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(Parallel) Graph Pebbling and Cumulative Pebbling Cost (cc(G))
Overview

We Are Here

(Parallel) Graph Pebbling.
� Pebbling example
� Cumulative Pebbling Cost of G

Problem Statement.
� Given a DAG G find the (approx.)

minimum cost pebbling

Significance of cc(G).
� Analysis of data-independent

memory-hard functions
� Amortization / Parallelism

Results.
� Unique Games Hard to

approximate cc(G) for any
constant factor

Technical Ingredients.
� Indegree reduction using
-extreme depth robust graphs

� Superconcentrator overlay

Goal. Place pebbles on all sink nodes.
Pebbling Rules. (informal)
� Initially, the graph is unpebbled and start with the root nodes.
� We can add a new pebble only if its parents were all pebbled.
� (Parallel) We can place multiple pebbles at the same time.
� We can discard pebbles at any time if not needed.

(Parallel) Pebbling Example.
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P1 = f1gP1 = f1g; P2 = f2; 3gP1 = f1g; P2 = f2; 3g; P3 = f3; 4gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5gP1 = f1g; P2 = f2; 3g; P3 = f3; 4g; P4 = f5g

∴ cc(G)| {z }
take minimum

�
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i=1
jPij = 1∴ cc(G)| {z }

take minimum

�
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i=1
jPij = 1 + 2∴ cc(G)| {z }

take minimum

�
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i=1
jPij = 1 + 2 + 2∴ cc(G)| {z }

take minimum

�
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i=1
jPij = 1 + 2 + 2 + 1 = 6:
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Significance of cc(G) and a Challenging Problem
Overview

(Parallel) Graph Pebbling.
� Pebbling example
� Cumulative Pebbling Cost of G

We Are Here

Problem Statement.
� Given a DAG G find the (approx.)

minimum cost pebbling

Significance of cc(G).
� Analysis of data-independent

memory-hard functions
� Amortization / Parallelism

Results.
� Unique Games Hard to

approximate cc(G) for any
constant factor

Technical Ingredients.
� Indegree reduction using
-extreme depth robust graphs

� Superconcentrator overlay

Challenging Problem.
� Given a DAG G, find the (approximately) minimum cost pebbling

Why We Care About cc(G)?
� Analysis of data-independent Memory-Hard Functions (iMHFs)

Theorem [AS15] (informal)
For a secure memory hard function for password hashing, it suffices to find
a DAG G with constant indegree and maximum cc(G).

� Amortization / Parallelism (cc(G�n) = n� cc(G))

Challenges.
� We don’t know how to compute cc(G) exactly for any given G
� Large gaps between upper/lower bounds for known constructions

Example

10�6 �N2

logN
� cc(DRSample) � 1 �N2

logN
:
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Our Main Result: Hardness of Approximating cc(G)

Overview

(Parallel) Graph Pebbling.
� Pebbling example
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minimum cost pebbling
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Results.
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-extreme depth robust graphs
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Our Result.
� [BZ18] proved that computing cc(G) is NP-Hard
� This did not rule out the existence of a constant-factor approximation

algorithm for cc(G)

� Our result is the hardness of any constant factor approximation to the
cost of graph pebbling even for DAGs with constant indegree.

Theorem
Given a DAG G with constant indegree, it is Unique Games hard to
approximate cc(G) within any constant factor.

Implication.
� Cryptanalysis of iMHFs is Hard!
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Technical Ingredients.
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� Superconcentrator overlay

Svensson’s Result [Sve12].
� cc(G) is related to the combinatorial property called Depth-Robustness
� Unique Games Hard to approximately test DAGs for Depth-Robustness

� Challenge 1: Svensson’s reduction dœsn’t work for constant indegree graphs
� Challenge 2: Connection between Depth-Robustness and cc(G) is not tight

Indegree Reduction Procedure using -Extreme DR Graph G;L+1.

B0

T0

...
...

B`

T`

...
...

BL�1

TL�1

BL

� � � � � � � � �

ĜU

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

+

0

...

`

L–1

...

L

G;L+1

)

B0

T0

...
...

B`

T`

...
...

BL�1

TL�1

BL

� � � � � � � � �

SparsifyG;L+1
(ĜU )

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

Superconcentrator Overlay.

