_-CMD.0 0x2c /* command register chan 0, wo x/
#define HD_.CMD_1 Ox4c /x command register chan 1, wo %/

20

4.5 Ref()

Programmer use references to RFC, manuals, or websites to point to documentations that may be useful to
understand the code.

/*
x This code is referd to RFC 2367
*/

1 /%
x Definitions for ID TECH (www.idt—net.com) devices
*/

#define IDTECH_VID 0x0ACD /% ID TECH Vendor ID x/

I /* Read the data via the internal pipeline through CDSN IO
register , see Pipelined Read Operations 11.3 */
MemReadDOC(docptr , buf, 1054);

1/
x ISO/IEC 9899:1999
x 7.18.3 Limits of other integer types
«/
/+x Limits of ptrdiff_t. x/
#define PTRDIFF_MIN INT32_MIN
#define PTRDIFF MAX INT32_MAX

/+ Improve fragment distribution and reduce our average
x search time by starting our next search here. (see
x Knuth vol 1, sec 2.5, pg 449) x/

/% ..

* For more details look to AC ’97 component specification revision 2.2
* by Intel Corporation (http://developer.intel.com) and to datasheets
* for specific codecs. ... */

But those informal description are not directly usable. It would be better to have a special annotation
to crossref that can be directly clicked on to go to the relevant site (for paper documentation of course it
may be harder). Maybe a rfc://, commit://, news://, blog://, mail://, file://, etc.

4.6 Diagram()

1 /%

* FError log scratchpad register format.

*

* /I /l /l +
x | ASI_LEIDR| PA to logging buf | # of err |
* II /l /l +
x 63 50 49 6 5 0
*

«/

21

/* --CS0----- |--CS1------ */
/* -H-|--L-- | -H- | -L-- %/

Those ascii art diagrams could be used as-is to define types and accessors. In fact some domain specific
languages like PADL [] are dedicated to the easy specification of formats (for network IP packet, or the CPU
tables for virtual memory bit layout). Unfortunately they are not used by OS programmers. Note that ascii
art diagrams have the benefit to be easily embedded in the code. They may be tedious to write but at least
programmers can use regular text editors to understand the diagram.

An IDE could either help to visualize such diagrams, and/or provide plugins to help write them.

Literate programming [] can go very far in the ability to have complex drawing associated with the code
as one can use the full power of TeX in comment (allowing to have TeX tabulars, or xypic pictures). But
people don’t use literate programming and the editors do not understand such special comment and so do
not provide an easy way to see the diagram on the fly. One has first to compile with a special tool the source
to be able to see the diagrams.

We found very few diagrams, except Font diagrams (explained later) which turns out to be mostly auto-
generated from a program. We found very few ascii art diagrams in the sample. The CodeMap paper [| says
that drawing diagrams is not well supported. This paper also shows that programmers to not stick to UML.

x then the start of that hole will be the new head. The
x simple case looks like

* z |z ... | z—11] =z

x Another case that fits this picture would be

* z | z+ 1]z ... |z

x In this case the head really is somewhere at the end of the
x log, as one of the latest writes at the beginning was

* incomplete.

x One more case 1is

* z | z+1]z ... | z—11]z

x This is really the combination of the above two cases, and
x the head has to end up at the start of the xz—1 hole at the

x end of the log.

*

*/

The following comment is not about a diagram, but the comment refers to a state that must be interpreted
in the context of a state machine described by a kind of diagram in a comment a few lines before in the
source code.

if (lis_newentry) {
if ((!olladdr && lladdr != NULL) || /x (3) x/
(olladdr && lladdr != NULL && llchange)) { /x (5) *x/
do_update = 1;
newstate = ND6_LLINFO_STALE;
I } else Jx (1-2,4) =/
do_update = 0;
1 else {
do_update = 1;
if (lladdr = NULL) Jx (6) x/
newstate = ND6_LLINFONOSTATE;

And here is the diagram:

/*

22

x newentry olladdr lladdr llchange (x=record)

* 0 n n — (1)

* 0 y n — (2)

* 0 n y — (8) = STALE

* 0 y y n (4)

* 0 Y Y Y (5) = STALE

. 1 — n — (6) NOSTATE(= PASSIVE)
* 1 — y — (7) = STALE

It is similar to a state machine. The programmer then manually encoded this machine via a set of optimal
if/then/else and refers back to the original specification via comment annotations.

It would be better to let the programmer write directly in the language the state machine via some
PL features, which would then be automatically compiled into an efficient set of if. In fact PL like OCaml
provide such features, called pattern matching compilation. Another way would be to add to C some compile-
time reflexion capabilities so that such extensions could be added without modifying gcc. Here is how the
preceding state machine can be encoded in OCaml. Note that even ’_” noted ’__’ in the comment is actually
a feature of OCaml:

match newentry, olladdr, lladdr, llchange with
| 0, false, false, _ -> do_update = 0;

| 0, true, false, _ -> do_opdate = 0;

| 0, false, true, _ -> do_update = STALE;

4.7 Font()

An OS provides some terminal capabilities and as such has to deal with fonts.

/*—
x This font lives in the public domain. It is a PC font, IBM encoding,
x which was designed for wuse with syscons.

*/

const struct gfb_font bold8x16 = {
8,
16,
{
/x 6 x/

0x00, S %/
0x00, S %/
0x3c, Jx Lokkkx.. x/
0x60, VAR T %/
0xc0, VAR */
0xc0, VAR T P */
Oxfc , Jx kkkkxk.. k)

0xc6 , Jx kkL L okx. k)
0xc6 , Jx owkxLkx. x/
0xc6 , S wkxL L xkx. o x/
0xc6 , Jx owkxLokx. x/
0xT7c, Jx kkkxk.. x/
0x00, S %/

23

Programmers even used different formats for font comments:

I Oxfe, /x 11111110 */

1Mox40, /+ X * /

0x10, /x 000 0000 x/

Some (or maybe all) of those comments are generated by tools, which shows that comment can also be
the target of a tool, not only its input. In the first comment the tool is named ’syscons’. The 0/1 variant is
auto-generated from a very old AmigaOS program ’cpi2fnt’ and some programmers on the linux mailing list
actually complain that they wanted to modify the font but could not find and use the AmigaOS tool.

If C could provide an easier way to build directly in the source such complex “objects”, then it would
be also easier to modify them directly. This may be done again if C would provide some compile-time
reflexion capability (like in MetaOCaml [], or maybe Xoc []) to enable the programmer to write the font in a
convenient format (like**....), which would then at compile-time be translated efficiently in the pair
of integers (like 0x3, 0x3) shows in the previous comment.

That may be one of the goal of Intentional Programming []: enabling the programmer to not manipulate
source code as text but as a complex document, like a Word document, where one can embed spreadsheets,
diagrams, around text, and for each of those embedded objects use the appropriate tool. Some research tools
allow to add comments via voice or to associate videos to parts of code leading to multimedia “comments”.

This need to build complex objects directly in the code, is also presents for pixmaps, but in this case
they don’t use comments but the initializer capability of C and strings.

/* XPM data of Open-File icon */
static const char * xpm_datal[] = {

"16 16 3 1",

" c None",

" c #000000000000",
"X c #FFFFFFFFFFFF",
v .

" XXX.X ",

" . XXX.XX. ",

" XXX . XXX. ",

" XXX..LL. ",

" XXXXXXX. ",

" . XXXXXXX. ",

" . XXXXXXX. ",

" XXXXXXX. ",

" CXXXXXXX. ",

" . XXXXXXX. ",

" . XXXXXXX. ",

24

4.8 Other

Many explanation comments also just explain code, put words, usually corresponding to high-level concept,
instead of sometimes obscure macro name. There are lots of such comments.

4.8.1 Brief

if (fs—fs_reclaim & FS.CHECKCLEAN)
I Ve
* nothing dirty was found in the buffer or inode cachd
*/
if ((isbusy = 0) && (isreclaim = 0) &&

I /x if there is a front file x/
if (cp—>c_metadata.md_flags & MD.FILE) {
if (fgp—fg_dirvp == NULL)
goto out;

4.8.2 Summary

1 /%
x Read in the disk block containing the directory entry (dirclu, dirofs)
x and return the address of the buf header, and the address of the
x directory entry within the block.
*/
int
readep (pmp, dirclust , diroffset , bpp, epp)

11 /% convert leaf index to log2 leaf wvalue x/

#define LITOL2BSZ (n,m,b) ((((n) =10) ? (m) : cnttz((n))) + (b))
4.8.3 Long
1 /x
* Build Transmit Segment Descriptors
*
* This function will take a supplied buffer chain of data to be transmitted
x and build the transmit segment descriptors for the data. This will inclu
x the dreaded operation of ensuring that the data for each transmit segment
x 18 full—word aligned and (except for the last segment) is an integral num
* of words in length. If the data isn’t already aligned and sized as
x required, then the data must be shifted (copied) into place — a sure
x performance killer. Note that we rely on the fact that all buffer data
x areas are allocated with (at least) full—word alignments/lengths.
*
x If any errors are encountered, the buffer chain will be freed.
*
* Arguments:

25

er

*/

* fup pointer to device unit

* m pointer to output PDU buffer chain head

* hzp pointer to host transmit queue entry

* segp pointer to return the number of transmit segments
* lenp pointer to return the pdu length

*

x Returns:

* m build successful, pointer to (possibly new) head of
* output PDU buffer chain

* NULL build failed, buffer chain freed

*

static KBuffer =x
fore_xmit_segment (fup, m, hxp, segp, lenp)

/*

It is okay that we muck with the new wunit here,

since no one else will know about the wunit struct
until we commit it. If we crash, the record will

be automatically purged, since we haven 't

committed it yet and the old wunit struct will be found.

copy in the wuser’s wunit struct x/

err = ddi_copyin ((caddr_t)(uintptr_t)mgp—>mdp, (caddr_t)new_un,

if

(size_t)mgp—>size , mode);

(err) {

sequential append at tail: append without split

If splitting the last page on a level because of appending

a entry to it (skip is mazentry), it’s likely that the access is
sequential. Adding an empty page on the side of the level is less
work and can push the fill factor much higher than mnormal.

If we’re wrong it’s no big deal, we’ll just do the split the right
way next time.

(It may look like it’s equally easy to do a similar hack for
reverse sorted data, that is, split the tree left,

but it ’s not. Be my guest.)

(nextbn = 0 && split —>index == sp—>header.nextindex) {

VU /s ostototokoskokokoskoskokokorokokokokokokokok. EEPROM BANDS' stk sk sk sk sk s s s sk sk sk sk skttt ok ok ok ok sk ok ok ok

band.

* K X X X X ¥

The iwl3945_eeprom_band definitions below provide the mapping from the
EEPROM contents to the specific channel number supported for each

For example, iwl3945_priv—>eeprom.band_3_channels[}] from the band_3
definition below maps to physical channel 42 in the 5.2GHz spectrum.

26

The specific geography and calibration information for that channel
i1s contained in the eeprom map itself.

During init, we copy the eeprom information and channel map
information into priv—>channel_info_24 /52 and priv—>channel-map_-24 /52

channel_-map_24 /52 provides the index in the channel_info array for a
given channel. We have to have two separate maps as there is channel
overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
band_2

A wvalue of Oxff stored in the channel_map indicates that the channel
is mot supported by the hardware at all.

A wvalue of Ozfe in the channel_map indicates that the channel is not
valid for Tz with the current hardware. This means that

while the system can tune and receive on a given channel, 4+t may not
be able to associate or transmit any frames on that

channel. There is no corresponding channel information for that
entry .

>(<>I<>I<**>(<>I<>|<***>(<>I<>I<****>(<>I<*****>I<>I<****>(<>I<>|<****>I<>I<************************/

1 /%

¥ K XK X X X K K K K K K KX XX X X X K K K X X X X X

Notes on reference tracing on ill , ipif, ire, nce data structures:

The current model of references on an ipif or ill is purely based on thre
acquiring a reference by doing a lookup on the ill or ipif or by calling
refhold function on the ill or ipif. In particular any data structure tha
points to an ipif or ill does not explicitly contribute to a referemce on

i1l or ipif. More details may be seen in the block comment above ipif_down|
Thus in the quiescent state an ill or ipif has a refcnt of zero. Similarly

when a thread exits, there can’t be any references on the ipif or ill due
the exiting thread.

As a debugging aid, the refhold and refrele fumnctions call into tracing
functions that record the stack trace of the caller and the references

acquired or released by the calling thread, hashed by the structure addreg
in thread—specific—data (TSD). On thread exit, ip_thread_exit destroys th

hash, and the destructor for the hash entries (th_trace_free) wverifies th
there are no outstanding references to the ipif or ill from the exiting
thread.

In the case of ires and nces, the model is slightly different. Typically
ire pointing to an mce contributes to the nce_refcnt. Similarly a conn_t

pointing to an ire also contributes to the ire_refcnt. FEzcluding the above

special cases, the tracing behavior is similar to the tracing on ipif / i
Traces are neither recorded nor wverified in the exception cases, and the
its careful to use the right refhold and refrele functions. On thread exit
ire_thread_exit , nce_thread_exit does the wverification that are no
outstanding references on the ire / mce from the exiting thread.

27

Y

[é:

l

a

ds

the
()

+~ O ®»

ach

ode

The referemce wverification is driven from the TSD destructor which calls

helpful in tracing missing refrele’s on a debug kernel. On a non—debug

kernel, these missing refrele’s are noticeable only when an interface is
being unplumbed, and the unplumb hangs, long after the missing refrele.
debug kernel, the traces (th_trace_t) which contain the stack backtraces
be examined on a crash dump to locate the missing refrele.

¥ X X X X X X *

*
™~

into IP’s werification function ip_thread_exit. This debugging aid may be

o

28

an

Chapter 5
Type()

The Type category allows the programmer to express his need to specify more semantic properties about
some data-structures. People use comments for Type because the C type system is not expressive enough.
It does not allow to define specific constraints on the set of values a variable can take. For instance the ’int’
type is too general.

Many of the following comments can be supported by existing type-based annotation language or ad-
vanced PL (like Ada). So, in the following I will only indicate if the comment can not be supported by an
existing language.

Those annotations can be used to statically check or in some case only dynamically check and can also
used as an help for debugging at run-time.

A Type express a property on the value and in some sense can be seen as a specific case of the Interface
category described later, but a type is more focused on the property of a value instead of a function. It is
also a specific kind of invariant.

5.1 NULL()

People abuse pointers and NULL to represent an option (they should use instead an ’optional type’ as in
OCaml) and so then need special annotations to warn about such use. Pointers can be used for too many
things and so the comment is here to describe which of those use of pointers the programmer use.

This leads to lots of bloated code, where tests for NULL are inserted at many places (the number of
such tests may be really huge for OS code). Tools like Coverity try to warn about the missing of such tests,
adding even more bloats, but a better solution would be to not require such test at all.

/x

x @param wrch playback channel (optional; may be NULL)
* @param rdch recording channel (optional; may be NULL)
* @param song song name gets copied from here

*/

static int
dsp_oss_setsong (struct pcm_channel xwrch, struct pcm_channel srdch, oss_longn

ame_t *song

struct page xmr_page ; /x owning page, if any *x/
STATIC int /x error x/
xfs_bmap_add_extent_hole_delay (
xfs_inode_t *ip , /x incore inode pointer */

29

xfs_extnum_t idx , /x extent number to update/insert x/
1 xfs_btree_cur_t kCUT , /% if null, not a btree x/

If dzlstp IS NOT null AND is not the first compiled ixl command and
is not an ixl label command, returns an error.

If dzlstp IS null, uses the first compiled izl command (ixzl_firstp)
in place of ixlstp.

* X ¥ X X X

If no executeable xzfer found along exec path from ixlstp , returns erro
*/
int
hcil394_ixl_set_start (hcil394_iso_ctxt_t xctxtp, ixl11394_command_t *ixlstp)

{

Il %« Copy a list of attribute names into the buffer
Il % provided, or compute the buffer size required.
Il % Buffer is NULL to compute the size of the buffer required.
*/
int
ext4d_xattr_list (struct inode xinode, char xbuffer, size_t buffer_size)

{

} else {
/%
! x Note that the ts_inheritor for the turnstile

* may be NULL. If ome exists, its t_prioinv

* chain has to be updated.

