

Understanding Event Processes in Natural Language

Muhao Chen

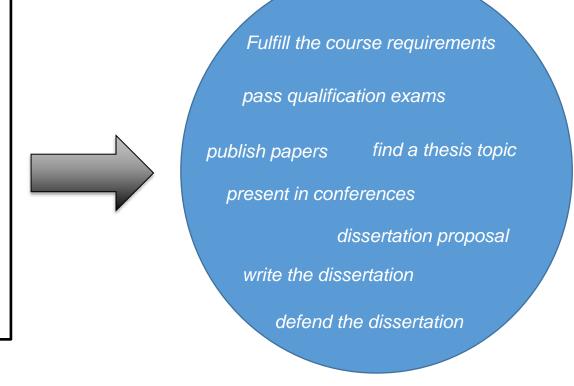
Department of Computer Science / Information Sciences Institute University of Southern California

Understanding Event Processes in Natural Language

How Do Machines Understand *Procedures* of Events?

Human Language Always Communicates About Events

Earning a PhD in Computer Science typically takes around 5 years. It first involves *fulfilling* the course requirements and passing qualification exams. Then within several years, the student is expected to *find a thesis topic*, publish several papers about the topic and present them in conferences. The last one or two years are often about completing the dissertation proposal, writing and defending the dissertation.



Natural language understanding (NLU) has to deal with event understanding

Event Extraction

What is an event?

An action or a series of actions that happen at a specific location, within a period of time, and causes change(s) to the status of some object(s)

E.g.:

Jeff shaved my hair yesterday at home

How to recognize an event in text?

Supervised Methods Beam search Die PER Injure ORG Injure-victim-ORG Wictim PER Injure ORG Injure-victim-ORG Wictim PER Injure ORG Injure-victim-PER Wictim PER Injure Victim-PER Wictim PER Injure Victim

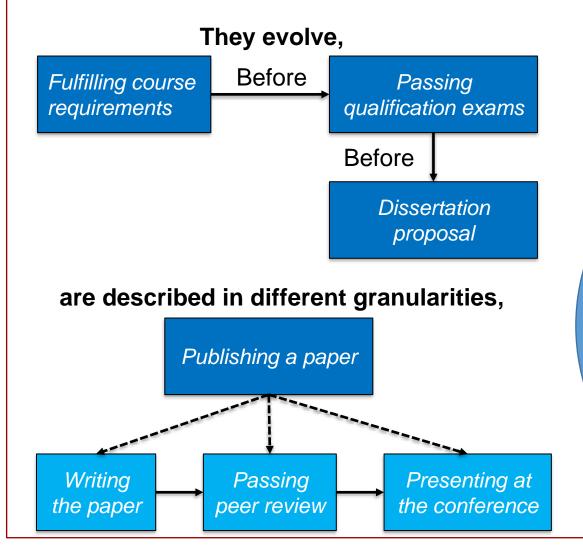
Unsupervised Methods

Semantic Role Labeling (Verb SRL / Nom SRL)

Event Process Understanding And Prediction

Extraction only is not enough.

Events are **NOT simple**, **static** predicates.



and are often directed by specific intents or central goals [Zacks et al. *Nature Neuroscience*, 2001]

Fulfilling the course requirements

passing qualification exams

publish papers find a thesis topic

present in conferences

dissertation proposal

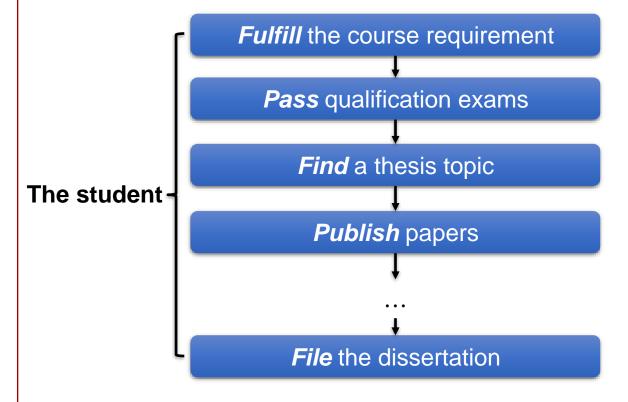
writing the dissertation

defending the dissertation

Event Process Understanding And Prediction

An event process (or event chain)

 Partially ordered events that are centered around common protagonists [Chambers et al., ACL-08]



Prediction problems on event processes

Event process completion

What happens next?