1 2 � � � ` � � � N

G

o1 o2 � � � o` � � � oN

superconcentrator

� � �

i1 i2 � � � i` � � � iN

� � �

�� �

� � �

GS

) o1 o2 � � � o` � � � oN

superconcentrator

i1 i2 � � � i` � � � iN

G0 = superconc(G)
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Graph Pebbling (Sequential/Parallel)
Consider a directed acyclic graph (DAG) G = (V;E).

1

2

3

4

5

Goal: place pebbles on all sink nodes.

Pebbling Rules: P = fP1; � � � ; Ptg � V where Pi � V denotes the set of pebbles in round i,
� P0 = ∅, (initially, the graph is unpebbled)
� 8i 2 [t], v 2 Pi n Pi�1 ) parents(v) � Pi�1, and

(a new pebble can be added only if its parents were all pebbled in the previous round)
� 8i 2 [t], jPi n Pi�1j � 1: (only in the sequential pebbling game)
� We will focus on the parallel pebbling game throughout this talk.

Example

1 2 3 41 2 3 4 51 2 3 4 5 P1 = f1g (data value L1 stored in memory)P2 = f1; 2g (data values L1 and L2 stored in memory)P3 = f3g (data value L3 stored in memory)P4 = f3; 4g (data values L3 and L4 stored in memory)P5 = f5g (data value L5 stored in memory)
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Pebbling Complexity: The Cumulative Pebbling Cost cc(G)

Let PkG be the set of all valid parallel pebblings of G.

Definition

� The cumulative cost of a pebbling P = (P1; � � � ; Pt) 2 P
k
G is

cc(P ) := jP1j+ � � �+ jPtj:

� The cumulative pebbling cost of a graph G is defined by

cc(G) = min
P2P

k
G

cc(P )

where the minimum is taken over all legal black pebblings of G.

Example

1 2 3 41 2 3 4 51 2 3 4 5 cc(G) � jP1j+ � � �+ jP5j = 1 + 2 + 1 + 2 + 1 = 7:cc(G) � jP1j+ � � �+ jP5j = 1 + 2 + 1 + 2 + 1 = 7:cc(G) � jP1j+ � � �+ jP5j = 1 + 2 + 1 + 2 + 1 = 7:cc(G) � jP1j+ � � �+ jP5j = 1 + 2 + 1 + 2 + 1 = 7:cc(G) � jP1j+ � � �+ jP5j = 1 + 2 + 1 + 2 + 1 = 7:
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Applications of cc(G)

Data-Independent Memory Hard Function (iMHF).
� Intuition: computation costs dominated by memory costs
� Goal: force attacker to lock up large amounts of memory for duration of computation

Amortization and Parallelism.
� Consider the Space�Time (ST)-Complexity ST(G) := min

P2P
k
G

(tP �maxi�tP jPij)

� For parallel computation ST-complexity can scale badly in the number of evaluations of a function

� Cumulative pebbling cost scales well (cc(G�n) = n� cc(G))

Theorem [AS15] (informal)
For a secure memory hard function for password hashing, it suffices to find a DAG G with constant indegree
and maximum cc(G).
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The Main Result: Regarding the Hardness of Computing cc(G)

� Blocki and Zhou [BZ18] recently showed that computing cc(G) is NP-Hard. However, this dœs not rule
out the existence of a (1 + ")-approximation algorithm for any constant " > 0.

� Our main result is the hardness of any constant factor approximation to the cost of graph pebbling
even for DAGs with constant indegree.

Theorem
Given a DAG G with constant indegree, it is Unique Games hard to approximate cc(G) within any constant
factor.

Strategy?
� Svensson’s result of Unique Games hardness to distinguish two cases for a DAG G

� Reduction to eG with gap between the upper and lower bound of cc(eG)
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Unique Games Conjecture
Definition (Unique Games)

An instance of Unique Games U = (G = (V;W;E); [R]; f�v;wgv;w) consists of a regular bipartite graph
G(V;W;E) and a set [R] of labels. Each edge (v;w) 2 E has a constraint given by a permutation
�v;w : [R]! [R]. The goal is to output a labeling � : (V [W )! [R] that maximizes the number of
satisfied edges, where an edge is satisfied if �(v) = �v;w(�(w)).