*/

ASSERT (ts—>ts_waiters =— 1);

if (ts—>ts_inheritor != NULL) {

I /*
x Obtain the transaction wrapper and tw will be
x* NULL for the dummy and for the reclaim TD’s.
*/
if (...) {
tw = ... Get_-TD(old_td—>hctd_trans_wrapper));
ASSERT (tw == NULL);

Note that the NULL problem, the fact that pointers may or may not point to a valid memory, is also
present in Java where we can have variables without binding, leading to the infamous NullPointerException.
This would not happen if Java made a better design choice, like in OCaml, where every variables must have
a binding, a value. C does not force the programmer to provide such a default value, as it may lead to
some inefficiencies in very few cases where people don’t want to initialize data (but note that many checkers
like Valgrind considers most of those occurrences of code as buggy code, especially if the uninitialized data
is then used as-is by the program). But C could provide such a possibility maybe by just changing the
default behavior. C could force (by construction) the programmer to provide a value, and in some cases
allow uninitialized variable but forcing the programmer to provide an explicit annotation. C could also

30

differentiate such variables by giving them a different type which would make it clear that it’s a special kind
of variable.

int x = 1;

int *p = &x;

int *q; // compiler error
int_unitialized *q;

int f(int *x) {

}

int f(int_unitialized *x) {

}

Then functions would never need to provide /* assumes not NULL */ annotations as every variables
and every pointers, would by default have a binding.

int f(int *x); /x assumes z not NULL x/

Surprisingly we didn’t find that many NULL comments, whereas it is a focus of multiple annotation
languages and bug checker. Maybe because they were using previously such comments, to describe what
they assume from the caller, but now instead add concrete tests in the code. Maybe Coverity had a influence
(a bad one) on this aspect.

Ada 2005 has a 'not null’ feature.

5.2 Bound()

Most comments expressing the condition on the bounds of arrays are added on parameters of functions. See
the Deputy later below.

5.3 Range()

short charheight; /« lines per char (1-32) x/

Such range data types can be handled by Ada which either statically prove the correctness of code or
insert few dynamic checks for the places where the static analysis failed.

#define WSIZE 0x8000 /+ window size—must be a power of two, and x/
/% at least 32K for zip’s deflate method x/

#define RX_RING_SIZE (FECENET RX FRPPG x FECENET RX PAGES)
N#define TX_RING_SIZE 16 /x Must be power of two x/
#define TX RINGMODMASK 15 /* for this to work x/

The preceding comment is not really a range but still an extra condition on the domain of the value. It
is also at a cpp-level which again would make it hard to check by regular tools.
The constraint can also be on the format of a strng:

rpc_gss_principal_t client_principal;
I char xsvce_principal; /+ service@server, e.g. nfsQ@Qcaribe x/
rpc-gss_service_t service ;

} rpc_gss_rawcred_t;

31

5.4 Unit()

Unit types, also known as dimension types [], have their origin in physics where programmers manipulate
different values of different dimensions, such as speed, distance, time, that can be combined together to build
value of other dimensions. For instance, a distance can be divided by a time and can then be compared
with a speed value as they have the same dimension (the same type). Without dimension types, one can
compare a speed value with a distance value, which does not make sense, but which can not be detected by
type system like C where every value would have the same (too general) type: ’int’.

In OS code, programmers seem to use mainly

e time dimension. They sometimes use seconds, milliseconds, micro seconds (usec), nanoseconds, or
weeks. They always use the same type, 'int’, for all of this. Maybe timing error can be made.

e byte dimension, with either kilo-bytes, sectors, byte ranges, or words.

They sometimes also use an hertz dimension type and bandwidth dimension type.

1 xge_os_mdelay (50); // wait 50 milliseonds

It would be better to have instead:

xge_os_mdelay (50ms) ;

/*

* The default maximum commit age, in seconds.
*/

#define JBD_DEFAULT_MAX_COMMIT_AGE 5

In fact they sometimes define macros for such purpose like

/* milli second, micro second, nano second */
#define MSsec * 1000000

#define USsec * 1000

#define NSec * 1

delay (100 MSec);

But again, macros are error prone and not type-checked. Note that the delay(10ms), delay(10s), could be
done via OO classes with different time constructors: delay(new Seconds(1)), delay(new Msec(1000)). But
maybe we could have a more lightweight solution based on unit types.

Note that TeX forces programmers to add unit to numbers as in 2.8in.

Il'static long tick_delta_sum; /« Accumulated tick difference (usec).x/

define RNG_RETRY_HLCHK_USECS 100000 /x retry every .1 seco

#define DQ_FTIMELIMIT (7 % 24%x60%60) /% 1 week */

S

x Split timeout and the returned wvalue are in bus

* cycles.

*/

static uint_t

hcil394 _async_timeout_calc(hcil394 _async_handle_t async_handle,
uint_-t current_time)

{

32

ds */

I aic_pci_write_config (pci, PCIRCOMMAND, command, /xbytesx/1);
ahc—>bugs |= AHC_PCIL.MWIBUG;

case 'K’:
1 if (num > max_bytes / 1024) /x will overflow x/
return (EINVAL);

I /% Check size x/
if (data_buffer_length > TWMAXIOCTLSECTORS * 512) {

int mem; /x memory in 128 MB units x/

If we use annotation /* eeunit: 128MB */, or if the C language lets programmers specify a unit as an
extended type, then we can perform type checking on units to detect such mistakes.

unsigned char dp_ssect; /+ starting sector x/
unsigned char dp_shd; /+ starting head %/
unsigned short dp_scyl; /x starting cylinder x/
" unsigned char dp_esect; /x end sector x/

unsigned char dp_ehd; /+ end head x/
unsigned short dp_ecyl; /+ end cylinder x/
unsigned char dp._name[16];

}s

] sc->config.synth.n = 52; /* 52.000 Mbs */\

5.5 State type()

A variable can go through multiple states. Some functions accept only a variable when it is in a specific
state. Protocols works like this. The sing# [] language allows to specify complex protocols and ensure that
the code conforms to this protocol.

int f{(int fd); /x must be opened x/

But we didn’t find such comment in the sample.

Vit

* Given a connected NdbMgmHandle, turns it into a transporter
* and returns the socket.

*/
NDBSOCKET-TYPE connect_-ndb_mgmd (NdbMgmHandle xh);

5.6 Region pointers()

register INT32 % bptr; /x pointer into bestdist[] array */

JSAMPLE x cptr; /x pointer into bestcolor[] array */

33

5.7 Dependent types()

Dependent types are used to specify that the type of a variable depends on the value of another variable.
For instance, given a function taking an array of int, and a length, one would like to say that the type of
the array is of a specific length:

int foo(int *xs /* array[length] */, int length);

With this type information the type-checker can then try to detect out-of-bounds array access. This can
be very useful as an OS manipulates lots of resources, and usually bounded resources.

C++ allows a form of dependent type as one can give in the type of a template an integer as in
vector<10> x;. But it does not use this opportunity to statically check out-of-bounds array access.

I think Pascal allows to have flexible-arrays where the size is known at run-time and checks are done
dynamically.

typedef struct xfs_dirent { /x data from readdir() x/
xfs_ino_t d_ino; /x inode number of entry x/
xfs_off_t d_off; /x offset of disk directory entry x/
I unsigned short d_reclen; /+ length of this record x/
char d_name [1]; /x name of file x/

} xfs_dirent_t;

5.7.1 Array dependent types()

/*

* PARAMETERS: AmlBuffer - Pointer to the resource byte stream
* AmlBufferLength - Size of AmlBuffer

*/

ACPI_STATUS
AcpiRsGetListLength (

UINTS8 *AmlBuffer,
UINT32 AmlBufferLength,
ACPI_SIZE *SizeNeeded)

{
In the preceding comment an additional parameter is passed with an array to give the length of this
array. We didn’t find that much such comments whereas such “checks”, for bound checking, is a hot topic
among annotation languages. Maybe it is important, but we didn’t find that many such comments. Maybe
programmers don’t use comment to document such a dependency.

5.7.2 Union dependent types()

typedef struct { /+x Awziliary wvector entry on initial stack x/
I long a_type; /+ Entry type. x/
union {
long a_val; /x Integer wvalue. x/
void ka_ptr; /x Address. x/
void (xa_fcn)(void); /* Function pointer (not used). x/
} a_un;

34

union {

/x chunk memory handles x/

if registered directly x/
if registered from region x/

11 struct ib_mr «rl_mr ; /x
struct rperdmamw { ... } Ve
}
u64 mr_base; /x registration result */

Note that in the comment above the condition (“if registered from region”) is fuzzy and may require

thinking to map it to a code condition.

struct au_generic_tid {

I uchar_t gt_type;

/« AUIPADR, AU.DEVICE, ...

*/

union {
au_ip-t at_ip;
au_port_t at_dev;
} gt_adr;
}s
u-int8_t ID_type; /+* Layer 8 protocol discriminator x/
union { /x Layer 3 protocol x/
u_int8_t simple_ID ; /x ITU x/
u_int8_t IPI_ID; /+x ISO IPI x/
1 struct { /x IEEE 802.1 SNAP ID x/
u_int8_t OUIL[3];
u_int8._t PID [2];
} SNAP.ID;
u_int8_t user_defined_ID; /x User—defined x/
} ID;

The Deputy [] dependent type system can provide such annotations for union using the following syntax:
WHEN (tag ==0). The annotation describes on which condition the member of an union must be used.

struct foo

{
int tag;
union foo {

int *p; WHEN(tag == 0);
int n; WHEN(tag == 1);

} u;
};

Some functional languages like OCaml or Haskell with advanced abstract types can directly support such
alternatives without needing to relate multiple variables together with tags. The tag is generated internally

by the compiler.

type foo =
| Pointer of int *p
| Int of int n

5.8 Relation types()

35

' /x ARL Structure, one per link level device x/
typedef struct arl_s {

struct arl_s xarl_next ; /* ARL chain at arl_g_head x/

queue_t xarl_rq; /+* Read queue pointer x/

queue_t xarl_wq; /+x Write queue pointer x/
struct {

I GUID birth_volume_id; /+ Unique id of wvolume on which
the file was first created.%/

GUID birth_object_id; /x Unique id of file when it wqs

first created. x/

GUID domain_id; /% Reserved, zero. x/

Note the use also of a range constraint “zero”.

This notion of uniqueness may be related to SQL and relational database systems. In a database the
system enforces such constraints. UML also allows to annotate relations between classes with arity constraints
like 1-to-1, 1-to-n, etc.

5.9 Memory types()

An OS manages multiple address space: its own kernel space and the address space of different process. At
some point I think some pointers were qualified in comments as referring to either kernel pointers or user
pointers (/* kernel space variable */). The Sparse [| annotation language introduced specific annota-
tions (__user, _kernel) to ensure that such pointers were used only through specific functions. This may
explain why we didn’t find any comment anymore about the address space property of a pointer.

'l /x Conversion to new PCI API :

Convert an address in a kernel buffer to a bus/phys/dma address.
This work xonlyx for memory fragments part of Ip—>page_vaddr,
because it was properly DMA allocated wvia pci_-alloc_consistent (),

so we just need to "retrieve” the original mapping to bus/phys/dma
address — Jean II x/

* ¥ X X X

5.10 Bit and bytes()

The following comments show that the C language is in fact not low-level enough. It does not make it

very easy to manipulate bits and bytes. The C language proposes bitwise operators (&, |,) and shifting
operators (>>, <<), but they are tedious to use for doing complex bits and bytes manipulations.
#define IRASH 0x4E000000 /+ mask for changeable attributes x/
"# define ATTRSHIFT 25 /x bits to shift to move attribute
specification to mode position */

5.10.1 Bitset

1 /x Clock flags x/

#define RATE CKCTL (1 << 0) /+x Main fized ratio clocks x/
#define RATEFIXED (1 << 1) /+ Fized clock rate x/
#define RATEPROPAGATES (1 << 2) /x Program children toq */

36

#define VIRTUAL.CLOCK (1 << 3) /x Composite clock from table #/
#define ALWAYSENABLED (1 << 4) /x Clock cannot be disgbled x/

C++ now provides a special template library for bitset that I guess offer better type guarantees (but
template are harder to use than such simple c¢pp macros).

5.10.2 cpplint

As we have seen in previous sections, lots of comments are not attached to C entities but cpp entities like
macros, and express some conditions on macros. Most static analysis tools work at the C level and so lose
the opportunity to detect bugs due to misuse of cpp. Most tools get rid of comments and cpp, so they can’t
really find some opportunity, such as the #define grouping type opportunity presented later. They only
“see” integers instead of symbolic constants coming from lots of different macros. A paper [| studied the
different usage and bugs coming from the use of cpp []. So, it would be useful to invent a lint for cpp, a
cpplint.

Macro variables like #define X 1, are used for many things: to represent a symbolic constant, to be
part of a bitset, to represent a magic number, a bitmask, to be used to align bits, etc. There are lots of
opportunities to misuse such variables, e.g., to use an align macro variable instead of a bitset macro variable.

Another paper [] proposed a new kind of pre-processor. This pre-processor is safer, and also makes it it
easier to implement program-transformation tools, like refactoring tools over C, as the use of the actual cpp
is one of the biggest barrier [?] for the development of such tools.

1 /x
x __stringify doesn’t likes enums, so use SOCK.DCCP (6) and IPPROTO-DCCP (33)
x values directly , Also cover the case where the protocol is not specified,
* i.e. net—pf—PF_INET—proto—0—type—-SOCK_DCCP
+/

MODULE_ALIAS NET PF PROTO_TYPE(PF_INET, 33, 6);
MODULE_ALIAS NET PF PROTO_TYPE(PF_INET, 0, 6);

5.10.3 Group

1 /%
x EATA Command & Register definitions
«/
#define PCI_REG_DPTconfig 0x40
#define PCI_REG_PumpModeAddress 0x44

1 /x
x MBOX registers
"
#define HE REGO_CS_STPERO 0x000
#define HEREGO_-CS_STPER(G) (HE.REGO_CSSTPERO + (G))

1 /%

x Supervisory LLC commands

*/

#define LLCRR 0x01
#define LLCRNR 0x05
#define LLCREJ 0x09

37

There is no assurance that those macros are used on the good variables or that they get mixed up with
orthogonal macros.

5.10.4 Devil

Here are some read/write specifications that could be leveraged by some tools:

N"#define EHCI.CONF_CF 0x00000001 /x RW configure flag x/
#define EHCI.PORTSC(n) (0x40+4%(n)) /* RO, RW, RWC Port Status reg x/
#define EHCI_PS_PP 0x00001000 /* RW,RO port power x/
#define EHCI_PS_LS 0x00000c00 /* RO line status */

#define E1000_.CTRL 0x00000 /+ Dewvice Control — RW x/

#define E1000.CTRL.DUP 0x00004 /* Dewvice Control Duplicate (Shadow) — RW %/

#define E1000_STATUS 0x00008 /+ Device Status — RO x/

I'# define E1000-MCC 0x0401C /+ Multiple Collision Count — R/clr x
#define E1000.LATECOL 0x04020 /+ Late Collision Count — R/clr x/

Il /* Clear any pending interrupt events. */
E1000_WRITE_REG(hw, E1000_IMC, Oxffffffff);
icr = E1000_READ_REG(hw, E1000_ICR);

/x 0x0042 — 0x0047: reserved */
#define BO_XM2_ISRC 0x0048 /% 16 bit ro XMAC 2 Interrupt Status
/x 0x004a — 0x004f: reserved x/
#define BOXM2PHY_ADDR 0x0050 /x 16 bit r/w XMAC 2 PHY Address Reg
/x 020052 — 020053 : reserved x/
'# define BOXM2PHY_DATA 0x0054 /x 16 bit r/w XMAC 2 PHY Data Registq
/x 020056 — 0x005f: reserved */

Here are complex bit and bytes layout as well as conditions:

#define PCI_LASPM_FORCE_CLKREQ_ENA BIT 4 /+* Force CLKREQ Enable
#define PCI_ASPM_CLKREQ PAD_CTL BIT_3 /+* CLKREQ PAD Control (Al only
Il# define PCI_LASPM_A1 MODE_SELECT BIT_2 /x Al Mode Select (Al only) x/
#define PCI.CLK_GATE_PEX_UNIT_ENA BIT_1 /+* Enable Gate PEX Unil

typedef enum {

! PMUGPIOMBC, /+* Boston MBC FPGA GPIO — 8-bit x/
PMUGPIO_CPLD, /% Seattle CPLD GPIO — 8—bit =/
PMUGPIO.OTHER /x Chalupa — 8—bit x/

} pmugpio_access_type_t;

'/« [RW 16] all producer and consumer of port 0 according to the following
addresses; U_prod: 0—15; C_prod: 16—381; U_cons: 32—47, C_cons:48—63;
Defoult_prod: U/C/X/T/Attn—64/65/66/67/68; Defoult_cons:
U/C/X/T/Attn—69/70/71/72/78 */

#define HC_REG_PO_PROD_CONS 0x108200
/x [RW 16] all producer and consumer of port laccording to the following

addresses; U_prod: 0—15; C_prod: 16—81; U_cons: 32—47; C_cons:48—63;

38

Reg x/

ister x/

(A1b only)
*/

Clock =/

Defoult_prod: U/C/X/T/Attn—64/65/66/67/68; Defoult_cons:
U/C/X/T/Attn—69/70/71/72/78 */

#define
#define
N# define
#define

EB2__CAW_8 0x00000000
EB2__CAW_9 0x00100000
EB2__CAW_10 0x00200000
EB2__CAW_11 0x00300000

/+* SDRAM exzternal bank column address widi
/+* SDRAM exzternal bank column address widl
/+ SDRAM external bank column address wi
/+* SDRAM external bank column address wi