Intention prediction

 What is the goal of "digging a hole, putting some seeds in the hole and filling it with soil"?

Membership prediction

What are the steps of "buying a car"?

Salience prediction

• Is defending the dissertation more important than doing an internship?

Event Processes Are Essential to Downstream NLU Tasks

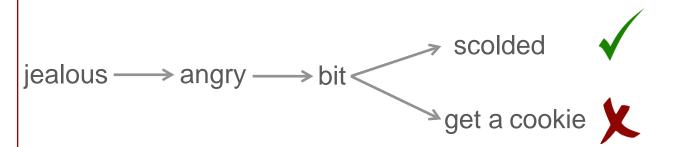
Narrative prediction

One day Wesley's auntie came over to visit. He was happy to see her, because he liked to play with her. When she started to give his little sister attention, he got **jealous**. He got **angry** at his auntie and **bit** his sister's hand when she wasn't looking.

Then what might happen?

O1: He was scolded.

O2: She gave him a cookie for being so nice.



Machine comprehension

Water is split, providing a source of electrons and protons (hydrogen ions, H+) and giving off O₂ as a by-product. *Light absorbed* by chlorophyll drives a *transfer of the electrons and hydrogen ions* from water to an acceptor called NADP+.

What can the splitting of water lead to?

A: Light absorption **B:** Transfer of ions

Water is split

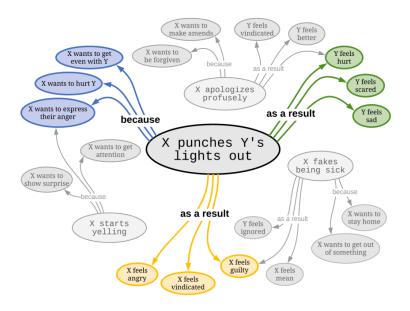
Transfer of the electrons

Transfer of the electrons and hydrogen ions

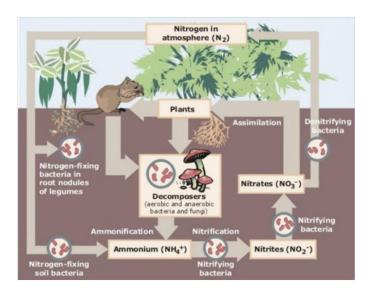
Agenda

1. Event process completion

2. Event intention prediction



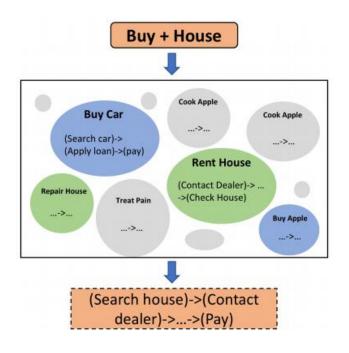
3. Event processes in downstream NLU tasks



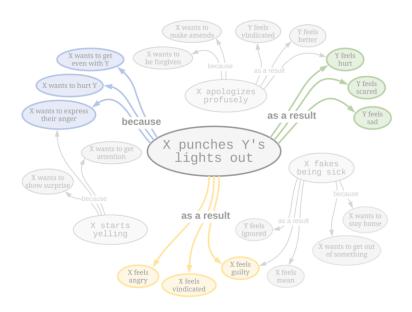
4. Open Research Directions

Agenda

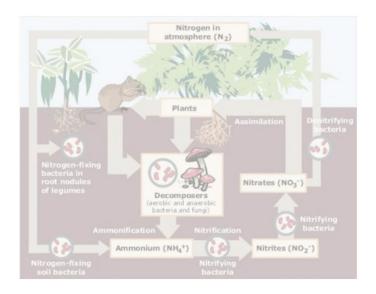
1. Event process completion



2. Event intention prediction



3. Event processes in downstream NLU tasks



4. Open Research Directions

Event Process Completion

Two forms of process prediction

1. Predicting steps of the process



2. Inducing the entire process from scratch.

Event Process Completion

Chambers and Jurafsky. Unsupervised Learning of Narrative Event Chains. ACL-08

Unsupervised event process completion can be done using corpus statistics (Gigaword in this work)

Capturing the co-occurrence of events using pointwise mutual information

The next most likely forthcoming event can be found by maximizing the accumulated PMI

$$\max_{j:0 < j < m} \sum_{i=0}^{n} pmi(e_i, f_j)$$

(n: #events in the process; m: #events in the vocabulary.

