
A survey on security analysis of OAuth 2.0 framework
Shuai LI

Department of Computer Science
University of Calgary, Alberta, Canada

shuai.li1@ucalgary.ca

1 INTRODUCTION
The OAuth 2.0 protocol[7] is one of the most widely deployed au-
thorization protocols. The authorization is the process for granting
approval to an entity to access a resource. The authorization task
itself can be described as granting access to a requesting client, for
a resource hosted on the resource server (RS). This exchange is
mediated by the authorization server (AS).

Popular social networks such as Facebook, Google implement
OAuth 2.0[5], allowing users to delegate access to specific functions
to the third party (client). For example, Google (AS) uses OAuth
to allow the email application (client) to add entries into users
calendar on her behalf. It also allows a user to log in to a third-party
application using her identity managed by an AS. Authorization and
SSO solutions have found widespread adoption in the web over last
years, with OAuth 2.0 being one of the most popular frameworks.

From the adversary’s perspective, if he can launch a successful
exploit of an uncovered weakness in the protocol or implementa-
tions, the private data from those millions of users [15] could be
harvested. Hence, researchers devote intense effort to analyze the
OAuth protocol, including formal methods [4][12][1] as well as
empirical study of real world implementations[15][9][16][3]. And
the conclusion is that the a secure OAuth environment can be built
if security recommendations and best practice [7][11] are followed.
However, the real world implementations often simplify or even
ignore the security recommendations.

The survey on the security analysis of OAuth 2.0 contains the
following components:

(1) Introduction of OAuth 2.0 framework in technical details.
The security analysis will only focus on OAuth 2.0, OAuth
2.0 is not backward compatible with its predecessor OAuth
1.0 [6]. In OAuth 2.0. the interactions between the client,
the AS, the RS can be performed into four different modes:
authorization code grant, implicit grant, resource owner
password grant and client credentials grant. This survey will
not consider resource owner password grant type because
the user directly gives passwords to the client in this grant.
Such feature only applies to the client with high security
standard.

(2) Presentation of significant attacks found in the protocol itself
and in the implementation. These attacks can be grouped
by where they happens, in communication between client
and AS or communication between client and RS. Due to
the time limit, I will avoid obvious attacks result from not
following those security recommendations which can be
easily implemented.

(3) Discussion of the root causes of attacks. The attacks intro-
duced in the survey are largely caused by implementation
decisions that trade security for simplicity. There is only

one flaw found in the protocol itself. There are few analysis
effort that illustrates how simplicity features from imple-
mentations lead to weaknesses which is one objective of this
project. For example, one simplicity feature could create the
possibility to launch several different exploits. The devel-
oper should abandon implementation decisions cause severe
security threats.

(4) Providing Simple and practical improvement to the imple-
mentation of OAuth 2.0. The countermeasure must be simple
because that is the main feature to make OAuth 2.0 gain
widespread acceptance. This survey provides comprehen-
sives solutions based on different components of OAuth 2.0.
Some simple and practical recommendations will also be
very helpful to mitigate attacks on extensions of OAuth 2.0.
For example, some fixes would also be applicable to improve
the security of OAuth based access control in the constrained
environment (i.e.IoT).

The rest of the report is organized as follows: Section 2 intro-
duces the OAuth 2.0 protocol. Section 3 presents the attacks. Section
4 discusses the security implications of these insecure decisions
which result in the attacks in section 3, then proposes the counter-
measures. I outline the contributions and future work of the project
in Section 5.

2 OAUTH 2.0
The OAuth 2.0 authorization framework[7] enables a client to ob-
tain scoped access to the resource protected by the RS with the
permission of the resource owner. The protocol works generally
as follows, authorization information is passed between the enti-
ties(client, RS, AS) using access tokens. These tokens are issued
by the AS with the approval of the resource owner. Then the client
presents the toke to the RS to access the protected resource. To
describe the protocol in details, we need to elaborate the roles that
are involved in a single protocol run. The roles are:

(1) client: An application that makes resource request to the
resource owner. There are two types of clients defined in
OAuth 2.0[7]. Public clients are those clients can’t securely
store the client credentials (issued by the AS during client reg-
istration stage). The user-agent based application (a javascript
application running on the browser) and the native applica-
tion (client installed and executed on the device) belong to
the public client. This is because the attacker can obtain the
credentials on public client (i.e. reverse engineering of the
native application to obtain the credentials). The confidential
client is the client capable of maintaining the confidentiality
of their credentials. The Web server application belongs to
the confidential client. For example The client implemented

on a secure server with restricted access to the client creden-
tials.

(2) Resource Server (RS): Hosts the protected request and has
the ability to process the access token.

(3) Resource Owner: Grants the permission to others for access-
ing the resource it owns.

(4) Authorization Server (AS): Issues the token to the client
after successfully authenticating the resource owner and
obtaining its authorization.

Next, We will discuss three different types of authorization mode
which results in three different message interaction sequences.

2.1 Authorization code grant
The client should register the redirection_uri and obtain the client
credentials at the AS so that the AS can identify if a the malicious
client sends a malicious redirection_uri to the AS. The details of
the client registration is out of the scope of our discussion. Note
the communication between any entities should be protected by
TLS against eavesdropping. Below is the message flow:

(1) The client initiates the flow by directing the resource owner’s
user-agent to the authorization endpoint. The client includes client
_id , scope , state which is the hash of the current session cookie ,
and a redirection_uri which the AS will send the user-agent back
once access is granted (or denied). The AS will check whether the
redirection_uri is registered.