11/« Timer registers x/

#define HPET.TIMER. CAP.CNF(x) ((x) * 0x20 + 0x100)
#define HPET_TCAPINT ROUTE Oxffffffff00000000
#define HPET_TCAP FSBINTDEL 0x00008000
#define HPET_TCNF_FSB_EN 0x00004000
#define HPET_TCNFINT_ROUTE 0x00003e00
#define PIOD_ASR (0xa00 + 112) /x Select A register */
'# define PIOD_BSR (0xa00 + 116) /+ Select B register =/
#define PIOD_ABSR (0xa00 + 120) /+ AB Select status register */
#define PIOD.OWER (0xa00 + 160) /* Output Write enable register #
#define PIOD.OWDR (0xa00 + 164) /+ Output write disable register

/% AC97.SINGLE(” Digital Audio Mode”, AC9T_AD_MISC,

12, 1, 0), =/ /x see

AC97_SINGLE (”Low._Power_Mixer” , AC97_AD_MISC, 14, 1, 0),
AC97_SINGLE (” Zero . Fill .DAC” , AC97_AD_MISC, 15, 1, 0),
I AC97 SINGLE (” Headphone._Jack.Sense” , AC97_AD_JACK SPDIF, 9, 1, 1), /x in
AC97 SINGLE(” Line .Jack._Sense” ;, AC97_ AD_ JACK SPDIF, 8, 1, 1), /x inverte
}s
#define PERFMON.CNTHREG regptr (MSP_SLP_ BASE + 0x148)

I /x Perf monitor counter high %/
#define PERFMON.CNTLREG regptr (MSP_SLP_BASE + 0x14C)

/x Perf monitor counter low %/
#define IXGB.TPTH 0x02104 /x Total Packets Transmitted (High) x/

N# define IXGB.GPTCL 0x02108 /+ Good Packets Transmitted Count (Low) */
#define IXGB.GPTCH 0x0210C /* Good Packets Transmitted Count (High) x/
#define IXGBBPTCL 0x02110 /* Broadcast Packets Transmitted Count (Low) x/
#define EMUDOCKMAJORREV 0x25 /x 0000zxxz 3 bit Audio Dock FPGA Maj

define EMUDOCKMINOR REV 0x26 /x 0000xzxxz 3 bit Awudio Dock FPGA Min
#define EMUDOCKBOARDID 0x27 /x 00000zz 2 bits Audio Dock ID pins =
#define EMUDOCK BOARDIDO 0x00 /% ID bit 0 */

39

h =8 bits -
h =9 bits -
ith = 9 bits
Ith = 9 bits

/
*/

s problema

verted */
d =/

r rev x/
r rev x/

/

1/*
* Error log scratchpad register format.
*
* Fm——————— Fmm Fm————————— +
* |ASI_EIDR| PA to logging buf | # of err |
I Fo— Fm———————— +
*x 63 50 49 6 5 0
*
*/
#define ERRLOG_REG_LOGPA_MASK INT64_C(0xO0003ffffffffffc0) /* PA to log */
#define ERRLOG_REG_NUMERR_MASK INT64_C(0x000000000000003f) /* Counter */
#define ERRLOG_REG_EIDR_MASK INT64_C(0x0000000000003fff) /* EIDR */

#define PCI_ROMBASE_MSK OxfffeOOOOL /* Bit 31..17: ROM Base address */
#define PCI_ROMBASE_SIZ (0Ox1cl<<14) /* Bit 16..14: Treat as Base or Size */
#define PCI_ROMSIZE (0x38L<<11) /% Bit 13..11: ROM Size Requirements */

'l /% Bit 10.. 1: reserved */

11/« RX Descriptor Base Low/High.
*
x These two registers store the 53 most significant bits of the base addressg
* of the RX descriptor table. The 11 least significant bits are always
x zero. As a result, the RX descriptor table must be 2K aligned.

*/

#define CCMREG.CCM.INT MASK 0xd0led
/+x [R 11] Interrupt register #0 read x/
#define CCM_REG_.CCM.INT_STS 0xd01d8

W/« [RW 8] The size of AG context region 0 in REG-pairs. Designates the MS
REG-pair number (e.g. if region 0 is 6 REG-pairs; the wvalue should be 5).
Is used to determine the number of the AG context REG-pairs written back;
when the input message ReglWbFlg isn’t set. x/

The preceding comments could be better handled by the domain specific language (DSL) Devil [] which
makes it easier to manipulate bit and bytes, to combine bit, and to do it in a safe way with an advanced
specific type checker.

Here is an example of a Devil specification:

TODO

One may ask why Devil, or more generally DSLs didn’t “make it” into the OS community. Multiple DSLs
have been developed but none of them worked, be it for low-level bit manipulation with Devil || for device
drivers code, or for low-level byte format specification for network packets with PADL [] and Melange || for
network protocols code. In the case of Devil one may think that the problem does not exist anymore as
devices have now simpler standard interface which does not require to play with ports. In the past maybe
some drivers have to do everything with 2 ports which require lots of tricks to provide lots of functionality
through 2 ports, but maybe now device can have lots of ports as some memory or past constraints have
vanished. Another explanation is that OS programmers don’t want to learn new languages and prefer to
stick with C, even if the low-level bit and byte manipulation are not as easy as in some DSL. DSL have, on
the opposite, been quite successful in another domain, also dealing with a big system: compilers. Yacc, Lex,
Burg [] are often used by compiler programmers. But, compiler programmers, who are often language lovers
in the first place, are certainly more inclined to learn new languages, including DSLs.

40

5.11 Polymorphism, template types()

struct zfcp_unit {

struct device sysfs_device; /+ sysfs device x/

I struct list_head list ; /+ list of logical units %/
atomic_t refcount ; /x reference count x/
wait_queue_head_t remove_wq ; /+ can be used to wait for

This comment may have lead to the introduction of template in C++, a better way to type-check container
structures like list, tree, or hash.

list<logical_unit> units;

There is very few such comments in our sample as Linux programmers rarely use the generic list_head
structure. They instead redefine each time different list structures like struct list_node, struct list_cpu, which
is tedious and lead to duplication of code or bad type checking if they want to factorize functionalities. Also
when they use list_head, they don’t use comments but instead encode the type of the list in the name of the
variable (which are also not type-checked by the compiler to find errors). So, it is very easy to mix list of
oranges and list of apples in C.

5.12 Shape
5.13 Abuse int(), Abuse string()

This section is not about the name of a specific category but a theme that often repeats in the previous
categories. OS programmers use the ’int’ type for many things (for dimensions, for range, for bitset, even for
memory address), and as one can manipulate an int with many different kinds of operators in C (arithmetic,
logical, or even use pointer arithmetic) it may be very easy to make mistakes.

Some annotations may help a little like the attribute __attribute(bitwise) or the bitwise annotation
of Splint(?).

In fact a similar abusing problem happens with char* pointers, which are used to represent byte regions,
string, filename, or directory names. In Java this problem has been partially solved by introducing different
classes, first a real String class, but also a File class, Directory class, that makes it more difficult to mix
up things. For instance if a function takes both a filename and a string, in C if one use char* for both
parameters, then there is no way for the typechecker to check that the argument are in the right order at
the caller site. In Java those kinds of mistakes can be detected.

This is similar to some of the problems that beginners have with the C library. Many C functions take
2 parameters of the same type, for instance strcpy(), but some of those functions take first the source and
then the destination while other functions do the opposite (inconsistencies in the API). This lead to lots of
mistakes as one has to remember the different conventions.

Abusing ’int’ or ’string’ have also some advantages, which is the reason why people use them: it does
not require to know the name of different types (or classes) and it does not require to remember the name of
the conversion functions (or to call any conversion function at all). It’s a quick and dirty technique, which
makes it appealing for programmers.

5.14 Not seen in comments
We didn’t find anything about information flow or privacy annotations. Maybe because information flow is

a very new topic; what OS programmers don’t know, they can not write comments about it. This may show
also a limitation of our approach; some programmer needs may not be learned from comments.

41

Chapter 6

Interface()

The Interface category allows the programmer to express his need to specify how entities should be used,
usually via some semantic properties. How to correctly use a value, a structure, a function ? What can
be assumed and what can not be assumed ? What are the responsibilities 7 What the caller/callee are
responsible for 7 What is the contract ?

6.1 Pre conditions()

There are lots of works to specify pre-conditions and post-conditions (larch, JML, ESC, etc) on parameters,
such as “this function must take an integer that is more than 10 to work”. But we didn’t find that many
such comments. We found pre-condition comments, but not on parameters. The comments we found were
more about higher level pre conditions. Maybe because an OS is about managing state and time, it is less
“functionnal” and so an OS maybe need lesss pre and post conditions on parameters and return value.

* Note that we rely on the fact that all buffer data
x areas are allocated with (at least) full—word alignments/lengths.
*

static KBuffer x
fore_xmit_segment (fup, m, hzp, segp, lenp)

I /+x This breaks if a hash table grows above 32MB
*/

hash_scratch = ((vm_offset_t)th—>th_hashtable) | ((vm_offset_t)(l<<th-—

' /x must be called with netlink table grabbed x/
static void netlink_update_socket_mc (struct netlink_sock #nlk,

* Convert an address in a kernel buffer to a bus/phys/dma address.

% This work xonly* for memory fragments part of lp—>page_vaddr,

* because it was properly DMA allocated via pci-alloc_consistent (),
* so we just need to ”"retrieve” the original mapping to bus/phys/dma
* address — Jean II x/

t

static inline dma_addr_t virt_to_whatever (struct net_device xdev, u32 x ptr)

42

th_shift));

* required , then the data must be shifted (copied) into place — a sure
Il %« performance killer. Note that we rely on the fact that all buffer data
x areas are allocated with (at least) full —word alignments/lengths.

static KBuffer =
fore_xmit_segment (fup, m, hxp, segp, lenp)

1/ %/
/+ WARNING: It’s the responsibility of the caller to make sure there x/
/% is enough room in rs_buf for the basic RPC message "preamble”. %/
/x

*/
static int
ippr_rpcb_decoderep (fin, nat, rs, rm, rxp, ifsrpch)

* This function assumes the current context is stopped!

*

int

hcil39 _izxl_set_start(hcil894_iso_ctxzt_t *xctxtp, ixl139/_command_t xizlstp)

{

if (pool = NULL) {
I /* The —1 assumes caller has done a svc_get() x/
nrservs —= (serv—>sv_nrthreads —1);
1 else {

Ve
x This must be called only on pages that have
x been werified to be in the swap cache.

*/

Note that such pre-conditions may not be easy to formalize. They correspond to high level concepts that
does not map to C code directly. Maybe researchers need to study this: see if we can find ways to describe

those high-level properties easily.

6.2 InOut()

/x

/% Function: fror_ah
/* Returns: void
11/« Parameters: fin(I) — pointer to packet information

/*

/x Analyse the packet for AH properties.

/+ The minimum length is taken to be the combination of all fields in the
/+* header being present and no authentication data (null algorithm used.)

/*
static INLINE void frpr_ah (fin)
fr_info_t x*fin;

43

%X X % X

AN NN NN N NN

*
nolock_hold_lvb — hold on to a lock wvalue block
@lock: the lock the LVB is associated with

1! @lvbp : return the Im_lvb_t here

* X X X X ¥

Returns: 0 on success, —EXXX on failure

*/

static int nolock_hold_lvb(void xlock, char xxlvbp)

/%
x PARAMFETERS: AmlBuffer —
* AmlBufferLength - ...
I« SizeNeeded — Where the size needed is returned
*/
ACPI_STATUS
AcpiRsGetListLength (

UINTS8 x* AmlBuffer ,
UINT32 AmlBufferLength ,
ACPI_SIZE xSizeNeeded)
{
/% dst(I) — pointer to byte sequence to search
/% slen (I) — match length
/x dlen (I) — length available to search in

/x

/+* Function : fr_fixskip >|<

/* Returns: Nil *
11/« Parameters: listp (10) — pointer to start of list with skip rule #

/% rp (1) — rule added/removed with skip in it. *

/x addremove (I) — adjustment (—1/+1) to make to skip count,

Ve depending on whether a rule was just added

void fr_fixskip (listp, rp, addremove)
frentry_t sxlistp , *rp;
int addremove;

{

%%
NN N NN NN

Note in the last comment another case of abuse of int for the adjustment parameter.

Note that the preceding comments are mostly all from the same file. Because our tool currently analyzes
each comment block in separation, there will be 6 comments in the preceding example, one for each line.
They are not currently agglomerated. So, the sample is biased to more often list comments from this file.

Those comments are here mainly because C can not return multiple values (tuples), and so pointers are
used for that purpose. Pointers can be used both to modify an argument and to pass more effectively big
arguments. Then programmers need to specify which modality they use by writing the role of each argument
(is it an input or output). Functional languages don’t have this problem and have thus far more cleaner
function interface, closer to mathematics. A function takes only input arguments and can return multiple
values.

44

This notion of in and out about arguments is also present in Interface Definition Languages (IDLs) like
Corba. Pascal and Ada also directly support in the language those annotations.

foo(in int x, out int y) return int
begin

end

C++ and C supports the 'const’ qualifier which can be used to say what is ’in’ and must not be modified.
The absence of 'const’ could be interpreted as an ’out’ but this absence is sometimes due to sloppiness. Also,
sometimes the parameter is both ’in’ and ’out’ in which case it can not be put as ’const’. Const alone can
not fulfill the 3 possibilities which are ’in’, ’out’,; and ’in out’. The splint [] annotation language can also
support such annotations.

I struct ifqueue inqg; /* queue of incoming mbuf’s x/
struct ifqueue outq; /x queue of outgoing mbuf’s x/
#define BT3CDEFAULTQLEN 12 /x XXX mazx. size of out queue

}s

The preceding annotations can be used for parameters, but not for the specification of fields in structure
as in the comment above. For such comment can a tool also ensure that the in and out queues are used in
the good way 7

6.3 Context()

The conditions on the context of a call can not be expressed easily in C because it requires reflexion capa-
bilities, such as the ability to go through all the set of functions calling another function. Lisp for instance
provides such a capability.

One can use global variables and assert to mimic such a need (setting the global in the caller function
and checking it in the callee). But, maybe because of the complex control-flow in an OS (with interrupts),
it may not work well. Or maybe there are too many entry points that would need at each place to modify
this global variable which makes the whole process more difficult.

/x read a key s data (optional)

permission checks will be done by the caller

— the key’s semaphore will be readlocked by the caller

should return the amount of data that could be read, mo matter hou
much is copied into the buffer

shouldn 't do the copy if the buffer is NULL

% % % % %
|

*/

long (xread)(const struct key xkey, char __user xbuffer, size_t buflen);

6.3.1 Context Lock()

Note in the following comments the variety of use of words to express locking requirements (must, assume,
hold, acquire, etc).

/¥ Lock must be acquired on entry to this function. x/

/x caller must hold instance lock x/

45

/x

*

* Assume we hold the lock.

*/

static void

fatm_check_heartbeat (struct fatm_softc *sc)

{

uint32_t h;

/+x Tell common.c that B channel has been closed. x/
11 /% cs—>lock must not be locked */
static inline void gigaset_bchannel_down (struct bc_state xbcs)

{

/x information on the codec itself, plus function pointers */
struct codec_info {

/+ called when pecm stream is opened, probably not implemented
x most of the time since it isn’t too useful x/
int (xopen)(struct codec_info_item x*cii,

struct snd_pcm_substream sxsubstream);

I /x stop() is called after data is no longer pushed to the codec.
x Note that stop () must be atomic! x/
int (xstop)(struct codec_info_item x*cii,
struct snd_pcm_substream sxsubstream);

/*

/+* Function: froauthflush
/* Returns: int — number of auth entries flushed
/* Parameters: None

1/« Locks: WRITE(ipf_auth)

Ve
/+* This function flushs the fr_authpkts array of any packet data with
/* references still there.

' /x It is expected that the caller has already acquired the correct locks or
/+x set the priority level correctly for this to block out other code paths

/* into these data structures.

Ve
int fr_authflush ()

{

%X X %

X X % X

% %
NN N N N N N NN

Those kinds of comments are supported by iComment []. They represent 0.5% of the total number of
comments and when grouped with the caller/callee comments they may add-up to the 1% number written

in the iComment paper.

Sparse [] also supports the __require, and __release annotations to describe the requirements or effects

regarding locks of functions. Lock_lint also provide lots of annotations regarding locks:

// from lock_lint manual

46

NOTE (MUTEX _ACQUIRED_AS_SIDE_EFFECT (MutexExpr))

NOTE (READ_LOCK_ACQUIRED_AS_SIDE_EFFECT (RwlockExpr))
NOTE (WRITE_LOCK_ACQUIRED_AS_SIDE_EFFECT (RwlockExpr))
NOTE (LOCK_RELEASED_AS_SIDE_EFFECT (LockExpr))

NOTE (LOCK_UPGRADED_AS_SIDE_EFFECT (RwlockExpr))

NOTE (LOCK_DOWNGRADED_AS_SIDE_EFFECT (RwlockExpr))
NOTE (NO_COMPETING_THREADS_AS_SIDE_EFFECT)

NOTE (COMPETING_THREADS_AS_SIDE_EFFECT)

In the following the condition is not on the context before the call but on what must be done by the
caller after the call.