Example

v1

v2

w1

w2

w3

V

W

�(w1) = 3
�v1;w1
�����! 1 = �(v1)

�(w2) = 4
�v2;w2
�����! 5 6= 2 = �(v2)�(w1) = 5
�v1;w1
�����! 4 6= 2 = �(v1)

�(w3) = 1
�v1;w3
�����! 3 = �(v1)

�(w1) = 2
�v1;w1
�����! 5 6= 3 = �(v1)

Consider the following permutation assignment:

�v1;w1 : f1; 2; 3; 4; 5g ! f2; 5; 1; 3; 4g; (e.g. �v1;w1 (1) = 2)
�v1;w3 : f1; 2; 3; 4; 5g ! f3; 2; 5; 4; 1g;

�v2;w2 : f1; 2; 3; 4; 5g ! f4; 3; 2; 5; 1g;

�v2;w3 : f1; 2; 3; 4; 5g ! f3; 1; 4; 5; 2g:

�(v1) �(v2) �(w1) �(w2) �(w3) (#satisfied edges)

1 2 3 4 5 3
2 3 5 1 4 0
3 4 2 5 1 1
...

...
...

...
...

...
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Unique Games Conjecture
Definition (Unique Games)

An instance of Unique Games U = (G = (V;W;E); [R]; f�v;wgv;w) consists of a regular bipartite graph
G(V;W;E) and a set [R] of labels. Each edge (v;w) 2 E has a constraint given by a permutation
�v;w : [R]! [R]. The goal is to output a labeling � : (V [W )! [R] that maximizes the number of
satisfied edges, where an edge is satisfied if �(v) = �v;w(�(w)).

Example

v1

v2

w1

w2

w3

V

W

�(w1) = 3
�v1;w1
�����! 1 = �(v1)

�(w2) = 4
�v2;w2
�����! 5 6= 2 = �(v2)�(w1) = 5
�v1;w1
�����! 4 6= 2 = �(v1)

�(w3) = 1
�v1;w3
�����! 3 = �(v1)

�(w1) = 2
�v1;w1
�����! 5 6= 3 = �(v1)

Consider the following permutation assignment:

�v1;w1 : f1; 2; 3; 4; 5g ! f2; 5; 1; 3; 4g; (e.g. �v1;w1 (1) = 2)
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Unique Games Conjecture

Definition (Unique Games)

An instance of Unique Games U = (G = (V;W;E); [R]; f�v;wgv;w) consists of a regular bipartite graph
G(V;W;E) and a set [R] of labels. Each edge (v;w) 2 E has a constraint given by a permutation
�v;w : [R]! [R]. The goal is to output a labeling � : (V [W )! [R] that maximizes the number of
satisfied edges, where an edge is satisfied if �(v) = �v;w(�(w)).

The following conjecture from [Kho02] has been extensively used to prove several strong hardness of
approximation algorithm.

Conjecture (Unique Games Conjecture) [Kho02]

For any constants �; � > 0, there exists a sufficiently large integer R (as a function of �; �) such that for
Unique Games instance with label set [R], no polynomial time algorithm can distinguish whether:

1. (completeness) the maximum fraction of satisfied edges of any labeling is at least 1� �, or

2. (soundness) the maximum fraction of satisfied edges of any labeling is less than �.

� Approximation algorithm for cc(G)?
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Depth Robustness ($ Depth Reducibility)

First, we define depth(G) to be the length of the longest directed path in a DAG G.

Definition
� A DAG G = (V;E) is (e; d)-depth robust if

8S � V s.t. jSj � e ) depth(G� S) � d:

� We say that G is (e; d)-reducible if G is not (e; d)-depth robust. That is,

9S � V s.t. jSj � e and depth(G� S) < d:

Example

The following graph is (e = 2; d = 2)-reducible:

1 2 3 4 5 63 4
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Depth Robustness ($ Depth Reducibility)
First, we define depth(G) to be the length of the longest directed path in a DAG G.