Known events:

(pleaded subj), (admits subj), (convicted obj)

Likely Events:

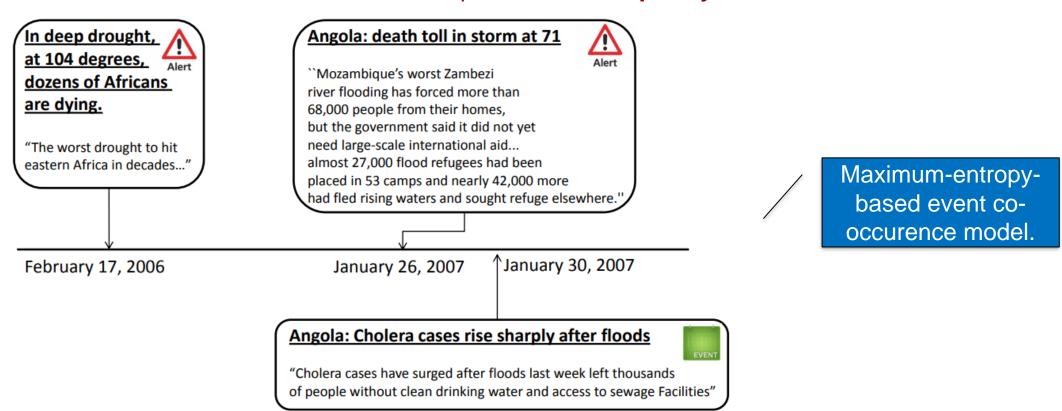
sentenced obj	0.89	indicted obj	0.74
paroled obj	0.76	fined obj	0.73
fired obj	0.75	denied subj	0.73

Improves narrative cloze tests (36% improvement on NYT Narrative Cloze).

Event Process Completion

Radinsky and Horvitz. Mining the Web to Predict Future Events. WSDM, 2013

Extension of the event chain model on multiple dated and topically cohesive documents.

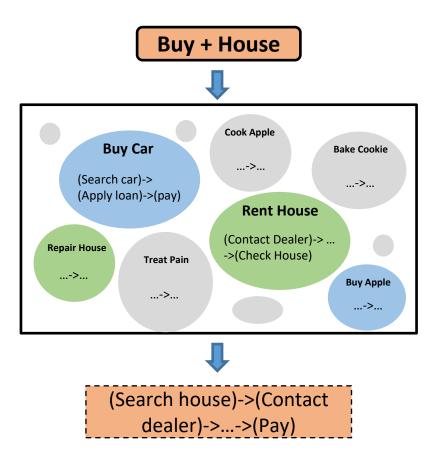


The likelihood of cholera rising is predicted high after a drought followed by storms in Angola (based on corpus statistics).

