Approximating Cumulative Pebbling Cost is Unique Games Hard

Jeremiah Blocki¹, Seunghoon Lee¹, Samson Zhou²

¹Department of Computer Science, Purdue University ²School of Computer Science, Carnegie Mellon University

Summary

Motivation.

- ullet Cumulative Pebbling Cost (cc) of a DAG G
- Study of Memory-Hard Functions in cryptography – Goal: Design constant indegree G with max cc(G)
 - Practical Constructions: Upper/Lower bounds differ by orders of magnitude
- Computational complexity of cc(G)?

Our Result.

• Hardness of approximation algorithm for cc(G)!

Theorem. Given a DAG G with constant indegree, it is Unique Games Hard to c-approximate cc(G) for any constant c > 1.

Background

Parallel Pebbling Game and cc(G).

- Goal: Place pebbles on all sink nodes.
- Pebbling Rules:
 - Initially, the graph is unpebbled.
- We can add a new pebble only if its parents were all pebbled.
- We can place multiple pebbles at the same time.
- We can discard pebbles at any time if not needed.
- $\bullet \operatorname{cc}(G) := \min_{P} \{ |P_1| + \cdots + |P_t| \}.$

$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}, \text{ and } P_4 = \{5\}$$

$$\therefore \operatorname{cc}(G) \le \sum_{i=1}^4 |P_i| = 1 + 2 + 2 + 1 = 6.$$

Depth Robustness of a DAG G.

- ullet A DAG G=(V,E) is (e,d)-depth robust if $\forall S \subseteq V \text{ s.t. } |S| \leq e \implies \mathsf{depth}(G - S) \geq d.$
- G is (e, d)-reducible if G is not (e, d)-depth robust.

Previous Work

Relationship between DR and cc(G).

- [2] If G is (e, d)-depth robust, then $cc(G) \ge ed$.
- [1] If G is (e, d)-reducible with N nodes, then

$$\operatorname{cc}(G) \leq \min_{g \geq d} \left(eN + gN \times \operatorname{indeg}(G) + \frac{N^2 d}{g} \right).$$

Computational Complexity of cc(G).

• [4] Computing cc(G) is NP-Hard.

- did not rule out approximation algorithms for cc(G)

Technical Ingredient 1: Svensson's Result [5]

- ullet Reduction from an instance of Unique Games ${\cal U}$ to a DAG $G_{\mathcal{U}}$ on N nodes $(\mathcal{U} \to \hat{G}_{\mathcal{U}} \to G_{\mathcal{U}})$
- $G_{\mathcal{U}}$ has high indegree $\mathcal{O}(N)$

Theorem. [5]

For any integer $k \geq 2$ and constant $\varepsilon > 0$, it is Unique Games Hard to distinguish between

- 1. G is (e_1, d_1) -reducible with $e_1 = N/k$ and $d_1 =$ k, and
- 2. *G* is (e_2, d_2) -depth robust with $e_2 = N(1 1/k)$ and $d_2 = \Omega(N^{1-\varepsilon})$.

Transformation Sparsify

Technical Ingredient 2: Indegree Reduction using a γ -Extreme DR Graph

Svensson's Graph $\hat{G}_{\mathcal{U}}$

Definition.

A DAG $G_{\gamma,N}$ on N nodes is said such that $e + d \leq (1 - \gamma)N$.

• Indegree and outdegree $\mathcal{O}(N^{\varepsilon} \log^2 N) \ll \mathcal{O}(N)$

Theorem.

For any integer $k \geq 2$ and constant $\varepsilon > 0$, given a DAG G with N vertices and indeg(G) = 2, it is Unique Games hard to decide whether G is (e_1, d_1) -reducible or (e_2, d_2) -depth robust for

 $\mathsf{Sparsify}_{G_{\gamma,L+1}}(\hat{G}_{\mathcal{U}})$

- ullet $e_1=rac{1}{k}N^{rac{1}{1+2arepsilon}},\ d_1=kN^{rac{2arepsilon}{1+2arepsilon}}$, and
- $\bullet e_2 = (1 \varepsilon)N^{\frac{1}{1+2\varepsilon}}, d_2 = 0.9N^{\frac{1+\varepsilon}{1+2\varepsilon}}.$

Combining with upper/lower bound of cc(G), still no gap!

Technical Ingredient 3: Superconcentrator Overlay

- We have **tighter bounds** for cc(superconc(G))!
 - If G is (e, d)-depth robust, then [3]

$$\operatorname{cc}(\operatorname{superconc}(G)) \geq \min\left\{\frac{eN}{8}, \frac{dN}{8}\right\},$$

- If G is (e, d)-reducible, then

$$\begin{aligned} &\operatorname{cc}(\operatorname{superconc}(G)) \leq \min_{g \geq d} \Big\{ 2eN + 4gN + \frac{43dN^2}{g} \\ &+ \frac{24N^2 \log(42N)}{g} + 42N \log(42N) + N \Big\}. \end{aligned}$$

- Recall that $e_1 = \frac{1}{k} N^{\frac{1}{1+2\varepsilon}}$, $d_1 = k N^{\frac{2\varepsilon}{1+2\varepsilon}} \Rightarrow$ for $g = e_1$ and large N, $\operatorname{cc}(\operatorname{superconc}(G)) \leq \frac{7}{k} N^{\frac{2+2\varepsilon}{1+2\varepsilon}}$.
- \bullet $e_2=(1-arepsilon)N^{rac{1}{1+2arepsilon}},\ d_2=0.9N^{rac{1+arepsilon}{1+2arepsilon}}\Rightarrow \operatorname{cc}(\operatorname{superconc}(G))\geq rac{1-arepsilon}{8}N^{rac{2+2arepsilon}{1+2arepsilon}}.$
- For any constant c>1, setting $\varepsilon=0.1$ and $k=\lceil\frac{560}{9}c^2\rceil$, we have the **gap** $\frac{7}{k}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}\leq \frac{9}{80c^2}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}<\frac{9}{80}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}=\frac{1-\varepsilon}{8}N^{\frac{2+2\varepsilon}{1+2\varepsilon}}$.

References

- [1] Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-hard functions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 241–271. Springer, Heidelberg, August 2016.
- [2] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their cumulative memory complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, *EUROCRYPT 2017, Part III*, volume 10212 of *LNCS*, pages 3–32. Springer, Heidelberg, April / May 2017.
- [3] Jeremiah Blocki, Benjamin Harsha, Siteng Kang, Seunghoon Lee, Lu Xing, and Samson Zhou. Data-independent memory hard functions: New attacks and stronger constructions. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 573-607. Springer, Heidelberg, August 2019.
- [4] Jeremiah Blocki and Samson Zhou. On the computational complexity of minimal cumulative cost graph pebbling. Financial Cryptography and Data Security (FC 2018), 2018. [5] Ola Svensson. Hardness of vertex deletion and project scheduling. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX, and 16th International Workshop, RANDOM. Proceedings, pages 301–312, 2012.

Acknowledgements

- Jeremiah Blocki: Research supported in part by NSF Award #1755708
- Seunghoon Lee: Research supported in part by NSF Award #1755708 and by the Center for Science of Information at Purdue University (NSF CCF-0939370)
- Part of this work was done while Samson Zhou was a postdoctoral fellow at Indiana University.

Further Information

