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Solution: Proofs of Sequential Work (PoSW)

What is a Proof of Sequential Work? (Informal)

A proof that a large amount (N ) of sequential work was performed after a prover committed an initial
message, e.g., the solution for the final exam

Initial approach: iterative hash chain

: � 7! H(�) 7! H2(�) 7! H3(�) 7! � � � 7! HN�1(�) 7! HN (�)

:� 7! H(�) 7! H2(�) 7! H3(�) 7! � � � 7! HN 0�1(�) 7! HN 0

(�)

...

� Disadvantage: Instructor needs to recompute the whole thing
� Many late students? ! insufficient computational resources to verify all solutions

Additional requirements:
� Efficiency: instructor (verifier) should be able to quickly verify the proofs (e.g., in time polylogN ), and
� Soundness: students (prover) should not be able to produce a valid proof faster (than sequential time

(N), even if running in parallel).
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PoSW Constructions

Mahmoody et al. [MMV13]: the first theoretical construction of a PoSW

� Verifier time polylogN , and prover time 
(N),

� Parallel cheating prover running in sequential time< N cannot fool the verifier, and

� Security proof in the classical ROM.

Cohen and Pietrzak [CP18]: an improved & practical PoSW construction

� Modular security proof in the classical ROM:
� Any parallel cheating prover (for the PoSW) must produce a longH-sequence (whp), and
� Any parallel cheating prover running in time < N cannot produce anH-sequence of length N (whp).H-sequence

x0; x1; : : : ; xN 2 f0; 1g� s.t.
for each 1 � i � N , there
exist a; b 2 f0; 1g� such that
xi = akH(xi�1)kb.

Post-Quantum Security?
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Post-Quantum Security of the PoSW

Cohen and Pietrzak [CP18]:

� Any parallel cheating prover (for the PoSW) must produce a longH-sequence,

� Any parallel cheating prover running in time< N cannot produce anH-sequence of lengthN .

Key Research Questions:

� Can a sequentially time-bounded parallel quantum attacker produce a longH-sequence?

� Can a sequentially time-bounded parallel quantum attacker produce a valid PoSW?

Short answer: NO!
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Our Result. Hardness of Producing anH-Sequence/PoSW in a Quantum Setting

Theorem (informal)

A quantum adversary making at most q � 2�=3 queries over N � 1 rounds outputs anH-sequence of lengthN

(x0; : : : ; xN with jxij � �� where � � 1) with negligible probabilityO
�
q3��

2�

�
.

Theorem (informal)

SupposeAmakes at most q � 2�= logN quantum queries to the random oracleH over at most T = (1� �)N

rounds. ThenA outputs a valid non-interactive PoSW with negligible probabilityO
�
q2(1� �)

�
logN +

q3� logN

2�

�
.

� We give a direct proof for the non-interactive version of the PoSW from [CP18], and

� Our proofs are in the parallel quantum random oracle model (pqROM).

Concurrent/Subsequent Work.

� Chung et al. [CFHL21]: also gave a comparable security bounds for the PoSW in the pqROM
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The [CP18] Construction

"""

000 11

00 01 101010 1111

000 001 010 011 100 101 110110110110 111111111111
`111

`11 = H(�k11k`110k`111)

� For all leaf nodes v, add an edge (u; v) for any u that is a left sibling of a node on the path from v to the
root "

� Each node has a label, a hash of its parents
� The label of root node forms a Merkle tree commitment of all the other nodes

� Verifier can audit the prover by forcing the prover to open certain labels
� Show that they are locally consistent

� Audit process: interactive or non-interactive (Fiat-Shamir)
� Any classical ROM attacker that produces a valid PoSW in time< N must produce a longH-sequence

statement being proved,
e.g., final exam solution
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e.g., final exam solution
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ROM vs qROM [BDF+11]
<Classical ROM>

x

H(x)

<Quantum ROM>

C

X
x

�xjxi

X
x

�xjx;H(x)i

� Security proofs are much more challenging in the qROM
� Programmability & Extractability (ROM: 4, qROM: 8)
� Recording quantum queries?