(2) Assuming the AS verified the client’s request successfully.
The AS authenticates the resource owner and asks whether she
wants to grant or deny the client’s access request.

(3) If the resource owner grants the access, theAS redirects the
user-agent back to the client via the redirection_uri provided at
step (1) earlier. The redirection_uri includes an authorization_code
and state provided by the client earlier.

(4) The client requests an accesstoken from the AS’s token end-
point by including the authorizationcode received in the previous
step, the client credentials and the redirection_uri .

(5) The AS authenticates the client, validates the authorization
code, and ensures that the redirection_uri received matches the
URI used to redirect the client in step (3). If valid, the AS responds
back with an access token and, optionally, a re f resh token.

(6) Here we use bearer token (only the token string itself). The
client send a GET message including the bearer token to the RS.
The message payload includes the token, the "iss" claim , "exp"
claim, "scope" claim and other useful claims related to the token.
Then RS validates the token issue by its AS by checking at the "iss"
claim in the payload. Ensure that it has not been expired ("exp"
claim) and its scope covers the requested resource ("scope" claim).

(7) Assuming that RS verified the token successfully, RS will
return the protected resource back to the requesting client.

Optionally, if theAS grant the re f resh token along with a access
token to the client. The client can request a new access token by
only presenting the accesstoken. The AS must authenticate the
client again and validate the refresh token before issuing new
access token. The usage of the re f resh token has strict requirement,
only when the confidential client adopts the authorization code
grant.

2.2 Implicit grant
Unlike the authorization code grant, the client receives theaccess token
directly as the result of the authorization request. Note the commu-
nication between any entities should be protected by TLS against
eavesdropping [2]. Below is the message flow:

(1) The same as the step (1) in Authorization code grant.
(2) The same as step (2) in Authorization code grant.
(3) If the resource owner grants the access, theAS redirects the

user-agent back to the client via the redirection_uri provided at
step (1) earlier. The redirection_uri includes the access token and
state in the URI fragment.

(4) The user-agent (browser) retains the fragment information
locally and does not include token in the request to the client.
The user agents do not send the fragment part of URIs to HTTP
servers. Thus, an attacker cannot eavesdrop the access token on
this communication path, and the token cannot leak through HTTP
referrer headers.

(5) The client returns a web page containing a script to the user-
agent. The script extracts token contained in the fragment using
JavaScript command such as document.location.hash.

(6) The user-agent passes the access token to the client. Then
the client could use the token to request the resource on the RS,
Which is the same as step (6) and (7) in section 2.1

2.3 Client Credentials grant
The client can request an access token using only its client creden-
tials. In this case, the client is requesting the resources that have
been previously arranged with the AS by the resource owner.
Unlike the previous two grant types, the consent of the resource
owner is pre-configured as authorization policies at the AS. Note
the communication between any entities should be protected by
TLS against eavesdropping. Below is the message flow:

(1) The client authenticates with the AS using the client creden-
tials and requests an access token from the token endpoint.

(2) The AS authenticates the client, and if valid, issues an access
token.

(3) Then the client could use the token to request the resource
on the RS, Which is the same as step (6) and (7) in section 2.1

2.4 Comparison of three grants
By far, we have discussed two client types (public client and confi-
dential client) and three modes. For the public client, we can further
specify the client application into two types, native client applica-
tion and user-agent based client application. The confidential client
is the Web Server client applications. It is necessary to know the
requirement and restrictions of each grant type for different client
applications. Table 1 illustrates the summary of such restrictions
which is generated from the OAuth 2.0 framework documentation.
From the table, we can find that 1) OAuth doesn’t recommend to
allocate the client credentials to public client, only Web Server
client application is allowed, due to the credentials on the public
client can be obtained by the public client. 2) Only web server client
application and native client application should use Authorization
code flow. And the client authentication is required for requesting
an access token. Native client application uses the redirection_uri
to prove himself. AS authenticates by ensuring the redirection_uri

2

received matches the URI used to redirect the client in the pre-
vious step. 3) Implicit grant flow is optimized for public clients.
Particularly for these clients implemented in a browser using a
scripting language such as JavaScript. 4) The implicit grant flow
does not include client authentication, and relies on the presence
of the resource owner and the registration of the redirection_uri .
5)Client Credential flow should only be used by the confidential
client because this mode totally relies on the authenticity of the
client.

Interestingly, it is noticeable that OAuth 2.0 provides each client
type with the most suitable flow which could achieve the highest
level of usability and the security. And it is clear that for the security:
Authorization code > implicit grant > Client Credentials. The reason
that the Client Credential ranks in the last one is clear. But why
Authorization code grant is more secure than the implicit grant?

Firstly, the authorization code grant supports the 1)client au-
thentication when the client requests the access token. 2) resource
owner presence and 3) registration of URI while implicit grant re-
lies only on the latter two to verify the client. Two reasons why
client authentication is not included in the implicit grant. One is
that public client can’t store the client credential securely. Also, it
is much simpler to authenticate clients during the direct request
between the client and the AS than in the context of the indirect
authorization request. The latter would require digital signatures.