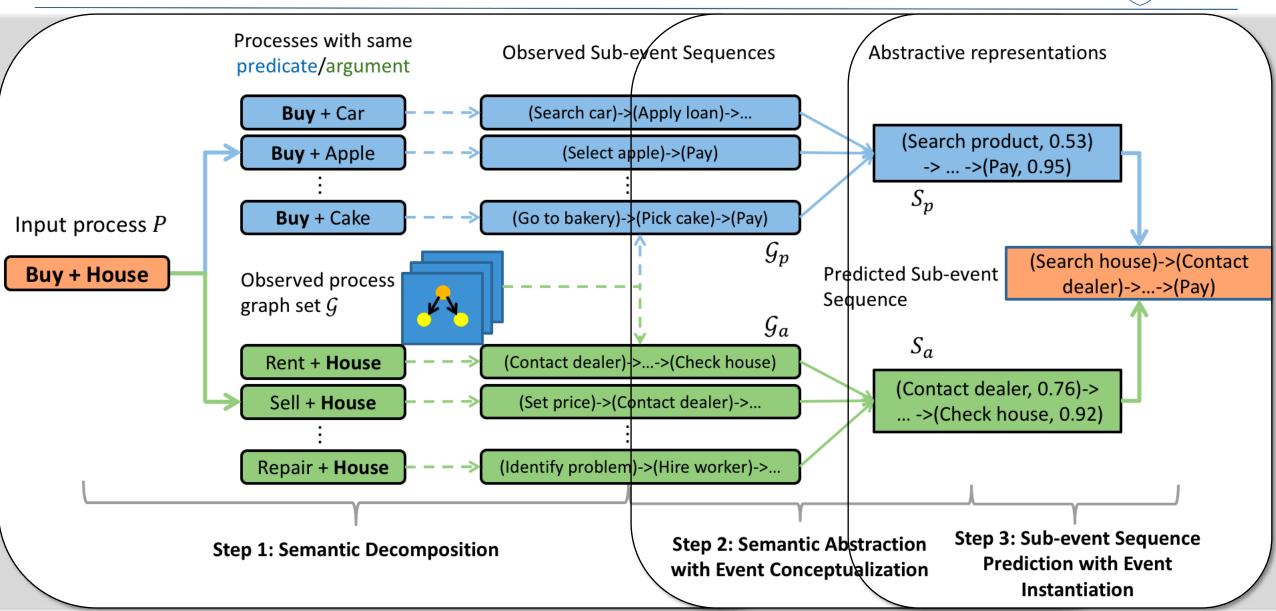
Analogous Event Process Induction

Can we perform *de novo* event process induction?

Zhang, et al. Analogous Process Structure Induction for Sub-event Sequence Prediction. EMNLP, 2020



Analogous Event Process Induction



Evaluation Based on wikiHow Event Processes

M. I.I		String Match		Hypernym Allowed	
Model	1	E-ROUGE1	E-ROUGE2	E-ROUGE1	E-ROUGE2
Random		2.9165	0.4664	23.5873	8.1089
Seq2seq (GloVe)		5.0323	1.4965	27.8710	13.0946
Seq2seq (RoBERTa)		4.5455	0.4831	28.0032	12.8502
Top one similar process (Jaccard)		8.8589	5.1000	28.6548	14.6231
Top one similar process (GloVe)		9.8797	5.1452	29.4203	13.6001
Top one similar process (RoBERTa)		9.2599	4.7390	30.6599	15.8417
Analogous Process Structure Induction (APSI)		14.8013	6.6045	36.1648	19.2418
Human		29.0189	15.2542	50.4647	29.4423

⁽a) Basic Setting (for each sub-event, we only predict and evaluate the verb)

Model		String Match		Hypernym Allowed	
Model		E-ROUGE1	E-ROUGE2	E-ROUGE1	E-ROUGE2
Random		0.0000	0.0000	0.5104	0.0903
Seq2seq (GloVe)		0.1935	0.0534	0.9677	0.1069
Seq2seq (RoBERTa)		0.4870	0.0000	1.7857	0.2899
Top one similar process (Jaccard)		0.6562	0.2257	2.4797	0.5867
Top one similar process (GloVe)		0.8750	0.2106	2.8801	0.7372
Top one similar process (RoBERTa)		0.9479	0.3009	3.2811	0.9929
Analogous Process Structure Induction (APSI)		3.4988	0.4513	6.1611	1.1885
Human		11.6351	5.5905	18.0034	8.2695

⁽b) Advanced Setting (for each sub-event, we predict and evaluate all words)

Process Name: Treat Pain

References: ('learn cause'->'identify symptom'->'see doctor')

('identify cause'->'learn injury'->'recognize

symptom'->`recognize symptom')

APSI Prediction: ('Identify symptom'->'see doctor'-

>'recognize symptom'->'take supplement')