� Compressed Oracle Technique [Zha19]: change of view (compressed phase oracle (CPhsO))

jx; yi 
 jHi 7! jx; y �H(x)i 
 jHi
m

jx; yi 
 jHi 7! (�1)y�H(x)jx; yi 
 jHi
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Compressed Phase Oracle (CPhsO)

A databaseD := f(xi; yi); i � 1g, whereD(xi) = yi.

How to view a random oracle?

� Classical: databases of known I/O pairs & unknown I/O pairs don’t appear

� Quantum: superposition over databases (known I/O pairs + indeterminates)

After q queries,

The state can be viewed as X
x;y;z;D

�x;y;z;Dj x; y ; z i 
 jDi ;

where

� query registers,

� auxiliary input (algorithm state), and

� a compressed dataset of at most q input/output pairs.
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Extending Compressed Oracle Technique to the pqROM: the oracle CPhsOk

Example: Single Query (simplest case)

jx; y; zi 
 jDi CPhsO7�����!
(x;y)62D

jx; y; zi 

X
w

(�1)y�wjD [ (x;w)i:

� w ranges over all possible outputs ofH(x).

Example: Parallel Query (simplest case)

j(x1; y1); : : : ; (xk; yk); zi 
 jDi
CPhsOk

7����! j (x1; y1); : : : ; (xk; yk) ; zi 

X

w1;:::;wk

(�1)
P

k

i=1
xi�wi jD [ f(x1; w1); : : : ; (xk; wk)gi;

where

� simplest case: (x1; y1); : : : ; (xk; yk) 62 D and all (xi; yi)’s are distinct, and

� wi’s range over all possible outputs ofH(xi)’s for each i.
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Notations

� Given a databaseD = f(x1; y1); : : : ; (xq; yq)g, define a directed graphGD on q nodes (vx1 ; : : : ; vxq )
such that:

xi xj

H yi () vxi vxj

� PATHs := fD : GD contains a path of length sg (set of databases), and

� P̃ATHs := fj(x1; y1); : : : ; (xk; yk); zi 
 jDi : D 2 PATHsg (set of basis states).

D contains an
H-sequence of length s

() D 2 PATHs
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Proof Ideas: Hardness of Producing anH-sequence in a Quantum Setting

Lemma

j'i: an initial state, and let j'0i = CPhsOkj'i. ThenL2(j'0i; P̃ATHs+1)� L2(j'i; P̃ATHs) � 4k
p

(q+k)��

2�=2
.

Interpretation/Intuition:

� L2(j'i; P̃ATHs): 2-norm of the projection of j'i onto P̃ATHs, i.e.,

j'i =
X
X

�X jXi ) L2(j'i; P̃ATHs) =

s X
jXi2P̃ATHs

j�X j2:

� If we start with the state that is nearly orthogonal to P̃ATHs, then after applying the oracle CPhsOk, the

resulting state is also nearly orthogonal to P̃ATHs+1.
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j'i: an initial state, and let j'0i = CPhsOkj'i. ThenL2(j'0i; P̃ATHs+1)� L2(j'i; P̃ATHs) � 4k
p

(q+k)��

2�=2
.

Basic proof idea: split the states into good and bad part. (in this talk, suppose that x1; : : : ; xk 62 D and all
distinct for simplicity)

j'i = j(x1; y1); : : : ; (xk; yk); zi 
 jDi
CPhsOk

7����! j'0i = j(x1; y1); : : : ; (xk; yk); zi 

X

w1;:::;wk

(�1)
P

yiwi jD [ f(x1; w1); : : : ; (xk; wk)gi

j(x1; y1); : : : ; (xk; yk); zi



X

w1;:::;wk
2GOOD

(�1)

P
yiwi jD [ f(x1; w1); : : : ; (xk; wk)gi

j(x1; y1); : : : ; (xk; yk); zi



X

w1;:::;wk
2BAD

(�1)

P
yiwi jD [ f(x1; w1); : : : ; (xk; wk)gi+

BAD:D 62 PATHs butD [ f(x1; w1); : : : ; (xk; wk)g 2 PATHs+1
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Proof Ideas: Hardness of Producing anH-sequence in a Quantum Setting

Lemma

j'i: an initial state, and let j'0i = CPhsOkj'i. ThenL2(j'0i; P̃ATHs+1)� L2(j'i; P̃ATHs) � 4k
p

(q+k)��

2�=2
.