Secondly, the implicit grant omits the use of authorization code
due to the nature of those clients which are running on the user-
agent. In the authorization code grant, the authorization code is
encoded into the redirection_uri , it may be exposed to the resource
owner via browser cache or log file entries. However, the client later
exchanges the code for the access token over a more secure direct
connection with the AS. Resource owner can not learn anything
about the access token. But in the implicit grant, the access token is
encoded into the redirection_uri when the resource owner autho-
rizes the request. The risk is that the access token can be extracted
by the resource owner and other applications residing on the same
device.

Table 1: restrictions for different client type.

Mode Web CC Native CC User-agent CC

Authorization ✓ ✓ ✓
Implicit ✓ ✓

Client credential ✓ ✓

Web application, Native application, User-gent based application.
CC: client credentials

3 ATTACK
As discussed in the introduction, we present the significant attacks
found in the protocol and its implementation. As a result of the
study, I find out that it is not scientific to group the attacks based
on its roots cause(s) due to the vulnerability interplays. I decide
to categorize the attacks found in [4][15][12][16][7][14][11][3]by
where they happens, e.g.,in the communication between client and
AS or communication between client and RS. Threats in the commu-
nication between AS and RS is not covered by this literature survey,

which is also excluded from[11]. Please note that I list the attacks
mainly caused by commonly adopted simplicity design decisions in
real world implementation because the goal is to provide guidance
to the OAuth developers. Detailed description of these attacks on
applicable grant along with easily implementable fixes are provided.
Every countermeasure description refers to a detailed description
in Section 4.

The following attacks happen in the communication between
client and AS.

3.1 Impersonation attack
The notion of impersonation attack comes up in [15]. In the same
paper, they also explain the Access token eavesdropping attack,
which can be seen as impersonation attack on the implicit grant.
Yang et al. [16] discuss the replay attack module, which is the same
attack. Impersonation attack is mentioned in part 4.4.1.6 of the
threat model[11].

3.1.1 Authorized code grant.

Assumption: 1)The attacker can obtain a copy of the authoriza-
tion code, the user agent and the client communication does not use
TLS. 2) The authorization code is not limited to one time use and 3)
the client does not check whether the response (step (3) in section
2.1) is sent by the same browser from which the authorization re-
quest (step (1) in section 2.1) was issued. 4) An client assumes only
the user has the knowledge of the identity credentials(authorization
code), and only by using the correct identity credentials, the client
is able to obtain the information about the user.

Attack. The attacker may capture an authorization code redirec-
tion request (step (3) in section 2.1) in the communication between
the User-agent (i.e. browser) and the client application. Then the
attacker submits the authorization code to the client. The client
will exchange the authorization code for an access token. If OAuth
is used in third party log in scenarios, the attacker can use the
authorization code to log into the client as the user.

3.1.2 Implicit grant.

Assumption: Since there is no intermediary authorization code
in the implicit grant. Assuming 1)The attacker can obtain a copy
of the access token, the user agent and the client communication
does not use TLS. 2) The access token has not been expired. 3) the
client does not check whether the response (step (6) in section 2.2)
is sent by the same browser from which the authorization request
(step (1) in section 2.2) was issued. 4) An client assumes only the
user has the knowledge of the identity credentials(authorization
code), and only by using the correct identity credentials, the client
is able to obtain the information about the user.

Attack. The attacker may capture an access token redirection
request (step (6) in section 2.2) in the communication between
the User-agent (i.e. browser) and the client application. Then the
attacker submits the access token to the client. The client uses the
token to access protected resources for the benefit of the attacker.
If OAuth is used in third party log in scenarios, the attacker can
use the access token to log into the client as the user.

3

3.1.3 Client credentials. Client credentials do not have user-
agent involved, However, with out the protection of the commu-
nication between the client and the AS. The similar attack could
happen.

3.1.4 Fix. The TLS/SSL protection is required by the OAuth for
communications between any two entities. However, it imposes
performance overhead. Due to the unwanted complications, only
21% [15] of the client websites use SSL to protect the user agent
and the client communication.

3.2 Authorization code theft
In [15], they discuss the attack of access token theft due to the
automatic authorization granting. However, I did not find any
implementation to date supporting automatic authorization
grant of the access token. While the automatic authorization
grant of the authorization code in the authorization code mode
is found in the Google implementation. Paper [16] also confirms
my discovery. So I assume that this feature is only used for the
authorization code in the authorization code grant.

Assumption: 1) The "automatic authorization granting" works as
follows: If the resource owner has previously granted permissions
to a client application, and the resource owner has already logged
into the AS in the same browser session. The ASwill not ask the user
to grants permissions to the client if it receives the authorization
request from the client again. Instead, it will direct the user-agent
back to the client with a new generated authorization code (step
(3) in section 2.1). The attacker does not need to worry about the
one-time use of the code because it is new. 2) The attacker can inject
a script into any page of a client website. 4) An client assumes only
the user has the knowledge of the identity credentials(authorization
code), and only by using the correct identity credentials, the client
is able to obtain the information about the user.

Attack: The attacker can inject a script into the client website to
initiate a forged authorization request to the AS and then obtain the
authorization code in return. The request is transported by a hidden
iframe element created by the script. Once the authorization code
is obtained, the script will send the code back to the attacker(i.e.
attacker.com). With this stolen authorization code, now the attacker
can log into the client application as the victim.

Fix: Although this feature offers convenience for the AS, the
negative impact of security is considerable. We shouldn’t adopt this
feature in implementation.