Ve
/+* Function: ipf_findtoken #
/* Returns: ipftoken_t x — NULL if no memory, else pointer to token &
/+* Parameters: type(I) — the token type to match *
/% wid(I) — wid owning the token *
/* ptr(I) — context pointer for the token
Ve *
/% This function looks for a live token in the list of current tokens that =
/+* matches the tuple (type, wid, ptr). If one cannot be found then one is =
/* allocated. If one is found then it is moved to the top of the list of 8
/x currently active tokens.
Ve *
/* NOTE: It is by design that this function returns holding a read lock on =
1 /% ipf-tokens. Callers must make sure they release it! *
/* >«<

ipftoken_t *xipf_findtoken (type, uid, ptr)
int type, uid;
void *xptr;

{

MUTEXDOWNGRADE(& ipf_tokens);

return it ;

}

In the following the comment is put at the call site as it is not easy from the name of the function to
know that a side effect of the function is to release a lock:

1 /x release the hold on the child x/
ndi_rele_devi(dip);

1 /xx
x e1000_get_hw_semaphore_generic — Acquire hardware semaphore
x @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
xx /

$s32 e1000_get_hw_semaphore_generic(struct e1000_-hw xhw)

{

47

NN NN N N NN

1 /x

The audit_worker thread is responsible for watching the event queue,
dequeueing records, converting them to BSM format, and committing them to
disk. In order to minimize lock thrashing, records are dequeued in sets
to a thread—local work queue. In addition, the audit_work performs the
actual exchange of audit log vnode pointer, as audit_vp is a thread—local
x variable .

*/

static void

audit_worker (void xarg)

{

EE S I

1 /%
Make sure the causing IRQ is blocked, then call do_IRQ. After that, unblo
and jump to ret_from_intr which is found in entry.S.

The reason for blocking the IRQ is to allow an sti() before the handler,
which will acknowledge the interrupt, is run. The actual blocking is made
x by crisv32_do_IRQ.
+/

#define BUILDIRQ(nr)
void IRQNAME(nr);
__asm__ (

* X X X ¥

—

1/
* Recover an error report and clear atomically
v/
static inline int sock_error (struct sock xsk)

{

err = xchg(&sk—>sk_err, 0);

/%

*

This function will acquire the lock and set the in_transition

* bit for the specified slot. If the slot is being used,
* we return FALSE; else set in_transition and return TRUE.
*/

static int

sysc_enter_transition(int slot) { ... }

/* mutex lock the whole list */
if (sysc_enter_transition(-1) != TRUE) {

Programmers have extended their lock library to provide debugging and self-defense capabilities. Open-
solaris provides the MUST_HELD+ macro.

VE I
* Assumes: tq->tq_lock is held.
*/

48

static void
taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
{

ASSERT (MUTEX_HELD (&tq->tq_lock));

Note that even with this macro, the programmer still felt the need to also put a comment about the
locking requirment. Indeed the ASSERT is in the body of the code and the clients of this function usually
read only the interface, that is the comment preceding the function.

Ve

x* Move a page back to the lists.

*

x Must be called with the slab lock held.
*

*

On exit the slab lock will have been dropped.

*/

/*
* no locking for this, because it does its own
* plus, it does a kmalloc

*/

/x
x We’'re allowed to run sleeping lock_page() here because we know the caller h
x __GFP_FS.

*/

6.3.2 Context Caller()

The Java programming language provides a stack inspection mechanism [] to express conditions on the caller,
but they are enforced at run-time only.

6.3.3 Context Interrupt()

/x this function must not be called from interrupt or completion handler x/

1 /x
x Free TX resources.
*
x Assumes that SGE is stopped and all interrupts are disabled.
*/
static void free_tx_resources(struct sge xsge)

{

1 /%
x Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
*/
static void sge_tx_reclaim_cb (unsigned long data)

{

49

/x
x Need to run this when irqs are enabled, because it wants
x to self—test [hard/soft]—irqgs on/off lock inversion bugs
* too:

*/

A set of functions could contain in comments a tag to indicate, to mark, to which category they be-
long to, like /* @contextcategory: interrupt && completion */. Functions could then easily express
requirements by adding in their own comment like /* contextrequire: interrupt || completion */.

6.3.4 Other context

Some context conditions can also be expressed at a “module” level instead of function level, giving in one
comment a condition on a set of functions.

/*
x Operations on bitmaps of arbitrary size
x A bitmap is a vector of 1 or more ulong_t’s.
Il x The user of the package is responsible for range checks and keeping
track of sizes.
«/

#ifdef _LP64
#define BT_ULSHIFT 6 /x log base 2 of BT_NBIPUL, to eztract word i

*

1/
x Refresh the HAT ismttecnt [] element for size szc.
x Caller must have set ISM busy flag to prevent mapping
x lists from changing while we’re traversing them.
*/
pgent_t
ism_tsb_entries (sfmmu_t ssfmmup, int szc)

{

* For tight control over page level allocator and protection flags
use __vmalloc () instead.

This function only removes the wunlocked pages, if you want to
remove all the pages of one inode, you must call truncate_inode_pages.

invalidate_mapping_pages () will not block on IO activity. It will not
invalidate pages which are dirty, locked, under writeback or mapped into
pagetables.

x A simple loop like

50

ndex x/

while (jiffies < start_jiffies+1)
start = read_current_timer ();
will not do. As we don’t really know whether jiffy switch
happened first or timer_value was read first. And some asynchronous
event can happen between these two ewvents introducing errors in Ipj

*/

E I G SRS O

// Allocate a String in the Arena and register that String so that it is
// deallocated at the same time as the Arena.
// DO NOT CALL DELETE ON THE RESULT!
JS::String &JS::newArenaString (Arena &arena)
{
String *s = new(arena) String();
arena.registerDestructor (s);
return xs;

N
*

Macros to make the correct C datatypes for a new kind of ring.

To make a new ring datatype, you need to have two message structures
let’s say struct request, and struct response already defined.

In a header where you want the ring datatype declared, you then do:

DEFINE_RING_TYPES (mytag, struct request, struct response);

These expand out to give you a set of types, as you can see below.
The most important of these are:

struct mytag_sring — The shared ring.
struct mytag_front_ring — The ’front’ half of the ring.
struct mytag_back_ring — The ’back’ half of the ring.

To initialize a ring in your code you need to know the location and size
of the shared memory area (PAGE.SIZE, for instance). To initialise
the front half:

struct mytag_front_ring front_ring;

SHARED_RING_INIT((struct mytag_-sring *)shared_-page);

FRONT_RING_INIT(&front_ring , (struct mytag_-sring *)shared_-page,
PAGE.SIZE);

Initializing the back follows similarly (note that only the front
initializes the shared ring):

struct mytag_back_ring back_ring;
BACK_RING_INIT(&back_-ring , (struct mytag_-sring *)shared_page,
PAGE.SIZE) ;

¥ OK K K X K K K KX K KK KKK KK KKK KKK KK X X X XX

*
N

51

6.3.5 SmPL

The Semantic Patch Language [?]SmPL) could be used as an annotation language and programmers could
embed in comments SmPL scripts to detect bad code at the caller site, in the context.

/* @Smpl:
- foo(...);
+ error(); printf("use foobar instead foo");

l')e.xr (x)
*/

bar (int x)

{

}

SmPL could also make use of other annotations, to match over those annotations. This would require
that SmPL understand comments.

fe]

function f£f;

©e

/* ... Qcontext: interrupt ... */
£C..0) Ao

+ foo();

}

6.3.6 Buffer Ownership()

This category allows the programmer to specify responsibilities.

if (mp-nce = NULL) {
I /x The caller will free mp x/
mutex_exit(&nce—>nce_lock);

Note that I don’t know what is 'mp’. Maybe this comment is obsolete.

It includes pre—registered buffer memory for send AND recwv.
The recv buffer , however, is not owned by this structure, and
is “"donated” to the hardware when a recv is posted. When a
reply is handled, the recv buffer used is given back to the
struct rpcrdma_req associated with the request. ... x/

1!

* X X X ¥

There are type systems, like ownership types [], that try to solve such problems. Note that we found very
few examples of such comments.

6.4 Effects()

I /x reconfigure AGP hardware again x/
nvidia_configure ();

52

1 /% Fill SG Array with new values */
ivtv_udma _fill_sg_array (dma, y_buffer_offset , uv_buffer_offset , y_size)

I pci_read_config_dword (tp—>pdev, PCLCOMMAND, ®); /x flush write x/
udelay (100);

/% this function call exit(0) =/

Again, a SmPL script could easily detect such case if relevant annotations were provided:

@rulel@
function f£f;
(¢[¢]
/* ... @kind: exit ... x/
£fO { ...}
// look for exit labeled function
@@ rule.f @@
£0;
- S

+ { print dead code }

Some side effects are often described at the caller site. Indeed from the name of the function it is often
difficult to know that the function have side effects. In fact language like Scheme use some conventions in
the standard library to add a ? or ! to describe respectively predicate functions and functions with side
effects as in (is_digit? "450") and (add_list! 1 xs). But those are only conventions. A checker could
enforce that such visual clues are indeed true.

6.5 Error()

Programmers use different conventions to signal an error or success. They can use NULL when returning
pointers (leading to NULL problems described in the NULL section), or an ’int’ code like -1, or sometimes
0, or sometimes something else. They can use the same conventions to signal a success. Sometimes an error
is a negative value, sometimes a positive value. As there is no PL mechanism to describe errors (like the
exception mechanism in C++) and as each programmer can use his own variant, comments are used to
specify the conventions for each functions. It is yet another case of abuse of 'int’ and yet another use of
comments to disambiguate situations because of the lack of enforced conventions.
Here is an interesting question asked on the kernel mailing list:

from http://www.ussg.iu.edu/hypermail/linux/kernel/0607.3/1252.html
Hello,

I’m looking at the source code of different drivers and wondering about
request_irq() return value. It is used mostly in ’open’ routine of struct
net_device. If request_irq() fails some drivers return -EAGAIN, some -EBUSY
and some the return value of request_irq(). Is this intentional? Sample
drivers code:

V V V V V V VvV

Correct practice is to propagate the error code of request_irq out to be
the return value of the open routine. This allows the request_irq to return

53

different values for overlapping irqs, or out of memory, etc.

> Besides request_irq() is arch dependent so depending on arch it has different
> set of possible return values. So ... does the return value matter or I
> misunderstood something here?

Each architecture should return something sane. If it doesn’t then it a problem
that should be addressed there.

1 /%
x* Do a transaction.
x return 1 if ACK, 0 if NAK, —1 if error.
*/
static int
slhci_transaction (struct slhci_softc *sc, usbd_pipe_handle pipe,
u_int8_t pid, int len, u_char xbuf, u_int8_t toggle)

Ve

Il x Returns: 0 on success, —EXXX on failure

*/

static int nolock_hold_lvb (void xlock, char *xlvbp)

{

x Return value:

* target address on Success / 0 on Failure
*/
static u64

get_target_identifier (peidx_table_t *peidx)

{

1 /%
/+* Returns: o
Ve 0 on success, positive value on failure. &
/S o KKK KKK KKK KKK KK SR R R K K K K SR K K K K KK KKK KKK KKK K SR R K K K K K R S K R K K K R K KoK
static int
bce_nvram_test (struct bce_softc *sc)

NN

Ve

x @retval EINVAL Operation not yet supported.

*/

static int

dsp-oss_setsong (struct pcm_channel swrch, struct pcm_channel srdch, oss_longn

ame_t xsong

plat_cpu_poweron (struct cpu *cp)

{

I return (ENOTSUP); /+* not supported on this platform x/

}

Note that in the last 2 examples the "not yet supported” is represented as different macros.

54

if (na—acl.fattr4_acl_len != vs_aced.vsa_aclcnt)
11 error = —1; /x no match *x/
else if (In_aced4_cmp (na—>acl.fattrd_acl_val,

/* */

/+* Function: memstr x/
/* Returns: char * — NULL if failed , != NULL pointer to matching bytes x/
/% Parameters: src(I) — pointer to byte sequence to match */
/* dst(I) — pointer to byte sequence to search */
/* slen (I) — match length */
/x dlen(I) — length available to search in * /

/* */
/+* Search dst for a sequence of bytes matching those at src and extend for x/
/x slen bytes. */
/* */
char xmemstr(src, dst, slen, dlen)

const char xsrc;

char xdst;

size_t slen, dlen;

{

if (pri = 0)
goto done;
1 if (pri > 0) { /* error x/
scheme = &g _part_null_scheme;
pri = INT_MIN;

IISTATIC int /% error x/
xfs_bmap_add_extent_hole_delay (

The need for this last comment is that functions can also return actual numeric values resulting from
numerical computations. It would be better to have a clean error type to avoid such ambiguity, or to use
exceptions. A possibility would be to introduce an enum type for errors, as now ANSI C compilers report
as an error to use an int as an enum (there is no more implicit cast from and to enum).

Note that the use of signed vs unsigned should help gcc to detect errors. In practice it looks like gce
does not do much static checks on this issue. Moreover, because of the preceding error requirement, most
numerical function returning a positive int use signed int instead of unsigned int to deal with errors. Errors
thus prevent some checking and limit the usefulness of the specific signed type.

The lack of exception in C also lead either to code bloats, as any caller of a function must insert code
each time to test for the return value and error code, or bugs, as some caller may forget to add such a test.

Note that the use of exceptions in the beginning also led to the introduction of comments (a new kind of
comment), Programmers put in comments next to the signature of the function the set of exceptions that
can be raised by the function, as it is indeed part of the interface:

int foo(int x); /* raise Not_Supported exn */

This comment in turn led to the introduction of a feature, the possibility to add in the interface those
information:

int foo(int x) raise Not_Supported;

55

This information can be used, for instance in Java, to check that the code indeed raises such an exception
and that each call sites or their parents handle at one point the situation. This is possible also in C++ but
many programmers still put such error interface information in comments.

The OCaml language provide an advanced static tools called ocamlexn [] that detects if some exceptions
are never “captured” and pop-up to the toplevel.

The lack of clean error types and exceptions and the impossibility to return multiple values makes the
interface of functions “unnatural”. Compare the C and Java version:

// C ugly code, requires lots of comments to make it bug-resistant:
// - in/out comment,

// - buffer ownership comment,

// - error comment

/* -1 means that the input string is not in a good format */
int int_of_string(/* in */ char* s, /* out */ int *x) {

3
/* return error code. This function allocates the memory for bar */
int foo(char *s, /* out */ struct *bar) {

int res;
int error = int_of_string(s);
if (error == -1) {

printf("int not in good format");
return error;

}

do_stuff;

bar = malloc(...);

bar.myint = 1;

return 0; /* everything is ok */

// Java code (better interface), and less error prone
// at caller site. No need for comment.
int int_of_string(String s) raise StringIntBadFormat {

}

Bar foo(String s) {
int i = int_of_string(s);
do_stuff;
Bar res = new Bar();
res.myint = i;
return res;

The introduction of exceptions enabled to really use the return type of a function for the return value,
which in turns made the use of in and out annotations useless. This makes the type of the function closer
to a mathematical specification.

In fact this problem is mentionned also in the C++ Mozilla project at http://weblogs.mozillazine.
org/roadmap/archives/2006/10/mozilla_2.html:

56

PRBool
nsXULDocument : : OnDocumentParserError ()
{
// don’t report errors that are from overlays
if (mCurrentPrototype && mMasterPrototype != mCurrentPrototype) {
nsCOMPtr<nsIURI> uri;
nsresult rv = mCurrentPrototype->GetURI(getter_AddRefs(uri));
if (NS_SUCCEEDED(rv)) {
PRBool isChrome = IsChromeURI (uri);
if (isChrome) {
nsCOMPtr os(
do_GetService("@mozilla.org/observer-service;1"));
if (os)
os->NotifyObservers(uri, "xul-overlay-parsererror",
EmptyString().get());
}
}
return PR_FALSE;
}
return PR_TRUE;
}

you’ll see code like this:

bool
XULDocument : : OnDocumentParserError ()
{
// don’t report errors that are from overlays
if (mCurrentPrototype && mMasterPrototype != mCurrentPrototype) {
TURI *uri = mCurrentPrototype->GetURI() ;
if (IsChromeURI(uri)) {
GetObserverService () ->NotifyObservers(uri, "xul-overlay-parsererror");
}
return false;
}
return true;

}

6.6 Magic number()

Programmers should use types, variants, or at least symbolic constants to represent special conditions. If
not, then they need to repeat the convention in comments at multiple places. The special case value is
sometimes 0, sometimes -1, sometimes maxint.