Definition
� A DAG G = (V;E) is (e; d)-depth robust if

8S � V s.t. jSj � e ) depth(G� S) � d:

� We say that G is (e; d)-reducible if G is not (e; d)-depth robust. That is,

9S � V s.t. jSj � e and depth(G� S) < d:

A few facts about depth robustness:
� [AB16] For any (e; d)-reducible DAG G with N nodes,

cc(G) � min
g�d

�
eN + gN � indeg(G) +

N2d

g

�
:

� [ABP17] For any (e; d)-depth robust DAG G,

cc(G) � ed:
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Technical Ingredients 1: Svensson’s Result of Unique Games Hardness
Svensson [Sve12] proved the Unique Games hardness of a DAG G:

Theorem [Sve12]
For any constant k; " > 0, it is Unique Games hard to distinguish between whether

1. G is (e1; d1)-reducible with e1 = N=k and d1 = k, and

2. G is (e2; d2)-depth robust with e2 = N(1� 1=k) and d2 = 
(N1�").

� To prove this, reduction from an instance of Unique Games U = (G = (V;W;E); [R]; f�v;wgv;w) to a
DAG GU on N nodes.
� G is (e1; d1)-reducible if U is satisfiable, and
� G is (e2; d2)-depth robust if U is unsatisfiable.

� As mentioned before, we have nice upper and lower bounds for cc(G) from [ABP17] and [AB16]:

Theorem
� [ABP17] For any (e; d)-depth robust DAG G, we have cc(G) � ed.
� [AB16] For any (e; d)-reducible DAG G with N nodes, we have

cc(G) � ming�d

�
eN + gN � indeg(G) + N2d

g

�
.
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Svensson’s Construction

Layered Bipartite Graph
ĜU

Unique Games Instance
U = (G; [R]; f�v;wgv;w)

Required DAG GU

will discuss this part

reduction transformation

B0

T0

...
...

B`

T`

...
...

BL�1

TL�1

BL

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

1. The graph ĜU contains two types of vertices:
� bit-vertices partitioned into bit-layers B = B0 [ � � � [BL,
� test-vertices partitioned into test-layers T = T0 [ � � � [ TL�1, and
� all of the edges in the graph are between bit-vertices and test-vertices.

2. ĜU shows symmetry between the layers:
� B` = fb`1; � � � ; b

`
mg and T` = ft`1; � � � ; t

`
pg (# of bit- and test-vertices in

each layer is the same)
� The edges between B` and T` (resp. T` and B`+1) encode the edge

constraints in the UG instance U .
� The directed edge (b`i ; t

`
j) exists , 8`0 � ` the edge (b`i ; t

`0

j ) exists.

� The directed edge (t`j ; b
`+1
i ) exists , 8`0 > ` the edge (t`j ; b

`0

i ) exists.

3. The number of layers L = N1�".

) indeg(ĜU ) � L (and can be as large as 
(N) in general.)
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Challenges of Applying Svensson’s Construction

Theorem [Sve12]
For any integer k � 2 and constant " > 0, it is Unique Games hard to distinguish between whether

1. G is (e1; d1)-reducible with e1 = N=k and d1 = k, and

2. G is (e2; d2)-depth robust with e2 = N(1� 1=k) and d2 = 
(N1�").

Challenges of Applying Svensson’s Construction

The result of Alwen et al. [ABP17] and [AB16] tells us that
� cc(GU ) � e2d2, and

� cc(GU ) � min
g�d1

�
e1N + gN � indeg(GU ) +

N2d1
g

�
) no gap between the upper/lower bounds since indeg(GU ) = O(N) implies

gN � indeg(GU ) = O(gN2)� 
(N2�") = e2d2:

) need to reduce the indegree (how? using -extreme depth-robust graphs.)
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Challenges of Applying Svensson’s Construction

What we want:

if (e; d)-reducible,

min
g�d

n
eN + gN � indeg(G) +

N2d

g

o
if (e; d)-DR,

ed

gap

cc(G)

When applying Svensson’s Theorem directly:

▲
gN � indeg(G)ed

kk

(gN2)
(N2�") �

cc(G)
no gap!

What do we do? Reduce indeg(G)!
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Technical Ingredients 2: -Extreme Depth Robust Graphs (Indegree Reduction)
� As discussed before, Svensson’s construction has too large indegree (O(N)) for the purposes of

bounding cc(G). How to reduce indegree?

Definition
A DAG G;N on N nodes is said to be -extreme depth-robust if it is (e; d)-depth robust for any e; d > 0
such that e+ d � (1� )N .