3.3 Code substitution
Code substitution attack is mentioned in part 4.4.1.13, 4.4.2.6 of the
threat model[11]. The impersonation attack capture a identity cre-
dential(authorization code, access token) in the redirection callback
to a target client, using the identity credentials to impersonate a
user session. The authorization code theft exploits the automatic
authorization granting feature, forging a pre-authorized request
to the AS and obtain a new authorization code. Unlike the above
two attack, in the code substitution attack, the identity credential
is obtained by a malicious application which shares the same AS as
the target application.

3.3.1 Authorized code grant.

Assumption: 1) The malicious application is legitimate to the AS
of the target application 2) The attacker can obtain the authorization
code requested by the malicious application. 3) The authorization
code is not limited to one time use and 4) There is no binding
between authorization code and client_id, between redirection_uri
and authorization code. 5) An client assumes only the user has the
knowledge of the identity credentials(authorization code), and only
by using the correct identity credentials, the client is able to obtain
the information about the user.

Attack. The attacker tricks the victim into logging into a mali-
cious app using the same AS as the target application. This results in
the AS issuing an authorization code for the victim. The malicious
application then sends this code to the attacker, The attacker now
manipulates the authorization response to the target application
and substitutes the code. This code is then exchanged by the client
for an access token, which in turn is accepted by the AS. If OAuth
is used in third party log in scenarios, the attacker can use the
authorization code to log into the client as the user.

3.3.2 Implicit grant.

Assumption: 1) The malicious application is legitimate to the
AS of the target application 2) The attacker can obtain the access
token requested by the malicious application. 4) There is no binding
between access token and client_id, between redirection_uri and
access token 5) An client assumes only the user has the knowledge
of the identity credentials(access token), and only by using the cor-
rect identity credentials, the client is able to obtain the information
about the user.

Attack. The attacker is similar with the attacks in authorized
code grant, just change the authorization code to access token. If
OAuth is used in third party log in scenarios, the attacker can use
the access token to log into the client as the user.

3.3.3 Client credentials. Same assumption and attack as in sec-
tion 3.3.2.

3.3.4 Fix. When the client sends the token exchange request,
the AS must validate whether the particular authorization code is
issued to the particular client (binding client id with code), and/or
ASmust validate whether the particular authorization code is issued
and send back via the particular redirection_uri. Refer to the step
4) in section 2.1.

3.4 Session swapping
Session swapping attack is discussed in [4][16][15][11]. In [16],they
call it phishing attack, which is exactly the session swapping in
the other papers. This attack results from the lack of the state
parameters in interactions between the client and the AS (step (1)
and step (3) in section 2.1 and section 2.2). There is no state in the
client credentials grant type.

3.4.1 Authorized code grant.

Assumption: 1)The client does not provide a state parameter in
an authorization request (Step (1) in section 2.1). 2) The attacker can

4

intercept the authorization code in his own user-agent. 3) The autho-
rization code is not limited to one time use and 4) An client assumes
only the user has the knowledge of the identity credentials(access
token), and only by using the correct identity credentials, the client
is able to obtain the information about the user.

Attack: The attacker signs into the client using his identities
from the AS. Then he intercepts the authorization code on his user-
agent (Step (3) in section 2.1). After aborting the redirect flow of
the victim back to the client, he sends the authorization code to the
client. The client will exchange the authorization code for an access
token to access attacker’s resource. The user may upload private
items to an attacker’s resource. If OAuth is used in third party log
in scenarios, as the authorization code is bound to the attacker’s
account on the AS, the attacker can log the victim into his client
account to harvest the victim’s personal data.

3.4.2 Implicit grant.

Assumption: The assumption is the same as in section 3.3.2. 1)The
client does not provide a state parameter in an authorization request
2) The attacker can intercept the access token in his own user-agent.
3) An client assumes only the user has the knowledge of the identity
credentials(access token), and only by using the correct identity
credentials, the client is able to obtain the information about the
user.

Attack: The attacker signs into the client using his identities
from the AS. Then he intercepts the access token on his user-agent
(Step (6) in section 2.2). After aborting the redirect flow of the victim
back to the client, he sends the access token to the client. The client
will use access token to access attacker’s resource. The user may
upload private items to an attacker’s resource. If OAuth is used in
third party log in scenarios, as the access token is bound to the
attacker’s account on the AS, the attacker can log the victim into
his client account to harvest the victim’s personal data.

3.4.3 Fix. The use of the state parameter is not optional. Further,
a state value should be used only once. If the state does not refresh
in every authorized request, once the attacker obtains or guesses
the value of the state, he can still mount the session swapping
attack.

3.5 AS mix up
This attack is first found in [4], and is reported to the OAuth and
OpenID connect working group who confirms the attack. This
attack only applies to the authorization code mode.

Assumption: 1) The attacker can manipulate the request in step
(1) section 2.1. 2)The client issues the same redirection_uri to all
Authorization servers. 3) The honest AS has not issued a client
secret to the client during registration. 4) The attacker can request
for the access token code once he obtained the authorization code.

