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Summary

Motivation.

e Cumulative Pebbling Cost (cc) of a DAG G
e Study of Memory-Hard Functions in cryptography

- Goal: Design constant indegree GG with max cc(G)

— Practical Constructions: Upper/Lower bounds differ by orders
of magnitude

e Computational complexity of cc(G)?

Our Result.

¢ Hardness of approximation algorithm for cc(G)!

Theorem. Given a DAG G with constant indegree, it is
Unique Games Hard to c-approximate cc(GG) for any
constant ¢ > 1.

Background

Parallel Pebbling Game and cc(G).

e Goal: Place pebbles on all sink nodes.
e Pebbling Rules:

- Initially, the graph is unpebbled.

- We can add a new pebble only if its parents were all pebbled.
- We can place multiple pebbles at the same time.

— We can discard pebbles at any time if not needed.

o cc(G) := mpin{\Pl\ + -+ | P}
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P1 = {1},P2 — {2,3},P3 — {3,4}, and P4 — {5}

cc(G) <Y |P|=1+2+2+1=6.
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Depth Robustness of a DAG G.
e ADAG G = (V, E) is (e, d)-depth robust if

VS C Vst |S| <e = depth(G—S5)>d.
e (G is (e, d)-reducible if G is not (e, d)-depth robust.
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Previous Work

Relationship between DR and cc(G).
¢ [2]If G is (e, d)-depth robust, then cc(G) > ed.
o [1]If G is (e, d)-reducible with IV nodes, then

N2
cc(G) < min (eN + gN X indeg(G) d) .
g>d 0]

Computational Complexity of cc(G).
e [4] Computing cc(G) is NP-Hard.

— did not rule out approximation algorithms for cc(G)
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Technical Ingredient 1: Svensson’s Result [5]

e Reduction from an instance of Unique Games U
to a DAG Gy on N nodes (U — Gy — Gy)

e (G;; has high indegree O(N)
Theorem. [5]

For any integer £ > 2 and constant ¢ > 0, it is
Unique Games Hard to distinguish between

1.G is (eq, dy)-reducible with e; = N/k and d; =
k, and
2.G is (€9, dy)-depth robust with e = N(1 —1/k)
and do = Q(Nl_g).
c,a?
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What we want:
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What actually happens
no gap!
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Technical Ingredient 2: Indegree Reduction using a v-Extreme DR Graph

Definition.

Svensson’s Graph ey
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Transformation Sparsify

A

A DAG G,y on N nodes is said
to be y-extreme depth-robust if it is

v-Extreme DR Graph G, r+1

, Sparsifyg_ |, (Gu)
o keep the edge (b%,t") <

(e, d)-depth robust foranye, d > 0
such thate +d < (1 —~)NNV.

fy L+1
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Theorem.

For any integer k£ > 2 and constant
e > 0, given a DAG G with N ver-
tices and indeg(G') = 2, it is Unique
Games hard to decide whether G
is (e1, d;)-reducible or (e,, dy)-depth
robust for

ec| = lNl—f}QS d; =

kN 1—2526 and

1+4¢

Sparsncyny - 1(GAM) ®CHO — (1 — 8)N1+2s d2 — ().9N 172,
Y
Combining with upper/lower bound
of cc(G), still no gap!

Technical Ingredient 3: Superconcentrator Overlay

e We have tighter bounds for cc(superconc(G))!

-1f G is (e, d)-depth robust, then [3]
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N dN
— (0o ) . —(0p ) —s ... —y Cc(superconC(G)) > min {68 e } ,
-If G is (e, d)-reducible, then
. 13dN?
cc(superconc(G)) < gnzné {QGN + 4gN + p
2
 ANTIBUIN) | 1o N g (427) + N}.
G’ = superconc(G) g
e Recall that e; = lN1+125 dy = kNT= = for ¢ = e, and large N, cc(superconc(G)) < %Nﬁﬁi,
oc, = (1—e)Nvz, dy = 0.9N = = cc(superconc(G)) > EN%?
e For any constant ¢ > 1, setting e = 0.1 and k = [2%¢?], we have the gap 'Ni> < L N> < SNt = LENTE
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