Quantitative results

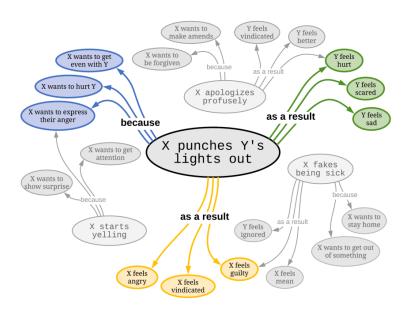
Qualitative results

Agenda

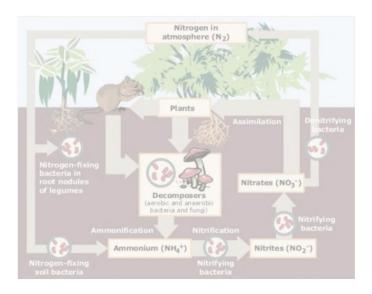
1. Event process completion



2. Event intention prediction



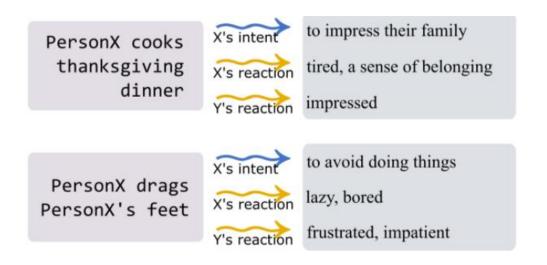
3. Event processes in downstream NLU tasks

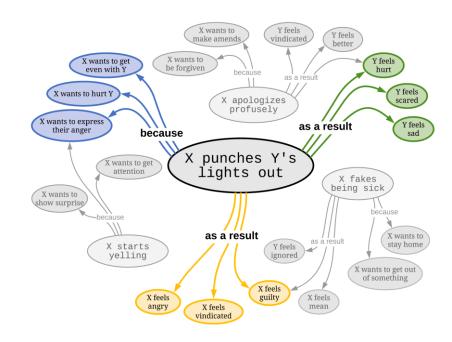


4. Open Research Directions

Intention Prediction for Events

People can easily anticipate the intents and possible reactions of participants in an event.





A commonsense-aware system should also perform such prediction.

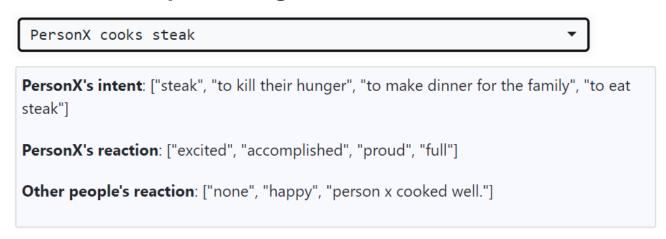
Event2Mind – A learning system that understands stereotypical intents and reactions to events (Rashkin et al. ACL-18)

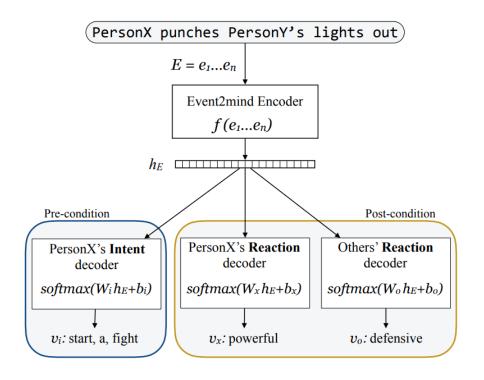
Event2Mind

Is developed based on large crowdsourced corpora:

- 25,000 events
- Free-form descriptions of their intents and reactions

Performs Seq2NGram generation:

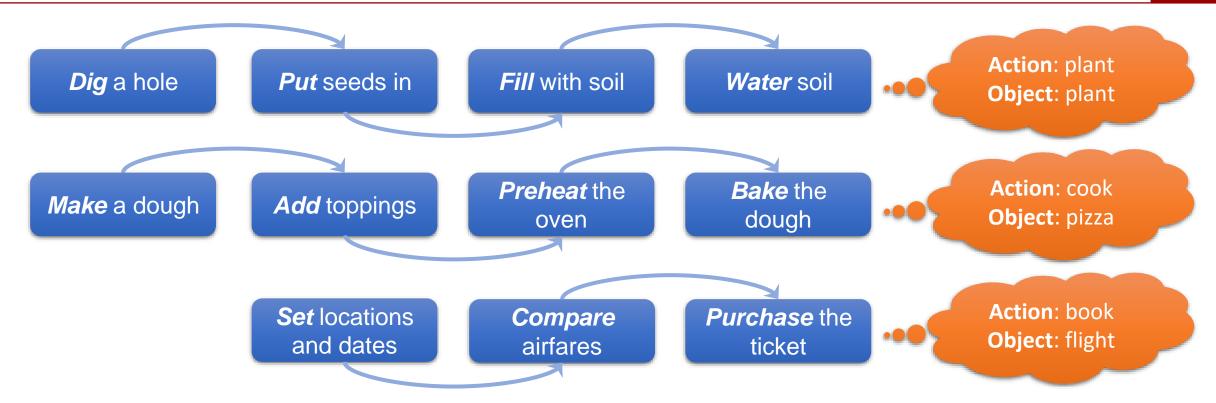




More follow-ups of Event2Mind

- ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning (Sap+ AAAI 2019)
- COMET: Commonsense Transformers for Automatic Knowledge Graph Construction (Bosselut+, ACL-19)