Attack: The attack starts when the Resource Owner selects the
AS she wants to log in. The attacker intercepts the request (step (1)
in section 2.1) and modifies the request by replacing Honest AS to
Malicious AS. Then the attacker redirects to the Honest AS with
clientid , state , redirection_uri . In this attack, we assume that from
this point on, the communication between the browser and the

client and the AS is protected by using TLS against eavesdropping.
The user then authenticates to the Honest AS and if successful, the
AS directs the use-agent back to the client with the authorization
code. Now, due to the attacker altered the request at the first place,
the client thinks that the code was issued by the malicious AS,
rather than the honest AS. Then the client now tries to redeem this
code for an access token at the malicious AS. This leaks the code
to the attacker. If the honest AS has not issued the client a secret,
the attacker can redeem code for an access token at the honest
AS. The access token allows the attacker to access to the protected
resource. In paper[4], they mention that the AS mix up applies to
the implicit grant as well.However, I argue this is not likely to
happen. Because in the implicit grant flow. Even if the attacker
can perform the similar attack mentioned above. The Honest AS
will finally send the access token to the client, There is no need for
the client to contact with the malicious AS anymore. So the access
token can not be learned by the attacker.

Fix: Based on the assumption, we could have two easily fixes. 1)
AS has to issue the client secret and authenticate the client when
the clients request for an access token. 2) A fundamental problem in
the OAuth standard is a lack of reliable information in the step (3)
in section 2.1. The client does not receive information from where
the redirect was initiated. The client can not check whether the
information contained in the redirection_uri comes from the AS
that was requested at the first place. The fix is presented in [4],
which is to include the identity of the AS in the redirection_uri as a
new parameter. Each AS should add such a parameter to the redirect
URI. The Client then can check the new parameter to mitigate the
AS mix up attack.

3.6 Client Obtains too much access scope
This attack is mentioned in part 4.2.2 and 4.4.3.2 of the threat
model[11].

3.6.1 Authorization code grant.

Assumption: 1) Unclear/Absent explanation of the scope the user
is about to grant.

Attack: When obtaining user authorization, the user may not
understand the scope of the access being granted and to whom, or
they may end up providing a client with access to resources that
should not be permitted.

3.6.2 implicit grant. The same as authorization code grant

3.6.3 Client Credentials grant.

Attack: There is no resource owner intervention in this grant
type. Thus the client might obtains a token with scope unknown
for, or unintended by, the resource owner.

3.6.4 Fix. 1) The AS should explain the resources and the per-
missions in an understandable way. 2) The AS should narrow the
scope, based on the client. The AS should consider what scope to
grant based on the client type. 3)For the client credentials grant, the
AS should force the local authorization policy, denying the request
that is not permitted by the policy. 4) The AS should notify the
resource owner for unusual request in the client credentials grant.

5

3.7 Obtaining credentials in the AS database
This attack is mentioned in part 4.3.2, 4.3.4, 4.4.1.2, 4.4.3.2 of the
threat model[11]. The credentials in the AS database includes client
secret, authorization code, access token, refresh token. Since it is
related to insecure storage of the credentials in the AS, this exploit
is independent of the grant types.

Assumption: 1) Clear text storage of credentials (storage protec-
tion is not employed). 2)SQL injection countermeasures are not
enforced.

Attack: An attacker may obtain the credentials from the AS
database by gaining access to the database or launching a SQL
injection attack.

3.7.1 Fix. 1) Credential storage protection should be employed.
2) Store access token hashes only. 3)Enforce standard SQL injection
countermeasures. A detailed description is in Section 4.

The following attacks happen in the communication between
client and AS.

3.8 Counterfeit Resource Server
This attack is mentioned in part 4.6.4 of the threat model[11]. It is
independent of the grant types.

Assumptions: 1) The attacker can manipulate the resource re-
quest 2) Client is allowed to make request with access token to
unfamiliar RS. In another word, a client could try to use a token
obtained for more than on RS. 3) No client authentication when
client makes request to RS.

Attack: An attacker may 1) intercepts the resource request and
modifies the request by replacing Honest RS to Malicious RS. 2)
makes the client send request with the token to the attacker’s RS.
After obtaining the token, the malicious RS in turn may use that
token to access resource at the honest RS.

Fix: 1) Clients should not make authenticated requests with an
access token to unfamiliar resource servers 2) Associate an access
token with a signature from the client when the client makes the
resource request. The RS needs to verify the signature first then
validate the access token. This idea is to bind a token with a crypto-
graphic key, it is not enough to access the resource when someone
accidentally obtained the token, he has to know the secret key as
well. 3) Restrict the token scope and/or limit the token to a certain
resource server.

4 DISCUSSION AND RECOMMENDATION
4.1 Discussion
The aforementioned attacks are largely caused by the implementa-
tions which sacrificed the security for simplicity. Only one attack
is caused by the fundamental problem in the OAuth standard.The
client does not receive information from where the redirect was
initiated. However, In OAuth 2.0[6], this problem is fixed. I will
discuss the security impact of several implementation decisions.
The security evaluation aims to argue why the developer should
not follow these decisions.

The client allows user to log in with identities provided by the AS.
In the Authorized grant flow, the identities are authorized code and

access token. In the implicit grant flow, the identities are the access
token. In [15], they showed that an attacker can log into the client
by simply using the victim’s Facebook account identifier, which is
publicly accessible. This allowance enables the attacker to log in the
client application associated with the code/token. Using the victim’s
identity information, the client is vulnerable to the Impersonation
attack, authorized toke theft and code substitution. The attacker
can also log the victim into his client account to harvest the victim’s
data, which is the session swapping attack.