Svensson’s Graph ĜU

-Extreme DR Graph G;L+1

SparsifyG;L+1
(ĜU )

� Indegree and outdegree
O(N" log2N)� O(N)

� keep the edge (b`; t`
0
),

` = `0 or (`; `0) 2 E(G;L+1)

� keep the edge (t`
0
; b`),

(`0; `) 2 E(G;L+1)

transformation Sparsify

� Alwen et al. [ABP18] showed that for any constant  > 0, there exists a family fG;Ng
1
N=1 of

-extreme depth-robust DAGs with maximum indegree and outdegree O(logN).
� Then SparsifyG;L+1

(ĜU ) will have degree at most
O(indeg(G;L+1)� outdeg(G;L+1)�N=(L+ 1)) = O(N" log2N).
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Technical Ingredients 2: -Extreme Depth Robust Graphs (Indegree Reduction)

Example.

B0

T0

...
...

B`

T`

...
...

BL�1

TL�1

BL

� � � � � � � � �

ĜU

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

+

0

...

`

L–1

...

L

G;L+1

)

B0

T0

...
...

B`

T`

...
...

BL�1

TL�1

BL

� � � � � � � � �

SparsifyG;L+1
(ĜU )

� � � � � � � � �

� � � � � � � � �

� � � � � � � � �

� � � � � �

� � � � � �

� � � � � �
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Technical Ingredients 2: -Extreme Depth Robust Graphs (Indegree Reduction)

Theorem [Sve12]
For any integer k � 2 and constant " > 0, it is Unique Games hard to distinguish between whether

1. G is (e1; d1)-reducible with e1 = N=k and d1 = k, and

2. G is (e2; d2)-depth robust with e2 = N(1� 1=k) and d2 = 
(N1�").

� Indegree Reduction with SparsifyG;L+1
(ĜU )

� Analysis with Graph Coloring and Weighted Depth Robustness

Theorem (3.3)

For any integer k � 2 and constant " > 0, given a DAG G with N vertices and indeg(G) = O(N" log2N), it
is Unique Games hard to distinguish between the following cases:
� (Completeness): G is

��
1�"
k

�
N; k

�
-reducible.

� (Soundness): G is ((1� ")N;N1�")-depth robust.
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Obtaining DAGs with Constant Indegree

� The second indegree reduction procedure IDR(G; ) replaces each node v 2 V with a path
Pv = v1; � � � ; v�+ , where � = indeg(G).

� For each edge (u; v) 2 E, we add the edge (u�+ ; vj) whenever (u; v) is the jth incoming edge of v.
� We observe that indeg(IDR(G; )) = 2.

v

u
� � �

G

v1 v2 � � � v�+

u1 � � � u�+

� � � � � �

IDR(G; )

Lemma ([ABP17])
� If G is (e; d)-reducible, then IDR(G; ) is (e; (� + )d)-reducible.
� If G is (e; d)-depth robust, then IDR(G; ) is (e; d)-depth robust.
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Putting 1 and 2 Together: UG Hardness for DAGs with Constant Indegree

Corollary (3.5)

For any integer k � 2 and constant " > 0, given a DAG G with N vertices and indeg(G) = 2, it is Unique
Games hard to decide whether G is (e1; d1)-reducible or (e2; d2)-depth robust for

� (Completeness): e1 = 1
k
N

1
1+2" and d1 = kN

2"
1+2" .

� (Soundness): e2 = (1� ")N
1

1+2" and d2 = 0:9N
1+"
1+2" .

Proof Sketch. Suppose G0 is a graph with M vertices. With setting  = M2" � �,

G0 with M vertices �! G = IDR(G0; ) with (� + )M = M1+2" = N vertices

or equivalently, M = N
1

1+2" . By the previous Lemma,

� G = IDR(G0; ) is (e1; d1)-reducible for e1 = M
k

= N1=(1+2")

k
and d1 = kM2" = kN

2"
1+2" .

� G = IDR(G0; ) is (e2; d2)-depth robust for e2 = (1� ")M = (1� ")N1=(1+2"), while
d2 = M1�" = (M2" � �)M1�". Since � = O(M" log2M), for sufficiently large M ,

d2 = 0:9M1+" = 0:9N
1+"
1+2" .

d1 = (� + )k
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Technical Ingredients 3: Superconcentrators
Recall that we have the following upper and lower bounds for cc(GU ):

cc(GU ) � e2d2; and

cc(GU ) � min
g�d1

�
e1N + gN � indeg(GU ) +

N2d1
g

�
:

� Even after indegree reduction, still no gap between the pebbling complexity of the two cases.

e1N =
1

k
N

1
1+2"N =

1

k
N

2+2"
1+2" � (1� ")N

2+"
1+2" = e2d2:

Need to make it tighter!