Intention Prediction for Event Processes



Event processes are directed by the **central goal**, or the **intention** of its performer [Zacks+, Nature Neuroscience 2001].

- Inherent to human's common sense.
- Missing from current computational methods.
- Important to machine commonsense reasoning, summarization, schema induction, etc.

A New Task: Multi-axis Event Process Typing

Chen et al. "What are you trying to do?" Semantic Typing of Event Processes. CoNLL-2020 (Best Paper Nomination)

A new (cognitively motivated) **semantic typing task** for understanding event processes in natural language. Two **type axes**:

- What action the event process seeks to take? (action type)
- What type of object(s) it should affect? (object type)

This research also contributes with

- A large dataset of typed event processes (>60k processes)
- A hybrid learning framework for event process typing based on indirect supervision

A Large Event Process Typing Dataset

A large dataset of typed event processes from wikiHow

• 60,277 event processes with free-form labels of action and object types

A challenging typing system

- Diversity: 1,336 action types and 10,441 object types (in free froms)
- Few-shot cases: 85.9% labels appear less than 10 times, (~half 1-shot).
- External labels: in 91.2% (84.2%) processes, the action (object) type label does not appear in the process body.

A non-trivial learning problem with ultra fine-grained and extremely few-shot labels.

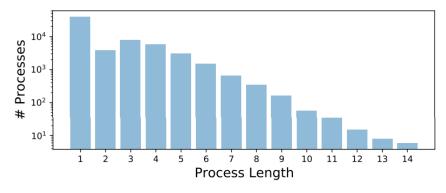


Figure 2: Distribution of process lengths.

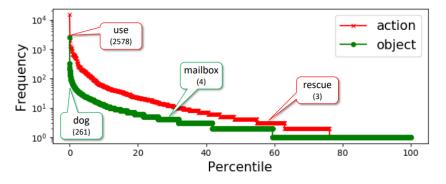
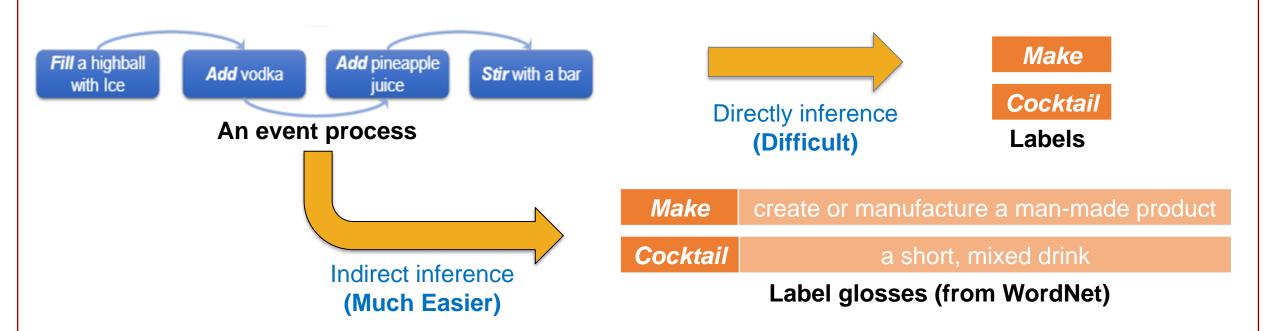


Figure 3: Distribution of actions and objects. Number of frequencies are shown in the brackets.