The authorization code is not used one-time. This decision violets
the requirement in OAuth 2.0. The one-time use of the authoriza-
tion code alleviates the impersonation attack, code substitution
and Session swapping attack on the authorization grant. Even if
the attacker obtains the authorization code, the code could prob-
ably be used so it is not valid anymore. Turning on the feature of
multiple uses will help the attacker successfully launch the three
aforementioned attacks.

The state parameter is not used one-time. It is widely known
that the state parameter is not optional[7]. The state parameter is
typically a value that is bound to the browser session (i.e. a hash of
the function) against session swapping. Multiple uses of the state
have the risk of session swapping once attacker obtained the value.

The automatic authorization grant feature adopted by Google
might be indeed useful, but it can be harmful as well. The attacker
can forge an authorization request to the AS if the resource owner
has previously granted permission to a client application. Then the
AS will directly send a new code to the client. It is very easy to
forge such request due to prevalent web application vulnerabilities.

Secure storage protection is not employed. This is the most obvi-
ous and severe vulnerability. More detailed protection mechanisms
is provided in section 4.2

The user should always be in control of the authorization pro-
cesses and get the necessary information to make informed deci-
sions. The attack described in section 3.6 results from the unclear
explanation of the scope the user is about to grant. Moreover, user
involvement is a further security countermeasure. The user can
probably recognize certain kinds of attacks better than the autho-
rization server. For example, the AS can notify the resource owner
for unusual request to prevent the the unauthorized token grant.

Last but not least, the communication between any two of the
entities must be protected by TLS (especially between the browser
and the client). If not, the authorization code, the access token
(in implicit grant) could be eavesdropped. Transmitting the cre-
dentials without encryption could make the client vulnerable to
impersonation attack.

4.2 Recommendation
The recommendations contain all the simple yet practical fixes
found in the literature work up to now. Some of the recommenda-
tions are targeted to mitigate the attacks in section 3. The rest of
them aims to fix the other obvious attack. The considerations are
grouped by entities in OAuth 2.0, for the AS only, I classified the
recommendations further based on functionalities.

6

4.3 General
Confidentiality of communication: OAuth 2.0 requires the com-

munication between the user-agent, the client, the AS, the RS should
be protected by SSL/TLS[7]. Otherwise, the identities credentials
are vulnerable to the impersonation attack

Create high entropy tokens. The AS should create tokens with
a reasonable level of anonymity in order to mitigate the risk of
guessing attacks.

Authenticate resource owner to the client:*. In section 4.1, I have
mentioned that if a client allows users to log in with identities pro-
vided by the AS (i.e. authorization code and access token). The client
is vulnerable to the Impersonation, authorization code theft, code
substitution and session swapping attack. This unwanted feature
may allow the attacker to perform operations at the legitimate client
with the same permissions as the resource owner. However, the
OAuth 2.0 does not provide the approach to authenticate resource
owners. In the section 10.16 in [7], they claim that authenticating
resource owners to clients is out of scope for the specification. Any-
way, the developers should not rely on the identities provided by
the AS to authenticate the user, they should define authentication
schemes independent of the identity credentials.

4.4 Client
Who should have the client credentials?* . In [12], they find an

attack when the public client is issued with client credentials. The
client credentials can be obtained by the attack. Which confirms
the OAuth 2.0 recommendation. The authorization server must not
issue client passwords or other client credentials to public clients
for the purpose of client authentication. For the public client, the
authorization server should employ other means to validate the
client’s identity.[7] For example, enforce the client to register its
redirection_uri . Although it is not sufficient to verify the client’s
identity, it is useful to prevent the AS delivers the credentials (code,
access token) to a counterfeit client after the resource owner’s
authorization. Another approach to mitigate the authentication gap
of the public client is to ask the resource owner. The AS can engage
the resource owner to assist identify the client.

4.5 AS
4.5.1 Client authentication and authorization.

Force single-use of authorization code: As discussed in section 4.1.
Multiple uses of the authorization code make the client vulnerable
to impersonation attack and session swapping attack.

Explicit user consent. As discussed in section 4.1. The automatic
authorization grant feature makes the client vulnerable to autho-
rization code theft. The user should consent for every authorization
request even if the client asks for the same permission on the same
resource. Two same requests do not often appear one after another
in a short time. This is because 1) the access token has a period of
lifetime. 2) The client could use the refresh token to request a new
access token when the old one expires. If the developer decides
to turn on the automatic authorization request eventually, a user
consent is required for every authorization request originated from
the client that asks for extended permissions[15].

Avoidance of iframes. In section 3.2, a hidden iframe element in
the script can be used to transport a forged request to the autho-
rization endpoint. In oAuth 2.0 standard[7]and [13], they discuss
the clickjacking attack. An attacker registers a legitimate client and
then constructs a malicious site which loads the AS Web page in
a transparent iframe overlaid on top of a set of invisible buttons.
When the user clicks a not important button, the user is actually
clicking an invisible button (i.e. authorization button). If the AS
use the "x-frame-options" header, any framing will be blocked or
framing by sites with a different origin.

Referrer policies on the single-used state: Using referrer policies,
a web server can instruct a web browser to suppress the Referer
header when browser follows links in[4]. This is used tomitigate the
state leak problem. If the attacker constructs a link in the response
of the the redirection_uri which contains the state and the code.
When the user clicks the link, the user’s browser will send a request
to the attacker’s website. The Referer header of this request contains
the redirection_uri , and the redirection_uri contains the state and
the code.