11 ld . ld_magic = 0; /x indicate end of messages x/
dumpvp_write(&ld , sizeof (1d));

I /x Reject application specific interfaces

*/
if (hostif—>desc.blInterfaceClass != 255) {

57

/x Set defaults for nTzLock and nTzBlock if unset x/
if (nTxLock = —-1) {

¥ X ¥ ¥ %

A wvalue of Oxff stored in the channel_map indicates that the channel
1s not supported by the hardware at all.

A wvalue of Oxzfe in the channel_-map indicates that the channel is not
valid for Tz with the current hardware. This means that ... x/

/x OFDM rates */
case 12:
case 18:

return 12;

spin_lock(&cadet_io_lock);
outb (7,10); /+x Select tuner control */
outb (curvol ;io+1);

case 0x096: /+x Lens cursor x/

case 0x097: /x Intuos3 Lens cursor x/
wacom—>tool [idx] = BTN_TOOL_LENS;
break;

case 0x82a: /« FEraser */

case 0x8b5a:

Ixpnp—>lxpr_mode = 0500; /+ read—search by owner only x

break;

case LXPRNETDIR:
vp—>v_type = VDIR;
Ixpnp—>lxpr_mode = 0555; /+ read—search by all x/
break;

if (dma > 3 || dma < 0 || dma = 2) {

1 else {
/% Eztended mode DMA enable */
cfg = 0x50;

if (dma = 3) {
dma_bits = 3;

} else {
I /x
« IR == —1 if DA< DB, IR == 0 if DA == DB,
x IR == 1 if DA > DB and IR == 8 if wunorderded
*/
emu_set_CC(regs, (IR=-1) 71 : (IR=1) ? 2 : IR);

58

void do_syscall_trace(void)
{
I /*
x The 0x80 provides a way for the tracing parent to distinguish
x between a syscall stop and SIGTRAP delivery
*
pt{ace,notify(SIGTRAPH(current—>ptrace & PT.TRACESYSGOOD) ? 0x80 : 0)

For those comments, the only thing a tool could do is to try to detect them and warn the user that he
should define a symbolic constant, or an enum. Some tools like ArgoUML [] try to apply Al technique on
source code or model, in order to report bad design choices.

6.7 Module interface()

The C language does not have a real module system. Instead programmers use cpp and #include directives
to achieve more or less what a module system can provide. C does not know about cpp; cpp does not
know about C. cpp just “see” text, which has some advantages as the generic #include mechanism can be
(ab)used for other things than module handling (for instance to factorize parts of code). But it has also some
disadvantages. Comments are used to try to incorporate some of the advanced features of module system in
other PL.

#include <xxx.h> // pdflush_operation ()

#include <linux/buffer_head .h> /x for try_to_release_page(),
buffer_heads_over_limit x*/

#include <netinet/in.h> /x For in6_addr_t x/
#include <sys/tsol/label.h> /« For brange_t %/
#include <sys/tsol/label_macro.h> /x For brange_t x/

PL like Haskell or Perl provide advanced module import/export mechanisms. One can easily states which
function he wants to use from a module. If this function is not used anymore then the compiler could warn
the user who could delete the then useless import (actually I think those modern PL do not provide such a
warning). This is harder with cpp as most tools, again, do not work at the cpp level.

It’s yet another kind of comment related to the use and limitations of cpp. Many of the features of C++
can in fact be traced to the desire to replace the use of cpp by real PL features. In this case C++ namespace.
C++ inline helped avoiding using macros, C++ const helped avoiding defining constant via macros, etc.

1 /%

For netgraph nodes that are somehow associated with file descriptors
(e.g., a device that has a /dev entry and is also a netgraph node),
we define a generic ioctl for requesting the corresponding nodeinfo
structure and for assigning a name (if there isn’t one already).

EE G S

For these to you need to also #include <sys/ioccom.h>.

v/

#define NGIOCGINFO JIOR(’N’, 40, struct nodeinfo) /+* get node info x/
#define NGIOCSEINAME _IOW(’'N’, 41, struct ngm-name) /+ set node name x/

On the opposite to the first example, because one header can be used to provide signatures for multiple
files, one may add in comment also where to find the implementation of a function prototype:

59

Jx tls.c x/

extern int os_set_thread_area(user_desc_t xinfo, int pid);
extern int os_get_thread_area(user_desc_t *info, int pid);

1 /% umid.c x/

extern int umid_file_name (char %name, char xbuf, int len);

.flush_buffer = ircomm_tty_flush_buffer ,

I .ioctl = ircomm_tty_ioctl /+ drcomm_tty_ioctl.c x/
.tiocmget = ircomm_tty_tiocmget , /x ircomm_tty_ioctl.c x/
.tiocmset = ircomm_tty_tiocmset , /* ircomm_tty_ioctl.c x/
.throttle = ircomm_tty_throttle ,

Ilextern const int st_ndrivetypes; /x defined in st_conf.c x/

extern const struct st_drivetype st_drivetypes|[];
extern const char st_conf_version [];

The last two examples illustrate the problem of the flat namespace of the C language. There is no easy
way, seeing an entity, to know where it is defined. With C++4 or other PL you can use namespaces to solve
this problem by qualifying variables as in:

St_conf::st_ndrivetypes;

An IDE could also colorize differently the functions depending on their provenance to help the user
understand the code.

1 /x

x This is the loadable module wrapper.

*/

#include <sys/modctl.h>

6.8 Time and Space properties()

1 /x
x The TCP mnormal data output path.
* NOTE: the logic of the fast path is duplicated from this function.
*/
static void
tecp-wput_data(tcp-t *tcp, mblk_t xmp, boolean_t urgent)

{

Some functions in Linux are described as the slow or fast path. The fast being a specialized version of
the slow or normal one. A profiler could check such claims (if those functions were clearly annotated) that
indeed a version is faster than the other one. The iComment paper cites a paper on performance assertion [].

/x

x Merge cpu freelist into freelist. Typically we get here
x because both freelists are empty. So this is unlikely
* to occur.

*/

60

NOT IN SAMPLE

/x swapoff spends a _lot_ of time in this loop! ...x/

6.9 Other interface()

/* Must not sleep. */

static void

tl_config(softc_t *sc)
{

61

Chapter 7

Code Relationships()

The Core Relationships category allows the programmer to understand how things work together. As op-
posed to the Type and Interface categories, here the programmer don’t want to understand something in
isolation but instead how an entity interacts with the other entities. Even if programmers try hard to isolate
functionalities, to separate concerns, so things can be developed and understood separately, at one point
functions or data-structures need to work together.

Unfortunately, as a human has only 2 eyes, when he looks at one place he can see only this place. A
comment can help to see other places without really seeing them by describing those other places. This notion
of focus+context is an important theme in the domain of information retrieval and data visualization. There
are better ways to offer focus+context than using comments. An IDE could provide an annotation-based
guided navigation capability where a programmer looking at some code, with special annotations, could
be offered automatically the contextual information that is described by the annotation (for instance via a
tooltip, or by reorganizing the source code view with some advanced fish-eye 2D effect). The IDE could be
more pro-active in helping the programmer to understand the code. Note that [] describes that programmers
spend a very significant portion of their time navigating in the code. Some annotations may help.

Note that there are already lots of implicit code relationships in the code (some functions calling other
functions, or using some data structures), that tool can also leverage. But as there is so many such relations,
the programmer usually use comments to insist on some of those relations, the most important one, and
mark them. One could also maybe infer those important relations, for instance if a function calls multiple
functions, maybe some of them are more important because less used (for install a call to kmalloc() is less
important, because less original, than a call to ext2_helper_func()).

Code relation annotations can be used both for

e checking; check that the relation indeed holds

e code understanding; an editor and navigation tool can help the programmer by using those relation
information.

In some way many of the diagrams in UML allow to better understand code relationships. But such
relations are specified at the UML level and are generally not present at the code level. C++ can not
express arity conditions for instance.

A program is a very complex mathematical objects with lots of possible relations:

e how data structures work together, type relations, how multiple fields or variables work together
e how functions work together, what are the protocols
e how control flows

e how data flows, from which variables specific value come from,

62

pointer relations

header vs implementation relations, files or modules relations, how files use other files

callback relations

how high-level concepts maps to concrete implementation

how all of this mix together

7.1 File organization()

7.1.1 Visual organization()

Programmers often use rudimentary mechanisms to navigate in a file, like scrolling, and so add some visual
clues in the file, some organizational delineates marks, to make it faster when scrolling to spot and separate
the different parts of the file.

DL/ st s stk o stk o 5 ok K oK K o K K oK KK o KR SR K R R K SR KK R KR SR KR KR SR K SR KK R KR R KK R
S
x RSDP — Root System Description Pointer (Signature is "RSD PTR ”)
*k

KK 3K K 3K 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk k sk sk sk sk sk 3k >k sk sk sk 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk skosk sk skosk sk sk sk sk sk sk k|

1/ EEPROM UTILITIES: x/

/+* Offsets of data in the EEPROM x/
#define EEPROM.COPYRIGHT (0)

2 x/

static inline struct xencons_interface xxencons_interface (void)

Y#pragma mark Local type definitions

Programmers have invented very sophisticated tools to visualize complex data for physicians, statisticians,
but still visualize their own most important data, the source code, with very basic editors (as flat text files),
and use very basic navigation mechanisms. For instance I also use in this latex file some visual markers to
help me organize and navigate in my latex file.

Some editors now use some colors to mark different entities (function in blue, macros in yellow, etc)
helping to better understand the code structure thanks to those visual hints. Some editors, like Source
Insight [], also use different fonts to put in bigger font the header of function for instance. But those tools
are still quite basic. An exception may be Code Thumbnails [| which proposes a “map” of the code that can
be zoomed in and out, with colors, and allows the programmer to click on this map. This tool relies on the
visual memory capability of the human. SoftViz [provides a similar functionnality.

Note that programmers may have different taste concerning visualization, and Emacs for instance uses
special comments (again) at the end of the file allowing the programmer to set some special variables
conditioning the layout of the code.

int main() {

¥
/*

63

* Kk

Local Variables:
mode:c
comment-column:O
comment-start: "/**"
comment-end: "*/"
c-basic-offset: 8
End:

* X X X X X *

*/

Emacs also uses special comments at the beginning of the file (showing again that comments can be the
artifacts that tool can rely on to store meta information).

/* —*x-mode: c; fill-column: 75; comment-column: 50; -*- %/
/* foo.c

*

*/

int main()

7.1.2 Grouping()

Another related use of comments, often used as a visual hint too, is to mark different entities as related by
putting them together under a “section”.

'l /x Debugging routines. */
static char xget_elf_p_type (ElIf32_ Word p_type)

I /+ Scan commands and mnotifications x/
REPLY SCAN.CMD = 0x80,
REPLY_SCAN_ABORT-CMD = 0x81,

I /x Input stuff. x/
struct string sprompt; /x Output string for input area. */
struct string xinput; /+ Input string for read request. x/

2

x control and status registers access macros

*/
#define CSRREAD_1(sc, reg) \
bus_space_read_1 ((sc)—>sc_st, (sc)—>sc.sh, (reg))

#define CSRREAD 2(sc, reg) \
bus_space_read_2 ((sc)—>sc_st , (sc)—>sc_sh, (reg))

64

MODULE_LICENSE(” Dual -MPL/GPL”) ;

11 /x Module parameters x/

Note that those meta-information, about the correlation between different entities put next to each other
in the file, is not used by any tool. Maybe one could check that those entities are indeed correlated in
practice, and indeed used together. If not, this may indicate a bug or a bad grouping that may hinder
program understanding.

/+ debugging function x/
/* helper function x/
/x globals x/

/x prototypes x/

7.2 EndOfXXX()

Some closing constructs in C are ambiguous, like '}’; as they can be used to close many different kind of
statements (loops, if, switch). Programmers often feel the need to disambiguate those cases by adding a
comment:

rs—>sn, rs—>card_size);
1 Yoo /x if (Iperam_build_region_lists(rs)) x/

default:
break;
1 s //Switch
}

Some PL like Pascal or Ada actually enforce such disambiguations by having special constructs, which
also enable to check that the closing annotation is correct (it can avoid bugs related to dangling else).

if(x = 1) do

ena.if

for (x = 1 to 4) do
eﬁa'for

Some editors also provide balancing capabilities allowing to fastly know to which statement a closing
statement corresponds to (and vice versa). Some editors also allow to automatically insert such comment
when the programmer start to type the start of the statement.

In OS code the EndOfXXX comments are mainly used with cpp constructs like ifdef as in those cases
there is no indentation information or easy balancing information that can be used to visually disambiguate.
It’s yet another example that shows how cpp constructs are badly supported, be it by checkers, or editors.

#else /x SHA2.UNROLL.TRANSFORM x/

65

N4 endif /x defined (_(FIRMWARENEEDS FDISK) */
"a,raw”, 0, SIFCHR},

#define SWI_.IMBrange 0xf00001

W# endif /x | _MACHINE_SWIH. x/

Note that those kinds of ifdef (as well as endif), are used in headers (.h) to deal with the fact that C does
not provide a real module system; people use cpp tricks to simulate a module system, which in turn also
require some comments as cpp can be used for many things. This is in fact a recurring theme. C provide
few constructs that can be used, and abused, for many different purposes; programmers then feel the need
many times to specify which one of those uses the construct is used for. Maybe a bigger set of constructs
would be better as the programmer would clearly see each time from the name of the construct the specific
use.

W#endif /x CONFIG_.PPC_.EARLY_DEBUG 44z */

W#endif /x DEBUG x/

In fact gce and cpp do not provide much checks about ifdef. When Linus Torvalds wrote the Sparse
tool, he wrote also a C pre-processor and found that many ifdefs were in fact not closed. I don’t know if
dangerous bugs can come from such miss.

Such comments are also used to indicate the end of the file (I never really understood its use) like:

/x this is the end of tls.c x/

void Dhbdih:: gcpsavereqLab ()

{
sendLoopMacro (GCPSAVEREQ, sendGCP_SAVEREQ);
cgepStatus = GCP_NODE_FINISHED ;

Y//Dbdih :: gcpsavereqLab ()

7.3 Control Flow()

In some way, the UML sequence diagram may help for the control flow part.

7.3.1 Caller Callee()

1"/« x Init CPU info — get CPU type info for processor_info system
call. %/ void init_cpu_info (struct cpu xcp) {

/*

* Line specific close routine, called from device close routine
* and from ttioctl at >= splsofttty().

* Detach the tty from the ppp unit.

Mimics part of tty_close().

*

*/
static int
pppclose(tp, flag)

66

Il % used by: simba_detach() on suspends

*
Y
static void
simba_save_config_regs(simba_devstate_t xsimba_p)

{

1 /x
x cvc_bbsram_start ()
* Allow accesses to BBSRAM, wused by cvc_assign_iocpu() after
* BBSRAM has been mapped to a wvirtual address.
o/
static void
cve_bbsram _start (void)

{

Ve

x Called from cache_reap () to regularly drain alien caches round robin.

*/

/% instantiate a key of this type

x — this method should call key_-payload_reserve() to determine if the
* user’s quota will hold the payload

*/

int (xinstantiate)(struct key xkey, const void xdata, size_t datalen);

7.3.2 Before After()

Programmer feel the need to express the context of a call, what happens before and after to indicate where
this function fits in the general architecture.

/x
x Initialisation. Called after the page allocator have been initialised and
x before smp_init().

*/

It could be useful to have a timeline view in the IDE. Also, the profiler could gives lots of information to
help understand the program. There are lots of latent information during runs of a program that could be
leveraged to help understand and check properties.

/+x Called before configuring an on—chip UART. x/
void ma_uart_pre_configure (unsigned chan, unsigned cflags , unsigned baud)

{

/*

x During init, we copy the eeprom information and channel map

x information into priv—>channel_info_24 /52 and priv—>channel_map_24 /52
*

*/

67

Ilextern int ibmphp_init_devno (struct slot xx); /x This function is ca
extern int ibmphp_do_disable_slot (struct slot xslot_cur);

if (rval != DEVICERESET) {
rval = COMMANDDONEERROR;

} else {

1 /*

x Returning DEVICE_RESET will call
k erToT Tecovery.
*/
severity = SCSI.LERR_INFO;
break; /+x don’t set position invalid %/

*

Note that it’s ok to delay the TLB shootdown till the entire range is
finished , because if hat_pageunload () were to unload a shared
pagetable page, its hat_tlb_inval() will do a global TLB invalidate.

* %

*/
l = mmu. max_page_level;
if (1 = mmu. max_level)

N
*

Even though vp was obtained wvia vn_open(), we
can’t call vn_close() on it, since lofs will
pass the VOP.CLOSE() on down to the realvp
(which we are about to wuse). Hence we merely
drop the reference to the lofs wnode and hold
the realvp so things behave as if we’ve
opened the realvp without any interaction
with lofs.