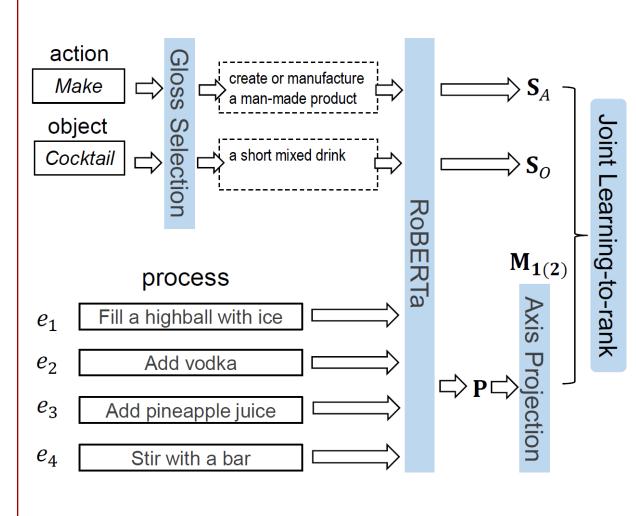
Indirect Supervision from Gloss Knowledge



Why using label glosses?

- Semantically richer than labels themselves
- Capturing the association of a process-gloss pair (two sequences) is much easier
- Jump-starting few-shot label representations (and benefiting with fairer prediction)

Indirect Supervision from Gloss Knowledge



How to represent the process?

 RoBERTa encodes concatenated event contents (VERB and ARG1).

How to represent a label?

The same RoBERTa encodes the label gloss

Which gloss for a polysemous label?

- WSD [Hadiwinoto+, EMNLP-19]
- MFS (Most frequent sense)

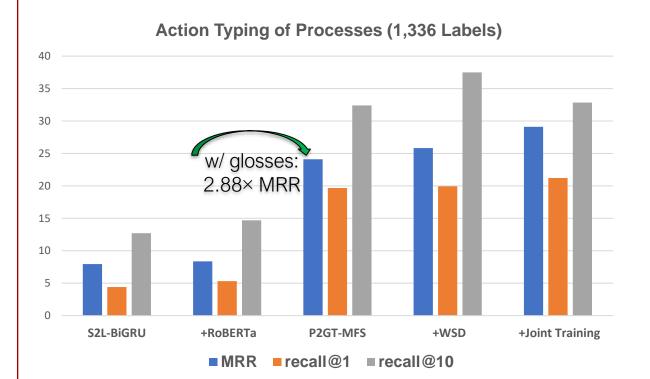
Learning objective?

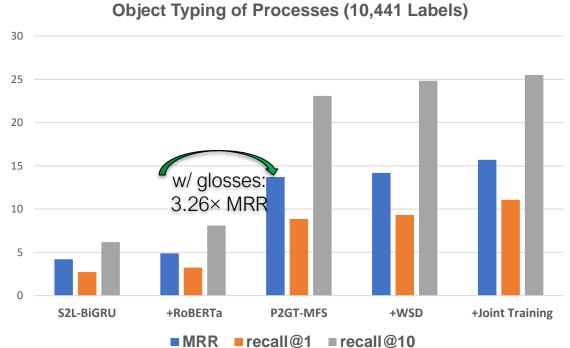
 Joint learning-to-rank for both type axes (different projection)

Inference?

Ranking all glosses for all labels in the vocab

Results





- Gloss knowledge brings along the most improvement (2.88~3.26 folds of MRR)
- Joint training indicates the effectiveness of leveraging complementary supervision signals
- Sense selection (WSD) leads to lesser improvement (predominant senses are representative enough)

