# Approximating Cumulative Pebbling Cost is Unique Games Hard

Jeremiah Blocki<sup>1</sup>, Seunghoon Lee<sup>1</sup>, Samson Zhou<sup>2</sup>

<sup>1</sup>Department of Computer Science, Purdue University <sup>2</sup>School of Computer Science, Carnegie Mellon University

November 21, 2019







Jeremiah Blocki, Seunghoon Lee, Samson Zhou

## Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay





# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

## Technical Ingredients.

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



 $P_1=\{1\}$ 

# Overview

# (Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}$$

# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}$$

# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}, P_4 = \{5\}$$

# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}, P_4 = \{5\}$$

$$\operatorname{cc}(G) \mathrel{\mathop:}= \min_P \{|P_1| + \dots + |P_t|\}$$



# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}, P_4 = \{5\}$$

$$\mathsf{cc}(G) \mathrel{\mathop:}= \min_P \{|P_1| + \dots + |P_t|\}$$

$$c_{\cdot} \operatorname{cc}(G) \leq \sum_{i=1}^t |P_i| = 1$$



# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}, P_4 = \{5\}$$

$$\operatorname{cc}(G) \mathrel{\mathop:}= \min_P \{|P_1| + \dots + |P_t|\}$$

$$c$$
: cc( $G$ )  $\leq \sum_{i=1}^{t} |P_i| = 1 + 2$ 



# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}, P_4 = \{5\}$$

$$\operatorname{cc}(G) \mathrel{\mathop:}= \min_P \{ |P_1| + \dots + |P_t| \}$$

$$\sum_{i=1}^{t} |P_i| = 1 + 2 + 2$$



# Overview

(Parallel) Pebbling Example.

#### We Are Here

#### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay



$$P_1 = \{1\}, P_2 = \{2, 3\}, P_3 = \{3, 4\}, P_4 = \{5\}$$

$$\mathsf{cc}(G) \mathrel{\mathop:}= \min_P \{|P_1| + \cdots + |P_t|\}$$

$$\therefore$$
 cc(G)  $\leq \sum_{i=1}^{t} |P_i| = 1 + 2 + 2 + 1 = 6.$ 

# Significance of cc(G) and a Challenging Problem

# Overview

# (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

# We Are Here

# Problem Statement.

 Given a DAG G find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

# Results.

• Unique Games Hard to approximate cc(G) for any constant factor

# Technical Ingredients.

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay

# Challenging Problem.

• Given a DAG G, find the (approximately) minimum cost pebbling

# Why We Care About cc(G)?

- Analysis of data-independent Memory-Hard Functions (iMHFs)
- [AS15] For a secure iMHF, it suffices to find a DAG G with constant indegree and maximum cc(G)
- Amortization / Parallelism (cc $(G^{ imes n}) = n imes ext{cc}(G)$ )

# Challenges.

- We don't know how to compute cc(G) exactly for any given G
- Large gaps between upper/lower bounds for known constructions

# Example

DRSample: one practical instantiation of an iMHF

$$\frac{10^{-6} \cdot N^2}{\log N} \le \mathsf{cc}(\mathsf{DRSample}) \le \frac{1 \cdot N^2}{\log N}$$

# Our Main Result: Hardness of Approximating cc(G)

# Overview

# (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG *G* find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

## We Are Here

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

#### Technical Ingredients.

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay

# Our Result.

- [BZ18] proved that computing cc(G) is NP-Hard
- This did not rule out the existence of a constant-factor approximation algorithm for cc(G)
- Our result is the hardness of any constant factor approximation to the cost of graph pebbling even for DAGs with constant indegree.

# Theorem

Given a DAG G with constant indegree, it is Unique Games hard to approximate cc(G) within any constant factor.



# Our Main Result: Hardness of Approximating cc(G)

# Overview

# (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

## Problem Statement.

• Given a DAG *G* find the (approx.) minimum cost pebbling

# Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

# We Are Here

## Results.

• Unique Games Hard to approximate cc(G) for any constant factor

## Technical Ingredients.

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay

# Our Result.

- [BZ18] proved that computing cc(G) is NP-Hard
- This did not rule out the existence of a constant-factor approximation algorithm for cc(G)
- Our result is the hardness of any constant factor approximation to the cost of graph pebbling even for DAGs with constant indegree.

# Theorem

Given a DAG G with constant indegree, it is Unique Games hard to approximate cc(G) within any constant factor.

# Implication.

• Cryptanalysis of iMHFs is Hard!



# **Technical Ingredients**

## Overview

### (Parallel) Graph Pebbling.

- Pebbling example
- Cumulative Pebbling Cost of G

#### Problem Statement.

• Given a DAG *G* find the (approx.) minimum cost pebbling

### Significance of cc(G).

- Analysis of data-independent memory-hard functions
- Amortization / Parallelism

#### Results.

• Unique Games Hard to approximate cc(G) for any constant factor

#### We Are Here

#### **Technical Ingredients.**

- Indegree reduction using γ-extreme depth robust graphs
- Superconcentrator overlay

# Svensson's Result [Sve12].

- cc(G) is related to the combinatorial property called Depth-Robustness
- Unique Games Hard to approximately test DAGs for Depth-Robustness
  - Challenge 1: Svensson's reduction dœsn't work for constant indegree graphs
  - Challenge 2: Connection between Depth-Robustness and cc(G) is not tight

#### Indegree Reduction Procedure using $\gamma$ -Extreme DR Graph $G_{\gamma,L+1}$ .



#### Superconcentrator Overlay.



#### Approximating Cumulative Pebbling Cost is Unique Games Hard

# References I



Joël Alwen and Vladimir Serbinenko, High parallel complexity graphs and memory-hard functions, 47th ACM STOC (Rocco A. Servedio and Ronitt Rubinfeld, eds.), ACM Press, June 2015, pp. 595-603.

Jeremiah Blocki and Samson Zhou, On the computational complexity of minimal cumulative cost graph pebbling, Financial Cryptography and Data Security (FC 2018).



Ola Svensson, Hardness of vertex deletion and project scheduling, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX, and 16th International Workshop, RANDOM. Proceedings, 2012, pp. 301–312.



Jeremiah Blocki, Seunghoon Lee, Samson Zhou