Proof by example:

x1 y1 x2 y2 x3 y3

D = f(10101; 0001); (00011; 0010); (00010; 0110)

x4 y4 x5 y5 x6 y6

; (01101; 0000); (11110; 0011); (01011; 1101)g

GD 1 2 3

4

6

5
(the longest path)=(5; 2; 3; 4)

D 2 PATH3 butD 62 PATH4
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Proof Ideas: Hardness of Producing anH-sequence in a Quantum Setting

Suppose we have one query: x7 = 00001 (where x7 62 D). Then the updated database is:

D1 = f(10101; 0001); (00011; 0010); (00010; 0110)D1 = f(10101; 0001); (00011; 0010); (00010; 0110)D1 = f(10101; 0001); (00011; 0010); (00010; 0110)
; (01101; 0000); (11110; 0011); (01011; 1101)g [ f(00001; w)g; (01101; 0000); (11110; 0011); (01011; 1101)g [ f(00001; w)g

D1 = f(10101; 0001); (00011; 0010); (00010; 0110)D1 = f(10101; 0001); (00011; 0010); (00010; 0110)
; (01101; 0000); (11110; 0011); (01011; 1101)g [ f(00001; w)g; (01101; 0000); (11110; 0011); (01011; 1101)g [ f(00001; w)g; (01101; 0000); (11110; 0011); (01011; 1101)g [ f(00001; w)g

GD1 1 2 3

4

6

5

C vwx7

superposition over w’s

BAD if:
1. back edges from vwx7 to some

i 2 f1; : : : ; 6g.
(e.g., w = 1010) substring of
x1 = 10101)

) D 62 PATH4 but D1 2 PATH5!!

Key observation:

The fraction of such w’s is negligible! (O(q��) out of 2�)
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Proof Ideas: Hardness of Producing anH-sequence in a Quantum Setting

For a parallel query: x7; : : : ; xk+6 (where x7; : : : ; xk+6 62 D and all xi’s are distinct for simplicity),

Dk = f(10101; 0001); (00011; 0010); (00010; 0110)
; (01101; 0000); (11110; 0011); (01011; 1101)g [ f(x7; w7); : : : ; (xk+6; wk+6)g
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xi to
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Key observation: The fraction of such w7; : : : ; wk+6’s is negligibly small! ((q + k)�� out of 2� for each wi)
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Proof Ideas: Hardness of Producing anH-sequence in a Quantum Setting

We have shown: k parallel queries in a single round,

L2(j'0i; P̃ATHs+1)� L2(j'i; P̃ATHs) �
4k
p

(q + k)��

2�=2
:

ThroughoutN � 1 rounds: ki parallel queries in each round, with
PN�1

i=1
ki � q.

� By triangle inequality,

L2(j'N�1i; P̃ATHN ) �
N�1X
i=1

4ki
p
2q��

2�=2
= O

 p
q3��

2�=2

!
:

) Ameasures a database in PATHN with probability at mostO
�
q3��

2�

�
,

i.e.,A can produce anH-sequence of lengthN with only negligible probabilityO
�
q3��

2�

�
.

� We only considered the simplest case in this talk - see the paper for the full security proof!

Security of a non-interactive PoSW: similar argument using the result above - details in the paper
(https://arxiv.org/pdf/2006.10972.pdf)
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Concluding Remarks
Takeaways.
� PoSW allows a prover to convince a resource-bounded verifier that the prover invested a substantial

amount of sequential time to produce a valid proof.

� Any attacker in the pqROM making q � 2�=3 total queries inN � 1 sequential rounds cannot find an

H-sequence of lengthN except with negligible probability O
�
q3��

2�

�
.

� Any attacker in the pqROM making q � 2�= logN total queries in sequential time T = (1� �)N

cannot produce a valid non-interactive PoSW ([CP18] construction) except with negligible probability

O
�
q2(1� �)

�
logN + q3� logN

2�

�
.

Open Questions.

� Can we tighten the security bound from q3 to q2?
� Establishing security for larger q: can we extract more than �= logN challenges from a single RO output?
� Can we prove for an interactive PoSW?
� Can we extend our security proof for other PoSW constructions?
� Can techniques extend to other primitives, e.g., Proofs of Space, Memory-Hard Functions, etc.?
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