* X X X X X X ¥

*/
VNHOLD(1sp—>ls_vp);
VNRELE(vp);

Vil
x Called by nslconProtocolHandler after it creates this channel.
x Must be called before calling any other function on this object.
x If this method fails, no other fumnction must be called on this object.
*/
NS HIDDEN_(nsresult) Init (nsIURIx aURI);

7.3.3 Other

/* this is the main entry x/

1 /s

* Main IP Receive routine.

68

led from EB

*/

int ip_.rcv(struct sk_buff xskb, struct net_device xdev, struct packet_type #pt, struct n

{

struct iphdr xiph;
u32 len;

Programmers feel the need to annotate the main entry point of a module so that other programmers can
know where to start when they want to understand the code. A source code visualizer could highlight such
entry point if an annotation was present.

Ve

x Strange swizzling function only for use by shmem_writepage

*/

7.3.4 Unreached()

default: /x not reached x/

if (smb_mbc_encode(&sr—>reply , fmt, ap) != 0) {
va_end (ap);
smbsr_encode_error (sr);
" /« NOTREACHED */
}

va_end (ap);

if (ip-sock = INVALID_SOCKET)
{
DBUGPRINT(” error” ,(”Got.error: Jd_from.socket ()” ,socket_errno));
sql_perror (ER(ERIPSOCK ERROR)); /x purecov: tested x/
unireg_abort (1); /* purecov: tested x/

}

cf http://forge.mysql.com/wiki/DGCov_doc. Like FALLTHRU, used to shut down the default test coverage
patch validator.

7.3.5 ProblematicControl() and FALLTHRU()

Some default behaviors of C are not always a good choice, especially for beginners. For instance in switch
statements, the lack of a "break’ in a ’case’ is often the sign of a bug. The same is true for the use of '=’
instead of ==’ inside an if. Those are syntactically correct control structures that are likely to be buggy.
But, sometimes they are not buggy and this would be a false positive; a comment is then used to express
this:

case —EXDEV: /+x partial completion */
gig_dbg (DEBUGISO, "%s:_URB_partially _.completed”
__func__);
I /* fall through — what’s the difference anyway? x/
case 0: /x mormal completion */

A specific annotation FALLTHRU or FALLTHROUGH is often used, mainly in OpenSolaris, to formally
express those conditions. From the Lint manual [] /* FALLTHRU */ or /* FALLTHROUGH */: “Suppress

69

complaints about fall through to a case or default labeled statement. This directive should be placed

immediately preceding the label”.
Note that there is a strict condition on where the annotation must be put for the tool to be able to grab

it.

}
I /« FALLTHRU */

default:
IOSRAM PUTB(tunnel , (uint8_t =)buf,

1 /+ FALLTHRU x/
case LEN: /x i: get length/literal/eob next x/
j = c—>sub.code.need;

7.3.6 Else Explanation()

This comment just repeat, usually in simpler terms, the condition in the corresponding if that may be far
away.

if (link_state != BMSRLSTATUS) {
/x link down again x/

} else {
/x link stays up x/
if (slave—>delay = 0) {
if (!have_locks)
return 1;

7.4 Data Flow()

Those comments are about the flow of value, not about the type of those values.

timeout_id_t msd_timeout_id; /x id returned by timeout() x/
I bufcall_id_t msd_reioctl_id; /x id returned by bufcall() x/
bufcall_id_t msd_resched_id; /x id returned by bufcall () */
int msd_baud_rate; /+* mouse baud rate x/
DONTCARE(tcp—>tcp-xmit_hiwater); /x Init in tcp_init_values x/
1 DONTCARE(tcp—>tcp_timer_backoff); /x Init in tcp_init_values x/
DONTCARE(tcp—>tcp_last_recv_time); /x Init in tcp_init_values x/

tcp—>tcp_last_rcv_lbolt = 0;

11 /% used by trees.c: x/
/+x Didn’t use ct_data typedef below to suppress compiler warning */
struct ct_data_s dyn_ltree [HEAP SIZE]; /+ literal and length tree x/
struct ct_-data_s dyn_dtree[2«D_CODES+1]; /* distance tree */

int nat_rev; /x 0 = forward, 1 = reverse x/
I int nat_redir; /+ copy of in_redir x/
} nat_t;

70

unsigned first_offset ; /x offset into mapping[first]

unsigned last_to; /x amount of mapping[last] x/
I unsigned short offset ; /% offset into received data st
unsigned char unmarshall; /+* unmarshalling phase x/
I ibtl_cq_impl_flags_t cq-impl_flags; /x dynamic bits if cq */
/% handler runs in a thread =/
int cq_in_thread; /+* mark if cq handler is to x/

/+ be called in a thread x/

int zsasoftdtr = 0; /x if monzero, softcarrier raises dtr at attach x/
int zsb134_weird = 0; /x if set, old weird B13/ behavior x/

lint g_zsticks = 0; /+ if set, becomes the global zsticks wvalue x/
int g_nocluster = 0; /x if set, disables clustering of received data x/

hrtime_t vdev_last_try; /x last reopen time */
I boolean_t vdev_nowritecache; /+ true if flushwritecache failed x

The Spark Ada [] language allows to express advanced data-flow properties like describing how a value
must “derives” from other variables (like the other parameters or global variables), and only from those
variables, and checks if the implementation actually does this and only this. It also helps to understand the
program by knowing from where a complex value come. It is a sort of assert on data-flow properties. It is
like being able from the PL to interact with external static analysis data-flow checkers.

// Ada code, in the following count correspond to a global variable
procedure (int X, int *Y)

/* Y derives from X and count */
begin

end

This can useful for the interface of functions but also for fields in structure, to explain how a field is filled
in respect to other parts of the code.

struct dev_info {

int devi_pm_dev_thresh; /+x 7device” threshold x/

int xxx = 12; /x threshold for wait time x/

In the preceding comments a tool could check that the variables are used only as a threshold, that is
used with specific comparison operators in an expression (“less than” C operator).

int files_given; /x if this is zero, use stdin x/;

1/
x Mailbox message types, for wuse in mboxzsc_putmsg() and mboxsc_getmsg() call
x NOTE: Clients should not use the MBOXSC.NUM-MSG-TYPES value, which
* i1s used intermnally to simplify future code maintenance.

71

ore x/

»

*/

#define MBOXSCMSGREQUEST 0x01
#define MBOXSC MSG REPLY 0x02
#define MBOXSCMSG_EVENT 0x04

/x

* key under—construction record

x — passed to the request_key actor if supplied
*/

struct key_construction {

/+ default payload length for quota precalculation (optional)
x — this can be used instead of calling key_payload_-reserve(), that
* function only mneeds to be called if the real datalen is different
*/

size_t def_datalen;

7.4.1 Unused() and ARGSUSED()

Those comments are not really used to describe a relationship but a lack of relationship.

unsigned int x:2; /x unused bits x/
unsigned short closing_wait2; /+x no longer used... x/
#define ACE_WORD_SWAP_BD 0x04 /% not actually used %/

Because this preceding comment annotate a cpp level entities, tools can not check the claim in the
comment.

int aio_lio_opcode; /+x LIO opcode x/
I int aio_reqprio; /+x Request priority — ignored x/
struct __aiocb_private _aiocb_private;

} oaioch_t;

int histcounter_type; /+ size (in bits) and sign of HISTCOUNTER x/
1 int spare [2]; /x reserved x/
b
size_t pr_locked; /* pages of locked memory x/
I size_t pr_pad; /x currently unused x/

uint64_t pr_hatpagesize; /x pagesize of the hat mapping */

/*LINTED table used in scsb.o and system utilitiesx*/
static uchar_t scb_10_fru_offset[] = {

1 /%
x If this module needs a periodic handler for the interrupt distribution , it
x can be added here. The argument to the periodic handler is not currently

72

x used, but is reserved for future.
v/

static void
apic_post_cyclic_setup (void *arg)

{
NOTE (ARGUNUSED(arg))

/% cpu_lock is held x/

A specific annotation ARGUSED is often used, mainly in OpenSolaris to more formally express those
conditions. From the Lint [| manual: /* ARGUSEDn *//: “Makes lint check only the first n arguments for
usage; a missing n is taken to be 0 ...”

Il /x ARGSUSED %/
int
t1394 _free_addr (t1394_handle-t t1394_hdl, t1394_addr_handle_t xaddr_hdl,
uint_t flags)
{

11 /«x ARGSUSEDS3x /
static int
ses_ioctl(dev_t dev, int cmd, intptr_t arg, int flg, cred_.t *cred_p, int xrva

{

ses_softc_t x*xssc;

Note that lint use a different angle on annotations. Those annotations are used not to help the tool to
find bugs, but instead to shut-down lint to not report false positives, to not generate a warning about unused
args. The same was true with the FALLTHRU annotation described before.

7.5 Other code-data correlations()

When two pieces of code need to work together, and when the modification of one such piece must entail
the modification of the other piece, there is a coupling. Programmers try to avoid coupling, as one wants to
separate concerns as much as possible so local modifications do not entail a massive reorganization of the
source code. Nevertheless, it is hard to avoid coupling. In such cases, it is also hard to get support from the
PL to enforce coupling. It requires non-local reasoning and working at the C meta-level, which C does not
permit (but Lisp can).

x Note: The descriptor_type and Type fields must appear in the identical
x position in both the struct acpi_namespace_node and union acpi_operand_objed
* structures.

*/

/*

x NOTE: If you change the size of this eachproc structure you need
* to change the definition for FACH QUAD_SIZE.

*/

7.5.1 DataClump()

Some variables must sometimes work together. This is called by Martin Fowler [] the data-clump bad smell
(because it’s a bad practice, programmers should gather those variables in a separate class).

73

~

static unsigned insize; /x wvalid bytes in inbuf x/
static unsigned inptr; /+ index of next byte to be processed in inbuf x/
static unsigned outcnt; /x bytes in output buffer x/

insize = 0; /x wvalid bytes in inbuf *x/
inptr = 0; /x index of mext byte to be processed in inbuf
outcnt = 0; /+ bytes in output buffer x/
1 u_int64_t xmitPackets; /x number of packets xzmit *x/
u_int64_t xmitOctets; /x number of octets zmit */
u_int64_t recvPackets; /+x number of packets received x/

u_int64_t recvOctets; /+ number of octets received x/

}s

struct compstat {

I u-int32_t unc_bytes; /x total uncompressed bytes x/
u-int32_t unc_packets; /x total uncompressed packets */
u_int32_t comp_bytes; /x compressed bytes x/
u_int32_t comp_packets; /+* compressed packets x/
caddr32_t cm_param ; /% mech. parameter x/
I size32_t cm_param_len ; /+x mech. parameter len */

} crypto_mechanism32_t;

typedef struct xfs_attr_leaf_ name_local {

__bel6 wvaluelen; /+x number of bytes in wvalue x/
__u8 namelen ; /x length of name bytes x/
1 _-u8 nameval [1]; /x name/value bytes */

} xfs_attr_leaf_name_local_t;

I /+ Input stuff. =/

struct string sprompt; /x Output string for input area. */
struct string xinput; /x Input string for read request. x/
struct raw3270_request *read; /x Single read request. x/

struct raw3270_request xkreset; /x Single keyboard reset request. x/
unsigned char inattr; /x Visible/invisible input. */

7.5.2 Structlnitialize()

When fields are related, the programmer sometimes must initiliaze all of them at the same time. In such case,
to make the difference with field tuning, the programmer put a comment before a set of related assignements.

/*

* setup parameter status

*/

pcon.pc_len = SMT MAX INFO_LEN ; /* maz para length x/
pcon.pc_err = 0 ; /x no error x/

pcon.pc_badset = 0 ; /+* no bad set count x/
pcon.pc.p = (void *) (smt + 1) ; /x paras start here x/

74

We should then check that programmers don’t forget to set a field. C++ solves this problem by intro-
ducing the constructor concept.
7.5.3 Lock variables correlations()

Comments are used to describe in a structure which fields must be protected by which lock as OS code use
fine-grained locking.

/+* update a key of this type (optional)
x — this method should call key_-payload_-reserve() to recalculate the
* quota consumption
x — the key must be locked against read when modifying
*
/

int (xupdate)(struct key xkey, const void xdata, size_t datalen);

struct us_data {
/+ The device we’re working with
x* It’s important to note:

* (o) you must hold dev_-mutexr to change pusb_dev

*/

struct mutex dev_mutex; /+x protect pusb_dev x/
struct usb_device xpusb_dev; /+ this usb_device x/

typedef struct dmu_buf_impl {
I /*
x The following members are immutable, with the exception of
* db.db_data, which is protected by db_mix.

*/

B /x
x Journal tail: identifies the oldest still—used block in the journal.
x [j_state_lock]

*/

unsigned long j-tail;

[frame=single]
/* Sequence number for this transaction [no locking] */
tid_t t_tid;

typedef struct scsa2usb_cpr {

callb_cpr_t cpr; /+ for cpr related info x/
struct scsa2usb_state xstatep; /x for scsa2usb state info x/
I kmutex_t lockp; /x mutex used by cpr_info_t x/

} scsa2usb_cpr_t;

BEES
* molock_hold_lvb — hold on to a lock value block

x @lock: the lock the LVB is associated with
x @lvbp: return the Im_lvb_t here

*

* Returns: 0 on success, —EXXX on failure

75

*/

static int nolock_hold_lvb(void *lock, char xxlvbp)

1 /xx
x struct reference — TIPC object referemce entry
x @Qobject: pointer to object associated with reference entry
* @lock: spinlock controlling access to object
x @data: reference wvalue associated with object (or link to next unused ent

*/

struct reference {
void xobject;
spinlock_t lock;

~
i

Locking key to struct socket:

(a) constant after allocation, mo locking required.
(b) locked by SOCK_LOCK(so).

(¢) locked by SOCKBUF_LOCK(&so—>so_rcv).

(d) locked by SOCKBUF-LOCK(&so—>so_snd).

(e) locked by ACCEPTLOCK().

(f) mot locked since integer reads/writes are atomic.
(g) used only as a sleep/wakeup address, mno wvalue.
(h) locked by global mutex so_global_-mtz.

* Xk K X X K X X X

*
™~

struct socket {

int so_count ; /x (b) reference count x/
short so_type; /+x (a) generic type, see socket.h x/
short so_options; /x from socket call, see socket.h x/

struct mbuf xsb_sndptr; /x (¢/d) pointer into mbuf chain x/
u_int sb_sndptroff; /x (c/d) byte offset of ptr into chain
u_int sb_cc; /x (c¢/d) actual chars in buffer x/

The preceding comment shows great informal annotations.
Lock lint can provide such functionality, but arguably with more tedious annotations:

// from lock_lint (solaris) manual
mutex_t lockl;
struct foo {
mutex_t lock;
int mbrl, mbr2;
struct {
int mbrl, mbr2;
char* mbr3;
} inner;
int mbr4;
};
NOTE (MUTEX_PROTECTS_DATA(lockl, foo::{mbrl inner.mbri}))
NOTE (MUTEX_PROTECTS_DATA(foo::lock, foo::{mbr2 inner.mbr2}))
NOTE (SCHEME_PROTECTS_DATA("convention XYZ", inner.mbr3))

76

1 /x
x Access to this queue is synchronized by the free page queue lock.
+/
static TAILQHEAD(, vm._reserv) vm.rvq.-partpop =
TAILQ-HEAD_INITIALIZER (vin_rvq_partpop);

/x

x Protects updates to hugepage_freelists , mnr_huge_pages, and free_huge_pages
*/

static DEFINE_SPINLOCK(hugetlb_lock);

A comment can also be used to say that a variable does not need to be correlated to a lock.

int free_touched; /x updated without locking */

Again, as this relation is at the struct definition level, C can’t express those kind of invariants. It requires
reflexivity

the MUVT [] tool tries to detect such correlations.

Maybe a better alternative to those comments would be to group related variables inside a monitor [].
That way access to those variables would be automatically protected without requiring any extra checking.
Why OS programmers don’t use monitors ? Because they are more heavyweight than locks which are more
quick and dirty.

Ve

x Hashtable for mapping Object keys to int wvalues. The methods of this

x hashtable are mnot synchronized, and if used concurently must be externally
x synchronized

*/

7.5.4 Protocol()

/x
x Close a cache and release the kmem_cache structure
x (must be used for caches created using kmem_cache_create)

*/

/x
x Note that this function only works on the kmalloc_node_cache
x when allocating for the kmalloc_node_cache.

*/

If a formal annotation describing which functions must be used with which function (or which deallocator
to use after using a specific allocate), bugs could be found. For instance one can enforce that the programmer
do not call directly free but instead the appropriate wrapper.

/* @source: */
int kmalloc_node_cache();
/* @sink: kmalloc_node_cache() */

int free_node_cache();

Such protocols can be inferred by works from Dawson Engler [] or the PR-miner [] tool. But it may still
be better if programmer could provide formally such semantic information.