Register full URI:. If the AS allows the client to register only
part of the redirection URI, for example, domain-based URI, this
will significantly reduce the security. Now the AS will deliver the
credential to a counterfeit client using it’s redirection_uri which
has the same domain as the trusted redirection_uri .

Include the identity of the AS in the redirection_uri : The identity
of the AS should be included as a parameter in the redirection_uri
in step (3) in section 2.1. The client can then check that the parame-
ter contains the identity of the AS it expects to receive the response
from. Otherwise, the client is vulnerable to the AS mix up attack in
section 3.4.

redirection_uri check*. The authorization server ensures that
the redirection_uri used to obtain the authorization code is identi-
cal to the redirection_uri provided when redeeming the authoriza-
tion code for an access token. Such easy fix could thwart the attacker
to redeem the authorization code for an access token in the Honest
server (AS mix up attack). However, in order to mitigate the code
substitution attack, further action is needed. An invalid redirect URI
indicates an invalid client, whereas a valid redirect URI does not
necessarily indicate a valid client. So the bind of redirection_uri
and the authorization code is necessary, since an attacker cannot
use another redirection_uri to exchange an authorization code into
a token.

client_id check*. The authorization server should bind every
authorization code to the id of the respective client that initially
authorized by the user. This is a countermeasure against code sub-
stitution, since an attacker cannot use another client_id to exchange
an authorization code into a token. This binding should be protected
from unauthorized modifications.

4.5.2 Refresh new token. Refresh token represents a long-lasting
authorization. Client uses this kind of token to obtain new access
tokens used for resource server invocations. This design feature
offers an advantage for access revocation [10]. As the refresh token
is always exchanged at the authorization server. The authorization

7

server can revoke the refresh token at any time, causing the granted
access to be revoked once the current access token expires[11].

Restricted Issuance of Refresh Tokens. Since refresh tokens are
long-term credentials, they may be subject to theft. The AS should
not issue refresh token to public client.

client_id check. Similar to clientid check in section 4.5.1, the AS
should check that the same "client_id" is present for every request
to refresh the access token. This is a countermeasure against refresh
token theft or leakage.

Refresh Token Rotation. This fix aims to solve the problem when
a stolen token is subsequently used by both the attacker and the
legitimate client. The basic idea is to change the refresh token value
with every refresh request in order to detect attempts to obtain
access tokens using old refresh tokens. Once old refresh token usage
is detected, AS will revoke the associated access.

4.5.3 Securely store the credentials.

Protection Mechanism. Mechanisms of protecting the storage
of the credentials may include but not limited to the following
countermeasures. A server system may be locked down so that no
attacker gets access to the databases. In order to mitigate injection
attack, AS should avoid dynamic SQL using concatenated input.
Bind arguments should be used for parameterize queries. The input
should be sanitized as well. The authorization server should store
credentials hashes or encrypt credentials instead of storing in clear
text.

5 RS
RS indicate its AS*. Another approach to fix the AS mix up attack

is: The client should contact the RS first, then the RS will send
the address of its AS back to the client. Now, even if an attacker
intercepts the initial request by replacing the honest AS to the
malicious AS. The client will not redeem the authorization code
with the malicious AS with the knowledge of the honest AS address.
However, in this case, the client needs a whitelist of the AS to
prevent the compromised RS sends the address of a malicious AS.

Authenticate resource request. The resource server should be able
to validate whether the authorization server issued the token to that
client, otherwise, the RS is vulnerable to the counterfeit resource
server attack. There are two approach to implement this feature.
1)The client uses his private key to sign the request to the resource
server, the public key is either contained in the token or sent along
with the request. 2) Alternatively, the authorization server may
issue a token-bound key, the client can generate a MAC tag using
the secret and send theMAC along with the access token [8]. RS will
validate the MAC using the secret obtained from the authorization
server before. Or the secret is contained in an encrypted section of
the token.

6 CONCLUSION AND FUTUREWORK
This survey contributes in four aspects. 1) The summary of the
conditions and restrictions of each grant type for different client
applications. Argument why authorization code grant is more se-
cure than the implicit mode. Analysis the benefit of authorization

code feature in authorization code grant. Those statements shows
the comprehensive understanding of OAuth 2.0 standard. 2) Eight
most significant attacks under each OAuth 2.0 modes are consid-
ered, including the preconditions of each attack and description of
each attack in detail. Eight attacks are group into two categories
by where they happen. This survey provides security study on the
client credential mode and the possible exploits during resource
request (between client and the RS), which is an empty area in the
research literature. Rather than believing what the paper states,
I look at their work critically. For example, in [15], there is no
automatically authorization grant for an access token in the imple-
mentation, however, Google implements the automatically grant
for the authorized code. Also in [4], I questioned the possibility of
performing AS mix up attack in the implicit grant flow in section
3.4. The critique shows the attempt to verify the attack on each
mode based on the technical design details in OAuth 2.0 standard.
3) Discussion of the security impact of implementation decisions
mentioned in the attack section to cover the gap in current research
work. 4) Synthesis the simple and practical improvements to the
implementation of OAuth 2.0. The improvements cover all of the en-
tities in OAuth 2.0. For the AS, the survey investigates the security
consideration further based on functionalities provided by the AS
(e.g., refresh access token by refresh token). I bring up some original
fixes as well, RS indicates its AS, redirection_uri check, authenticate
resource owner to the client, validation the identity of the public client.
The list of easy fixes can guide the developer to implement OAuth
2.0 more securely in different scenarios.(i.e. Web single sign-on
system, OAuth based authorization in IoT).