Definition (Superconcentrator)
A superconcentrator is a graph that connects N input nodes to N output nodes so that any subset of k
inputs and k outputs are connected by k vertex-disjoint paths for all 1 � k � N . Moreover, the total
number of edges in the graph should be O(N).

Lemma ([Pip77])
There exists a superconcentrator G with at most 42N vertices, containing N input vertices and N output
vertices, such that indeg(G) � 16 and depth(G) � log(42N).
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Technical Ingredients 3: Superconcentrator Overlay
Now we define the overlay of a superconcentrator on a graph G.

Definition (Superconcentrator Overlay)

Let G = (V (G); E(G)) be a fixed DAG with N vertices and GS = (V (GS); E(GS)) be a (priori fixed)
superconcentrator with N input vertices input(GS) = fi1; � � � ; iNg � V (GS) and N output vertices
output(GS) = fo1; � � � ; oNg � V (GS). We call a graph G0 = (V (GS); E(GS) [ EI [ EO) a
superconcentrator overlay where EI = f(iu; iv) : (u; v) 2 E(G)g and EO = f(oi; oi+1) : 1 � i < Ng and
denote as G0 = superconc(G).

1 2 � � � ` � � � N

G

o1 o2 � � � o` � � � oN

superconcentrator

� � �

i1 i2 � � � i` � � � iN

� � �

�� �

� � �

GS

) o1 o2 � � � o` � � � oN

superconcentrator

i1 i2 � � � i` � � � iN

G0 = superconc(G)
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Technical Ingredients 3: Superconcentrator Overlay

If G is (e; d)-depth robust, We have the following lower bound on the pebbling complexity from [BHK+19]:

cc(superconc(G)) � min
n
eN

8
;
dN

8

o
:

The following lemma provides a significantly tighter upper bound on cc(superconc(G)) with an improved
pebbling strategy.

Lemma (4.4)
Let G be an (e; d)-reducible graph with N vertices with indeg(G) = 2. Then

cc(superconc(G)) � min
g�d

�
2eN + 4gN +

43dN2

g
+

24N2 log(42N)

g
+ 42N log(42N) +N

�
:

� Full description for the improved pebbling strategy: see the full paper! (Link)
� Now we can tune parameters appropriately to obtain our main result.
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Main Theorem: Unique Games Hardness of cc(G)

Theorem
Given a DAG G, it is Unique Games hard to approximate cc(G) within any constant factor.

Proof Sketch. Let k � 2 be an integer that we shall later fix. Similarly, " > 0 be a constant that we shall
later fix. Given a DAG G with N vertices, it is Unique Games hard to decide whether
� G is (e1; d1)-reducible for e1 = 1

k
N

1
1+2" , d1 = kN

2"
1+2" , and

� G is (e2; d2)-depth robust for e2 = (1� ")N
1

1+2" , d2 = 0:9N
1+"
1+2" .

� If G is (e1; d1)-reducible, then

cc(superconc(G)) � min
g�d1

�
2e1N + 4gN +

43d1N
2

g
+

24N2 log(42N)

g
+ 42N log(42N) +N

�

�
7

k
N

2+2"
1+2" (for g = e1 and sufficiently large N:)

� If G is (e2; d2)-depth robust, then cc(superconc(G)) � min
n
e2N

8
;
d2N

8

o
�

1� "

8
N

2+2"
1+2" .

Let c � 1 be any constant. Setting " = 1
2

and k = 102c2, we have

7

k
N

2+2"
1+2" =

1

16c2
N

2+2"
1+2" �

1

16
N

2+2"
1+2" =

1� "

8
N

2+2"
1+2" : □

(Corollary 3.5)

(Lemma 4.4)
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We are now at...
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Open Questions

� What we have showed: UG-Hard to c-approx for any c > 0.
� Worst case analysis
� Can we do better for the natural families of graphs?

� Possibility of bigger gap hardness of approximation (e.g. O(polylog(n))-approx?)

� Approximation hardness from P 6= NP?

� Is there any efficient c-approximation algorithm for Red-Blue pebbling where c = o(cb=cr)?
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Questions?
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