77

7.6 Repeat()

Programmers sometimes prefer to repeat some code, especially data structure definitions, and put it in
comments, so that they don’t need to have to switch between two places. This means that the navigation
and visualization capabilities of their editors, or their knowledge of it, are poor. Note that this is a dangerous
practice as there is nothing that enforces that the commented copy of the definitions is updated when the
original is updated. The CloneCode category has the same problem, and may also benefit from special
annotations, as described later.

Those kinds of comments may be obsolete and corresponds to very old code (to an older programming
era), now that modern programmers can have multiple windows and even multiple screens. But, even with
those features, advanced IDE or editors do not always make it useful or easy to efficiently use the provided
screen space.

asy—>asy_cflag &= “CBAUD;
1 if (asy—asy_bidx > CBAUD) { /x > 38400 uses the CBAUDEXT bit =/
asy—>asy-cflag |= CBAUDEXT;

7.6.1 Repeat type()

Programmers sometimes repeat the typedef definition or structure definition.

compat_caddr_t ptr; /x unsigned charx x/

In fact we didn’t find the typedef repetition in OS (but found some in Mozilla) maybe because for
instance Linus Torvalds advocates strongly against the use of typedefs for most cases (see the Linux coding
style document [?]).

int
ext2_inactive (ap)
11 struct vop_inactive_args /x {
struct wvnode *a_vp;
struct thread *xa_td;

} x/ xap;

struct vnode *xvp = ap—>a_vp;

An IDE can help by providing a tooltip to show the definition of the structure or typedef alias. The
Intellisense [] (intelligent completion) editor feature is also now very often used to assist programmers to
choose which field of a structure or which method they want to use. With this feature, the programmer does
not have to look at the documentation of the API, or navigate to the header file, or remember the name of
those fields and methods.

7.6.2 Repeat parameters()

if (mode_buf != NULL) {
scsi_mode_sense (csio ,
1 Jxretriesx/4,

probedone
error = bus_.dma_tag_create(
/* parent %/ NULL,

/x alignment x/ 1,

78

/* boundary x/ 0,

1 /x lowaddr x/ ADV_EISA MAX DMA_ADDR,
/+ highaddr * / BUS.SPACE MAXADDR,
/x filter */ NULL,
/x filteraryg * / NULL,
/* mazsize */ BUS_SPACE_MAXSIZE_32BIT,
/* nsegments x/ "0,

if ((ccb—>ccb_h.status & CAMDEV.QFRZN) != 0)
cam_release_devq(ccb—>ccb_h.path,
1 /xrelsim_flags*/0,
/xreductionx/0,
/xtimeoutx/0,
/xgetcount_onlyx/0);

This comment also shows yet another time the problem of using ’int’ for everything, and here maybe also
the need for unit type.

There are 2 solutions that can fulfill the need to know the parameter of a function, a tool-based one
and language-based one. The tool-based one, present in IDE like Eclipse, allows to automatically ,when
putting the cursor on the name of the function, to see in a tooltip the prototype of the function (and so of its
arguments). The language-based one, called labeled argument [], or keyword argument, or named argument,
is present in language like Smalltalk or OCaml. It allows at the call site to specify the name of the argument
as in:

int *p;

int *q;

strcpy(dest:p, src:q);

//strcpt(src:q, dest:p); is also valid.

This feature also allows to give the arguments in any order.
Another solution, when a function has a very long list of argument, is to introduce a structure representing
the arguments.

struct arg_foo = {
int timeout;
int* parent;

};

int main() {

struct arg_foo x = {
.timeout = 1;
.parent = new(1);

foo(x);

}

7.7 Designator()

C allows to construct complex structure or array via initializers. But, the first version of this feature was
not good enough and programmers added comments to make things clearer. Later a gcc extension called
designator was provided that almost makes such comment useless. This shows again that maybe the repeated

79

use of specific comments by programmers inspired a new programming feature. Maybe we can trace many
PL features as improvements over comments. Maybe the full history of PL and software engineering was to
turn comments into something that tools could use (we have of course no proof of that).

7.7.1 DesignatorField()

struct sess session0 = {
&pid0, /+ s_sidp x/
0, /+x s_lock =/

{ TDIRECT, SIP.MEDIA FIXED, seagate, ”ST39140%”, "s" 1},
1 /xquirksx/0, /xmintags*/2, /xmaztags*/2

1 -1, /% .mazx_rretries [Note 3]
*/
-1, /% .maz_wretries [Note 3]
*/
{0x44, 0x44, 0x46, 0x46}, /+ .densities Density codes [Note 1]

The need to build complex value as-is may be related to the Font category where one want to build a
complex font object but use comments for that purpose.

Note that the gcc extensions makes it possible to check for errors. It is very easy to mix-up entries, or
to forget to update the code if the order of the fields change in the structure definition.

This can be written, with the gcc extension as:

struct foo x = {

.max_rretries = -1,
.max_wretries = -1,
.densities = {0x44, 0x44, 0x46, 0x46}

};

This can be written also as a series of affectations, but this force the programmer to repeat the name of
the variable each time which is tedious. Note that PL like Pascal or OCaml provide the 'with’ feature that
avoids this problem. Also for C, the statement affections can not be used at the toplevel, for instance to set
global static variables.

Those kinds of comments appears mainly in OpenSolaris. Both Linux and FreeBSD use extensively the
gce designator extension. The question is why OpenSolaris does not use this feature 7 Maybe OpenSolaris
programmers wanted to make their code more portable and independent of gec (maybe the Sun or Intel
compiler do not support such a feature). In that case it is maybe better to provide, instead of a special
feature, a comment annotation that can be used by external checkers. Another solution would be to extract
from the gce compiler this feature and make it independent of gcc and plug-gable into different compilers.
This may be the approach advocated by extensible compilers like Xoc [1].

80

7.7.2 DesignatorMethod()

A specific use of field designators is to mimic object-oriented classes in C by using structures with different
function pointer fields to represent the different method of a class.

struct devmap_callback_ctl agp_devmap_cb = {

I DEVMAP_OPSREV, /x rev x/
agp-devmap_map , /* map x/
NULL, /x access x/
agp_devmap_dup , /x dup x/
agp_devmap_unmap , /* unmap */
}s
struct cpu_functions armlO_cpufuncs = {

/x CPU functions */

cpufunc_nullop , /x flush_prefetchbuf */
armv4_drain_writebuf , /x drain_writebuf */
cpufunc_nullop , /x flush_brnchtgt_C */
I (void x)cpufunc_nullop , /x flush_brnchtgt_E */
11 nodev , /x cb_ioctl %/
nodev , /% cb_devmap */
nodev , /* cb_mmap */
nodev , /* cb_segmap */
nochpoll , /x cb_chpoll %/
ddi_prop_-op, /x cb_prop_op x/
NULL, /x bus_dma_ctl x/
tphei_ctl /x bus_ctl x/
I ddi_bus_prop_op, /x bus_prop_op */
NULL, /x bus_get_eventcookie x/
NULL, /+ bus_add_eventcall x/
CBREV, /x rev x/
nodev , /x int (xcb_aread)() *x/
I nodev /x int (xcb_awrite)() *x/

}s

This one is also an example of repeat type.
This can be written, with the gcc extension as:

struct cpu_functions armlO_cpufuncs = {

/* CPU functions */

.flush_prefetchbuf = cpufunc_nullop,
.drain_writebuf = armv4_drain_writebuf,
.flush_brnchtgt_E = cpufunc_nullop,

81

This can of course also be provided by another PL feature, object-oriented class. In C++ one does not
even need to use designators for this. One can simply inherit from a super-class and override or not, by
using the same method name, the different methods like this:

class armlO_cpufunc : cpu_functions {

void public flush_prefetchbuf(...) { ... }

void public drain_writebuf(...) {
// code of armv4_drain_writebuf directly, which avoid
// to introduce an extra name like armv4_drain_writebuf

}

So maybe comments led to the invention of designators, which later led to the invention of Object-oriented
(but I doubt that).

7.7.3 DesignatorArray()

Designators can also be used with arrays, but are less useful.

unsigned short snd_gfl_atten_table [SNDRV_.GF1_ ATTEN._TABLESIZE] = {
114095 /« 0 x/,1789 /+ 1 x/,1533 /x 2 x/,1383 /x 8 /1277 /+ 4 x/
1195 /x5 /1127 /« 6 */,1070 /« 7 %/,1021 /x 8 «x/,978 /« 9 %/,
0xc1b40000 , Jx [147] —22.5 dB */
I 0xc1b00000 , Jx [148] —22.0 dB x/
0xclac0000 , /% [149] —21.5 dB x/
0xc1a80000 , /x [150] —21.0 dB %/
{ 0, (sy-call_t *)linux_.removexattr, AUENULL, NULL, 0, 0 }, /x 285 |= linuz_rem
I { 0, (sy-call_t *)linux_lremovexattr , AUENULL, NULL, 0, 0 }, /x 286 |= linuz_lrer
{ 0, (sy_call_t x)linux_fremovexattr , AUENULL, NULL, 0, 0 }, /x 237 |= linux_fren
{ AS(linux_tkill_args), (sy-call_t x)linux_tkill , AUENULL, NULL, 0, O |},
/% 288 = linux_tkill x/
{ 0, 0, 0, RWREADER, 0 }, Jx 025C 092 %/
{ 0, 0, 0, RWREADER, 0 }, /x 0x5D 093 x/
I { 0, 0, 0, RWREADER, 0 }, /x 0z5E 094 x/
{ 0, 0, 0, RWREADER, 0 }, /x 0z5F 095 x/
Note the use of both hexadecimals and numerals for the index.
1 { Oxaa, Oxaa, Oxaa }, v 7 2/3 2/38 2/3 White x/
{ 0x55, 0x55, 0x55 }, /x & 1/3 1/8 1/3 Gray x/
{ 0x55, 0x55, Oxff }, /x 9 1/3 1/3 1 Bright Blue %/
Here it shows also maybe the need for a real color type (a Unit type comment example again).
R X86_SOCKET_754 Jx 0600 */
X86_SOCKET_940, /s 0b01 */
X86_SOCKET_754, /x 0b10 %/
X86_SOCKET 939 /x 0b11 %/
I

82

1 12, /% 0x2B: serial x/

0, /x 0x2C: timer/counter 0 */
0, /+ 0x2D: timer/counter 1 %/
14, /% 0z2E: uncorrectable ECC errors x/

/+ 093 =/ { IPLDONTCARE, 0, 0, 0, NULL, NULL },
¥ /x 094 =/ { IPLDONTCARE, 0, 0, 0, NULL, NULL },
/x 095 %/ { IPLDONTCARE, 0, 0, 0, NULL, NULL },

This can be written, with the gcc extension as:

int fool] = {

[093]

= { IPI_DONTCARE, 0, 0, O, NULL, NULL },
[094] = { IPI_DONTCARE, 0, O, O, NULL, NULL },
[095] = { IPI_DONTCARE, 0, O, O, NULL, NULL },

[100..110] = { IPI_DONTCARE, O, 1, O, NULL, NULL },

The use of designator arrays is useful when one use range array designator, like in the preceding example
for the range 100 to 110.

I /+x 8 x/ OxFE80, OxFE81, 0xFE82, 0xFE83, 0xFE84, 0xFE85, 0xFE86, 0xFES87,
0xFE88, 0xFE89, OxFESA, OxFE8B, OxFE8C, 0xFESD, OxFESE, O0xFESF,

/+* 9 x/ 0xFE90, O0xFE91, 0xFE92, 0xFE93, 0xFE94, 0xFE95, 0xFE96, O0xFE97,
0xFE98, 0xFE99, O0xFE9A, O0xFE9B, O0xFE9C, O0xFE9D, OxFE9E, OxFE9F,

/x A x/ 0xFEAO, O0xFEAl, OxFEA2, OxFEA3, OxFEA4, O0xFEA5, 0xFEA6, OxFEATY,
0xFEA8, O0xFEA9, OxFEAA, OxFEAB, OxFEAC, OxFEAD, OxFEAE, OxFEAF,

7.7.4 DesignatorHashArray()

int foo[] = {
NULL, /+ 0x03, Reserved x/
I AcpiRsGetVendorLarge , /+ 0x04, ACPILRESOURCE_NAME VENDOR_LARGE
AcpiRsConvertMemory32 , /+ 0x05, ACPLRESOURCENAME MEMORYS32 x/
}

" ISPOPMAP(0x03, 0x03), /* 0x71: MBOXFABRICLOGOUT x/
ISPOPMAP(0x0f, 0x0f), /* 0z72: MBOX_INIT-LIP.LOGIN x/
ISPOPMAP(0x00, 0x00), /% 0z73: %/

static char xipsec_policy_failure_msgs|[] = {

I /+ IPSEC_POLICY_NOT_NEEDED x/
"%s : .Dropping._the._datagram._because._the_incoming._packet.”
"is Y%s,.but_the_recipient._expects_clear;._Source %s,.”

83

"Destination %s.\n”,

/« IPSEC_POLICY -MISMATCH x/

Programmers sometimes (ab)use the designator feature (or comment) to construct hash-tables (in fact to
mimic hash-tables) via arrays. As C does not provide any hash-table implementation by default, programmers
use the following trick:

This requires first to define the symbolic names that would be the keys to this hash-table:

#define IPSEC_POLICY_NOT_NEEDED 0xO
#define IPSEC_POLICY_MISMATCH Ox1

Then, with this hash-table/array built, the programmer can access from a given key the relevant infor-
mation:

char *message = ipsec_policy_failure_msgs[IPSEC_POLICY_NOT_NEEDED] ;

Note that even if this works (by using comments, or gcc designators), mistakes can be made. Indeed,
the use of cpp (again) is error-prone and nothing is really enforced about this special kind of hash-table.
For instance, nothing forbid to access those tables directly with integers instead of using the cpp symbolic
constants. It would be better to have a direct support for fast hash-tables that does not involve the use of
CPp macros.

7.8 ByteRange()

There are lots of such comments but they are almost all in the same few files. This shows again one of
the problem in our sampling approach: a file with lots of (possibly auto-generated) comments entail a bias.
Maybe the sampling should try to accommodate such case, for example by trying to modulate the sampling
by infering the difficulty of the comment, the time it takes to write it. A small comment, or in this case very
short comment, with no words at all should take normally less time to write.

Another example of auto-generated comments was described in the Font category.

static const unsigned char charset2lower [256] = {

0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, /x 0x80—0x87 x/
I 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, /x 0x88—0z8f x/
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, /x 0290—0xz97 =/
0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, /x 0298—0z9f */

}
0xCD, 0 x40 ,0x09,0x18 ,0x05 ,0xFD,0xED, 0x2C /% 0C50: @ ... ,
¥ 0xA2,0xFF,0xCD,0x37,0x0C,0x26,0x00,0xC3, /% 0C58: 7.6, o
0x12,0x0D,0xCD,0x40 ,0x09,0x26 ,0x00 ,0xC3, Jx 0C60: .. @.6. x/

Il /x U+1FDBO +/ 1L ,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL, /x U+I1FDBF x
/+ U+IFDCO +/ 1L ,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL ,IL,IL, /* U+1FDCF x
/* U+1FDDO */ 1L ,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL, /« U+IFDDF x

84

Programmers, or tools, sometimes use a single byte address, or a range, or put the beginning of the
range in comment at the beginning of the line and another one for the end of range at the end of the line.
Sometimes the address is absolute, and sometimes relative to a constant as in U0x10+. The address is usually
in hexadecimal.

7.9 ByteAddress()

In big structures, programmers sometimes put the byte address of a field. This may show again that C may
not be low-level enough and that programmers want to express properties at the byte level.

uint32_t micibdbar_reg; /x 60h — 63h x/
uint8_t miciciv_reg; /x 64h — 64h x/
I uint8_t micilviv_reg; /* 65h — 65h x/
uint16._t micisr_reg; /x 66h — 67Th x/
uint16_t micipicb_reg; /x 068h — 69h x/

typedef struct _txdma_mailbox_t {

tx_cs_t tx_cs; /x 8 bytes x/
tx_dma_pre_st_t tx_dma_pre_st; /x 8 bytes x/
tx_ring_hdl_t tx_ring_hdl; /x 8 bytes x/
I tx_ring_kick_t tx_ring_kick; /x 8 bytes x/
uint32_t tx_rng_err_logh; /x 4 bytes x/

OS code contains many comments about the precise byte layout of large structures such as the one above.
Such layouts about devices, network protocols, file systems, etc. are specified in external documents. Such
a structure has to follow a predefined layout, e.g., byte 65h must be the “Microphone In Last Valid Index
Value” (MICILVIV) register. Programmers usually put the specification of the layout in comments, e.g., /*
65h-65h */, and /* 66h-67h */. To follow the specification, programmers have to compute the exact number
of bytes and use the right integer type to declare the storage for each field, e.g., 66h-67h is 2 bytes therefore
it should use type uint16_t. Such calculation can be Given such specifications, it is tedious and error-prone
to write the structure defition when programmers need to handle lots of such structures, each with hundreds
of bytes. If the programmer makes a mistake in the calculation, the program can read or write values to the
incorrect field and mess up the layout, introducing bugs.