The security analysis on the communication between AS and
RS, token format, resource owner passwords credentials grant type
are not considered in this survey. Future work may focus on these
uncovered areas. The implementations of the actual exploits and
result evaluations will be another direction for future investigation.

REFERENCES
[1] Suresh Chari, Charanjit S Jutla, and Arnab Roy. 2011. Universally Composable

Security Analysis of OAuth v2. 0. IACR Cryptology EPrint Archive 2011 (2011),
526.

[2] Tim Dierks. Aug 2008. The transport layer security (TLS) protocol version
1.2„IETF, RFC 5246. available at https://www.ietf.org/rfc/rfc5246.txt (Aug 2008).

[3] Eugene Ferry, John O Raw, and Kevin Curran. 2015. Security evaluation of the
OAuth 2.0 framework. Information & Computer Security 23, 1 (2015), 73–101.

[4] Daniel Fett, Ralf Küsters, and Guido Schmitz. Oct 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS’2016). Hofburg Palace, Vienna,
Austria, 1204–1215.

[5] Paul Fremantle, Benjamin Aziz, Jacek Kopeckỳ, and Philip Scott. Sep 2014. Feder-
ated Identity and Access Management for the Internet of Things. In Proceedings of
the 2014 International Workshop on Secure Internet of Things - ESORICS Workshop.
IEEE, Wroclaw, Poland, 10–17.

[6] Eran Hammer-Lahav. April 2010. The OAuth 1.0 Protocol, IETF, RFC 5849.
available at https://tools.ietf.org/html/rfc5849 (April 2010).

[7] Dick Hardt. Oct 2012. The OAuth 2.0 Authorization Framework, IETF, RFC 6749.
available at https://tools.ietf.org/html/rfc6749 (Oct 2012).

[8] Phil Hunt, William Mills, Hannes Tschofenig, and Justin Richer. Nov 2014. OAuth
2.0 Message Authentication Code (MAC) Tokens. ACE Working Group Internet-
Draft. available at https://tools.ietf.org/id/draft-ietf-oauth-v2-http-mac-02.html
(Nov 2014).

[9] Wanpeng Li and Chris J Mitchell. Dec 2014. Security issues in OAuth 2.0 SSO im-
plementations. In Proceedings of the 2014 International Conference on Information
Security (ICICS’2014). Springer, Hong Kong, 529–541.

[10] T Lodderstedt and Stefanie Dronia. Aug 2013. OAuth 2.0 Token Revocation,IETF,
RFC 7009. available at https://tools.ietf.org/html/rfc7009 (Aug 2013).

[11] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. Jan 2013. OAuth 2.0
threat model and security considerations, IETF, RFC 6819. available at

8

https://tools.ietf.org/html/rfc6819 (Jan 2013).
[12] Suhas Pai, Yash Sharma, Sunil Kumar, Radhika M Pai, and Sanjay Singh. Jun

2011. Formal Verification of OAuth 2.0 using Alloy Framework. In Proceeding of
the IEEE 2011 International Conference on Communication Systems and Network
Technologies (CSNT’2011). Katra, Jammu, India, 655–659.

[13] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson.
May 2010. Busting frame busting: a study of clickjacking vul-
nerabilities at popular sites. IEEE Oakland Web. available at
https://crypto.stanford.edu/ dabo/pubs/papers/framebust.pdf 2, 6 (May 2010).

[14] Ludwig Seitz, Goeran Selander, Erik Wahlstroem, Samuel Erdtman, and
Hannes Tschofenig. Aug 2016. Authentication and authorization for con-
strained environments (ace). ACE Working Group Internet-Draft. available at
https://tools.ietf.org/html/draft-ietf-ace-oauth-authz-10 (Aug 2016).

[15] San-Tsai Sun and Konstantin Beznosov. Oct 2012. The Devil is in the (Implemen-
tation) Details: An Empirical Analysis of OAuth SSO Systems. In Proceedings
of the 2012 ACM SIGSAC Conference on Computer and communications security
(CCS’2012). Raleigh, NC, USA, 378–390.

[16] Feng Yang and Sathiamoorthy Manoharan. Aug 2013. A security analysis of
the OAuth protocol. In Proceeding of the 2013 IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PacRim’2013). Victoria, B.C.,
Canada, 271–276.

9

	1 Introduction
	2 OAuth 2.0
	2.1 Authorization code grant
	2.2 Implicit grant
	2.3 Client Credentials grant
	2.4 Comparison of three grants

	3 ATTACK
	3.1 Impersonation attack
	3.2 Authorization code theft
	3.3 Code substitution
	3.4 Session swapping
	3.5 AS mix up
	3.6 Client Obtains too much access scope
	3.7 Obtaining credentials in the AS database
	3.8 Counterfeit Resource Server

	4 Discussion and Recommendation
	4.1 Discussion
	4.2 Recommendation
	4.3 General
	4.4 Client
	4.5 AS

	5 RS
	6 Conclusion and future work
	References