If we design an annotation tag to allow programmers to mark such important byte addresses, e.g., /*
@@byteaddr 66h-67h */, then we can compare if the code follows the layout specification easily and automat-
ically. Such annotations can make the bug detection process easier and more accurate. In addition, as it
is error-prone and inconvenient for developers to calculate how many bytes each field should be, it may be
useful to design a domain specific language to semi-automatically generate the structure based on the layout
specification.

As typedef are used for most of the fields, those sizes are not so easy to know. Programmers can not use
the sizeof() feature of gce as they want to get the value at compile-time and print it in the file. Maybe the
need, again, for some advanced compile-time reflexion capability, is important.

struct ohci_registers {

fwohcireg_t ver; /+ Version No. 0xz0 x/

fwohcireg_t guid ; /+* GUID_ROM No. 0xz4 =/

fwohcireg_t retry ; /x AT retries 0x8 */
#define FWOHCLRETRY 0x8

fwohcireg_t csr_data; /+x CSR data Ozc */

#define FWOHCIGUID H 0x24
#define FWOHCIGUID_L 0x28

85

fwohcireg_t guid_hi; /x GUID hi 0x24 x/

fwohcireg_t guid_lo; /x GUID lo 0x28 x/
fwohcireg_t dummy0[2]; /% dummy 0x2c¢—0x30 %/
fwohcireg_t config_rom ; /+ config ROM map 0xz34 */
fwohcireg_t hcc_cntl_clr; /x HCC control clr 0z54 x/
#define OHCI.LHCCBIBIV (1 << 31) /* BIBimage Valid *x/
#define OHCIHCCBIGEND (1 << 30) /* noByteSwapData */
#define OHCIHCCPRPHY (1 << 23) /+ programPhyEnable x/
1 fwohcireg_t it_int_clear; /x 0294 */
fwohcireg_t it_int_mask; /x 0x98 «/

Note in the preceding comments the use of macros to access some entries by address rather than field
names, the use of dummy variables to pad bytes, the use of bitsets here put next to the corresponding
variable (a kind of code correlation), and the notion of low and high bytes.

u32 MacRxState; Sx 02220 x/
u32 padl0[7];

I u32 CpuBCtrl; Jx 02240 =/
u3?2 PcB;
u32 padll [3];
u32 SramBAddr; /x 02254 x/

Here the address is put at regular intervals, not for each field.

How to check that the comment is right ? Again it would require some reflexion capability over the
structure of the program itself.

C can be used to conveniently mmap disk data-structure in memory, and in that case there is a precise
disk format with bytes at specific place. Those byte address comments serve such a purpose. For instance
in JES (a filesystem) one can find such code:

/*

* The journal superblock. All fields are in big-endian byte order.
*/

typedef struct journal_superblock_s

{

/* 0x0000 */
journal_header_t s_header;

/* 0x000C */

/* Static information describing the journal */
__be32 s_blocksize; /* journal device blocksize */
__be32 s_maxlen; /* total blocks in journal file */
__be32 s_first; /* first block of log information */

An extension of gee (yet another one) called ’offsetof’ allows to know at compile-time the relative byte
address of fields which may make obsolete the previous comments.

struct foo {

86

int x;

float y;

int :4 z1; //bitfield
int :12 z2;

double w;

+

int address = offsetof(foo, y); // should be 4 on as int x takes 4 bytes

7.10 Crossref()

if (priv—>wep_is_on) {
I /x There’s a comment in the Atmel code to the effect that this
is only wvalid when still using WEP, it may need to be set to
something to use WPA x/
memset (mib.key RSC, 0, sizeof(mib.key_-RSC));

The cast to int32_t does not result in any loss of information because
the number of logical blocks in the file system is limited to
* what fits in an int32_t anyway.

*/
#define Iblkno (fs, loc) /% calculates (loc / fs—>fs_bsize) x/
((int32_t)((loc) >> (fs)—>fs_bshift))
1 /x

* The same argument as above applies here.

*/
I# define numfrags(fs, loc) /x calculates (loc / fs—>fs_fsize) x/

¥ *

/x See 7auto” comment in init_setup x/
for (i = 1; i < MAX.INIT_ARGS; i++)

/+x see below for wvalues of (this wvariable) *x/

/+x see comment in struct sock definition to understand why we need
x sk_prot_creator

*/

7.11 Clone()

Programmers often copy-paste code but feels the need to describe from where the copy, the clone, come
from.
Ve

x FKS: This is a one—on—one copy of sbpro_audio_set_channels

x (x) Modified it!!

87

*/

static short ess_audio_set_channels(int dev, short channels)

{

sb_devc xdevec = audio_devs|[dev]—>devc;

pci_write_config_dword (de—>pdev, PCIPM, pmctl);

1 /x de4z5.c delays, so we do too */
msleep (10);

/% Similar to remap_pfn_range() (see mm/memory.c) ... x/

/+ derived from mm/shmem.c and fs/ramfs/inode.c ... x/

1/
x The TCP normal data output path.
x* NOTE: the logic of the fast path is duplicated from this function.
«/
static void
tep.wput_data(tcp_t *tcp, mblk_t xmp, boolean_t urgent)

{

Note that this comment also express a performance semantic property that a profiler could check (see
the Time and Space properties category).

There are lots of tools for clone-detection like CP-miner [] that try to detect clones, blindly. But they
could also use the semantic information provided by the programmer which would make it far easier. Also,
after each change on a function clearly annotated with a CloneCode comment, it would be very fast to
detect his clones and warn the user that he should also maybe modify the other code in the “clone group”.
We could have a copy-paste oriented programming paradigm where copy-pasting would not be anymore a
problem but in fact embraced. Those annotations could even be for some parts auto-generated by the IDE
who knows when the user copy-paste big chunk of code (yet another example of synergy through annotations
between tools, here the IDE, VCS, and CP-miner).

#ifndef NODUMMY_DECL
struct internal_state {int dummy;}; /+ for buggy compilers */
#endif

#endif
W/« —— dinfutil . h x/

#ifndef NODUMMY DECL
struct inflate_codes_state {int dummy;}; /* for buggy compilers x/
#endif

The comment indicates the end of a copy paste. It is also a EndOfXXX. Note that the code is copied
from another software (from gzip) and so keeping both version synchronized is even more harder. Some VCS
provide functionality to handle subsystems, and branches, but do not support such fine grained requirement.
As in open-source one can easily include code from another software, and that software evolves a lot, keeping
the version up-to-date and bug-free is harder.

88

/% ..
** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
** and is currently maintained by
*%
** Gerard Roudier <groudier@free.fr>
Kok
** Being given that this driver originates from the FreeBSD version, and
** in order to keep synergy on both, any suggested enhancements and corrections
** received on Linux are automatically a potential candidate for the FreeBSD
** yersion.
Kok
** The original driver has been written for 386bsd and FreeBSD by
*% Wolfgang Stanglmeier <wolf@cologne.de>
** Stefan Esser <selmi.Uni-Koeln.de>
*k
** And has been ported to NetBSD by
*% Charles M. Hannum <mycroft@gnu.ai.mit.edu>
Kok
**% NVRAM detection and reading.
*% Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*k
** Added support for MIPS big endian systems.
*% Carsten Langgaard, carstenl@mips.com
*%k Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
*%
** Added support for HP PARISC big endian systems.
*k Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
[xxxFkkxkkkkxkxkk %% ORIGINAL CONTENT of ncrreg.h from FreeBSD KoKk F KKK KKKk Kk [
struct ncr_reg {
/*¥00*/ u8 nc_scntlO; /* full arb., ena parity, par->ATN */
/*01%/ u8 nc_scntll; /* no reset */
#define ISCON 0x10 /* connected to scsi */
#define CRST 0x08 /* force reset */
#define IARB 0x02 /* immediate arbitration */
/*
* End of ncrreg from FreeBSD
*/
7.12 Aspect()

Configuration aspect.

Ve

*

*/

(DV) = only defined for Da Vinci
(ML) = only defined for Monalisa

89

7.13 Misc()

I
#endif

int
int

matched ;

Seenzero

/+* matched the wvalue x/
/x saw a 0 bestfree entry x/

lint xdf_fbrewrites;

/* how many times was our flush block rewritten x/

1 /x

x List of PMC owners with system—wide sampling PMCs.

*/

static LIST.HEAD(, pmc_owner)

pmc_ss_owners;

#define ZSRR0_CD 0x08 /+* CD input (latched if R15.CD
"# define ZSRRO_SYNC 0x10 /+* SYNC input (latched if R15.8
#define ZSRRO_CTS 0x20 /x CTS input (latched if R15.C1T
#define ZSRRO_TXUNDER 0x40 /+x (SYNC) Xmitter underran x/

I u_char used ; /x # slots in use x/
u_char avail; /x where to start scanning x/
u-char busy ;

*/
YNC) =/
1S) */

90

Chapter 8

Other()

/x fprintf(3) macros for unsigned integers.

#define PRIoLEAST64 7 1lo” /*
I'# define PRIoFASTS 70” Ve
#define PRIoFAST16 70" /*

*/

wint_least64_t =/
wint_fast8_t x/
wint_fast16_t %/

91

Chapter 9

Discussions

We have seen in previous sections that many comments found an echo in a specific computer science research
work.
9.1 C vs other programming languages

It would be interesting to study the comments in modern PL like Csharp or OCaml or Haskell. Some of the
OS comments we found have a direct “solution”, a direct translation in some features of modern PLs (but
not that many maybe as for instance code correlations comments are also needed in OCaml), but the use of
those features may also have some limitations leading to different kinds of comments, leading maybe to the
invention of new feature for those modern PLs.

9.1.1 Ada

Ada is solution ?

9.1.2 C++4

C++ is solution to many of those problems ? - inline - const - constructor/destructor model - template -
exn

9.1.3 Java

Java has solutions to some of the problem:
- exception handling

9.1.4 OCaml

OCaml, and other modern functional languages like Haskell, Fsharp, etc are the solution ?

9.1.5 Other

9.2 Proposed major improvements

Our database of examples can be used as a basis for each of the following works, as the starting point.

92

9.2.1 Migration tool

As a large percentage of comments could be supported if present in a more formal form, in an annotation,
then the first tool to build is a migration tool using probably NLP techniques to leverage such comments.
By making such comments less fuzzy the barrier of entry for other tools will be lower and tools can then
make use of those comments.

On the one hand, there are lots of existing comments containing useful information, on the other hand
there are lots of research work with lots of annotation based tools, advanced type systems, and even advanced
programming languages, but annotations are not that used, same for advanced type system, and there is only
a few mainstream programming languages that succeeded. Those research work ideas were rarely tested,
rarely backup by a user study and so it was difficult to see if they are really useful. They had very few
impacts on OS code. In fact, maybe the domain where they have the least impact is OS code which is
unfortunately arguably the most critical part that should be make more reliable. OS programmers still use
C. Maybe because of latency, but maybe there is more.

The works that really succeeded followed an evolutionary approach. C is extended from time to time
(lots of gee extensions). C++ is all about extending C while maintaining backward compatibility. So, even
if lots of the previous research works on advanced type system or annotations languages are good, they may
have forget maybe one of the most important thing to succeed: provide a migration path that leverage the
existing information. Comments can be the basis for such migration.

I have started myself using tags in my own program :)

9.2.2 Unifying framework and generic frontend

Many tools, like Emacs, CVS, Eclipse already use special comments annotations in addition to all the type-
based annotation checkers. With so many annotations and tools, we need a unifying framework to make it
easier for the programmer to consistently use all those annotations. We need a generic annotation language,
possibly with a generic frontend where new checkers and annotations can be plugged-in. It would be useful
for instance to be able to use at the same time, as-is, SAL and sparse, or splint and deputy. Each of those
annotation languages have their own names for annotations as well as their own specification to place those
annotations in the code (before the statement, after, via a comment, via a macro). By having a generic
front-end one could easily feed the annotations to the different tools (on Linux using sparse and windows
using SAL), and so benefit from all those tools, and especially their internal static analysis algorithms, easily.

9.2.3 Extensible checker
9.2.4 CAP: Computer Assisted Programming
9.2.5 cpp-lint

See Section [?].

9.2.6 Source code visualizer and browser

There are lots of code relationships information that could be leveraged by a tool. An annotation-based
guided visualizer and navigation tool could be helpful to help programmers understand and maintain code.
I do not speak about hypertext capabilities; there are lots of tools that can already do this I think. I speak
about a better source code visualizer that can make the most use of the provided pixels on the screen to
display as much contextual information as possibly based on the information in the annotations to enable
some focus+context.

93

9.2.7 NewC

9.2.8 COP: Copy-paste Oriented Programming
9.2.9 Relationship

9.2.10 Anti-devil

9.2.11 Semantic VCS

9.3 Caveats

A typical problem of sampling from a large set of data is that infrequently appearing comments may rarely
show up, if show up at all, in the sample and are therefore not studied. Some of the concerns reflected by
these comments are important but are just not commonly documented in comments. Although we don’t
know the exact reason for the scarcity of comments for such concerns, we try to discuss one of them here.

9.3.1 User/Kernel Space

User provided data, especially strings, are generally considered untrusted. Thus, they are not allowed to be
passed into certain functions to in order to protect the kernel. We almost saw no comments about user/kernel
related concerns. The examples shown below are from comments close to our samples.

freebsd/gnu/fs/xfs/xfs_rtalloc .h:154:0

/x

x Grow the realtime area of the filesystem. x/

intxfs_growfs_rt (
struct xfs_mount *mp, /x file system mount structure x/
I xfs_growfs_rt_t *in) ; /x user supplied growfs struct */

opensolaris /common/inet /nca/nca.h:164:19

Ve
x Serialization queue type (move to strsubr.h (stream.h?) as a general
* purpose lightweight mechanism for mblk_t serialization ?). x/

typedef struct nca_squeue_s { uint16_t sq_state; /+ state |
uintl6_t sq-count ; /* message count x/
kcondvar_t sq-async; /% async thread blocks on x/
kmutex_t sq_lock; /x lock before wusing any member */
clock_t sq_awaken ; /x time async thread was awakened x/

I void *S(_priv; /x user defined private x/
kt_did_t sq_ktid ; /x kernel thread id */

} nca_squeue_t;

Although Linux’s Sparse annotation __user can express such concerns in code, and Linux developers
commonly do so (backed up by the large amount of annotations we saw in Linux’s code), programmers still
user comments to express such concerns sometimes as in the examples above. Note that the existence of

94

lags =/

Sparse could be a reason that Linux has few such comments (as programmers use such annotations instead
of comments), but it does not explain why FreeBSD and OpenSolaris also do not have many such comments.

As a side note, although there are numerous concerns that cannot be expressed by the programming
language, programmers do not document all of them in comments. The question, why programmers choose
to document some instead of others, itself is an very interesting area (although beyond the scope of this
study).

95

Chapter 10

Conclusion

Here

Here

are general conclusions:

The Type, Interface, and Code Relationships are surely the most interesting categories, at least for bug
findings.

For most of the comments, including the one in Ezplanation, we can find something, a PL, a tool,
a research, that is related to the comment, and that shows that the comment is used because of the
limitation of something.

are conclusions about the numbers:

Interface and Type represents 20% and are strongly related to bug finding. It is far more than 1% and
so confirm our hope from iComment that many comments have potential for bug detection.

Type is 10%.

More that 10% of comments could be covered by existing annotation languages, if they could be used
together (SAL-+meca+splint+sparse+etc).

Locking, which is spread in different categories (Context and CodeCorrelation), represents 5% of the
comments.

Ezxplanation is big, 50%, which confirms that people still use comment for “explanation”, but at the
same time shows that it’s not the full story. Many comments are not fuzzy explanation about the code,
and may be supported by tools.

40% (600 000 comments) could be used to improve software development and maybe reliability.
even 1% is big as it may represent 14 000 comments

The Ezplanation number is a lower bound. We classified many comments as explanation maybe because
we didn’t know or imagined that an existing research work could leverage this comment. For instance
if one has never heard about unit and dimensions type system (millisecond, speed, etc), then it’s easy
to classify such comments as explanation. So when we looked at comments, we had to be very open-
minded about the potentiality of the comment, which is very hard and so we may have missed some
opportunities. We don’t know about all research work done in programming languages or software
engineering.

There is very few really stupid comments that just paraphrase the code like i++; /* increment i */

96

e There is a number of comments that are used because of really bad coding. For instance the use
of magic numbers should be translated at least in symbolic constant definition. In many cases the
comment translates to a limitation. So, the more the comments, the worse is the program or the
language, which goes against most criteria of software quality which argue for the use of abundant
comments.

e Most comments are short. There are very few design comments that explain at length how the code
works.

e Most comments are about code properties or organization, and not so much about Linux itself or how
an OS work.

97

Bibliography

[1] Cox, R., BERGAN, T., CLEMENTS, A., KAASHOEK, F., AND KOHLER, E. Xoc, an extension-oriented
compiler for systems programming. In ASPLOS (2008).

98