Case Study

Event processes	Predictions
Make explosive materials \Rightarrow Obtain a container \Rightarrow Obtain shrapnel \Rightarrow Install a	A: detonate, assemble, blacken
trigger	O: grenade, blaster, mine
Go to DMV \Rightarrow Take photos \Rightarrow Take vision test \Rightarrow Take permit test \Rightarrow Take road test	A: obtain, verify, explore
Go to Diviv \Rightarrow take photos \Rightarrow take vision test \Rightarrow take permit test \Rightarrow take road test	O: license, check, visa
Ignore order \Rightarrow Enter area \Rightarrow Enforce blockade \Rightarrow Force to retreat from area	A: conquer, disarm, invade
ignore order \rightarrow Enter area \rightarrow Enrorce blockade \rightarrow Force to retreat from area	O: barrier, soldier, fortress
Capture two opposition posts ⇒ Kill many fighters ⇒ Destroy three armed trucks	A: kill, demolish, fight
⇒ Confiscate artillery guns	O: melee, conflict, stronghold
Cooperate with the counsel investigation ⇒ Open his remarks ⇒ Apologize many	A: respond, disagree, accept
times \Rightarrow Try to restore public trust	O: apology, disagreement, slander
Travel in a presidential motorcade \Rightarrow Be shot once in the back \Rightarrow Be taken to	A: survive, die, tackle
hospital ⇒ Be pronounced dead	O: assassin, crash, roadkill
Give advance notice \Rightarrow Give notice \Rightarrow Issue dividends	A: honor, pay, reward
Give advance notice \Rightarrow Give notice \Rightarrow issue dividends	O: finance, equity, subsidy
Target quotes \Rightarrow Target shares quotes \Rightarrow Ask to clarify offer \Rightarrow Challenge to merge	A: compare, maximize, negotiate
agreement ⇒ Challenge to merge businesses	O: prospectus, quote, settlement
Clean windows \Rightarrow Buy plants \Rightarrow Hang pictures \Rightarrow Paint walls \Rightarrow Carpet floors	A: redecorate, decorate, refurbish
Cican windows - Buy plants - Hang pictures - Laint wans - Carpet noors	O: room, bedroom, makeover

Table 3: Case study for typing event processes in the news domain. The predictions are given by Joint P2GT-WSD trained on our full dataset. Each case is given top 3 predictions on both axes, whereof reasonably correct ones are boldfaced, and relevant ones are italic. Few-shot labels appearing up to 10 times in our dataset are in blue.

System Demonstration

A web demonstration of our prototype system is running at https://cogcomp.seas.upenn.edu/page/demo_view/step

Examples		
Decoration	~	
Event process (choo	ose an example or write the subevents of a proce	ess separated by '@' to get its intention)
clean windows @ b	ouy plants @ paint walls @ hang pictures @ car	pet floors @ reorganize furniture
Get intention >		

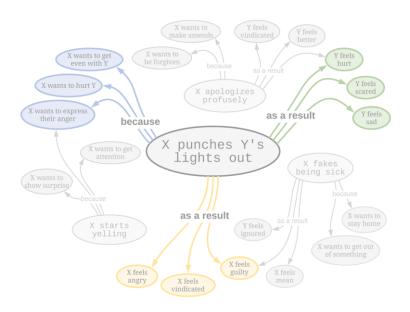
redecorate room

Cosine similarity	Action	Object	Cosine similarity
0.678	redecorate	room	0.623
0.650	stage	atmosphere	0.599
0.500	brighten	mosaic	0.589
0.427	preoccupy	suite	0.574
0.418	furnish	interior	0.573

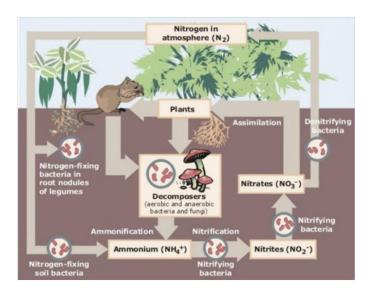
Agenda

1. Event process completion

2. Event intention prediction



3. Event processes in downstream NLU tasks



4. Open Research Directions

Narrative Prediction

The ROC Story Narrative Cloze Test [Mostafazadeh+, NAACL 2016]:

One day Wesley's auntie came over to visit. He was happy to see her, because he liked to play with her. When she started to give his little sister attention, he got **jealous**. He got **angry** at his auntie and **bit** his sister's hand when she wasn't looking.

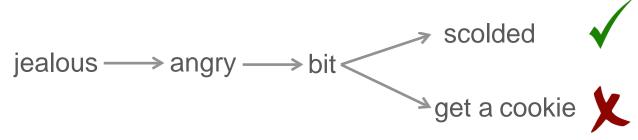
Then what might happen?

O1: He was scolded.

O2: She gave him a cookie for being so nice.

Chaturvedi, et al (EMNLP, 2017) train a language model that captures three types of sequential features:

1. Event sequences in 20 years of NYT data



- 2. Sentiment trajectories
- 3. Topical consistency

Features	Accuracy
All	74.4%
Event-sequence	71.6%
Sentiment	64.5%
Topic	55.2%

Event sequences are most important.

Machine Reading Comprehension

QA based on articles in biology

Water is split, providing a source of electrons and protons (hydrogen ions, H⁺) and giving off O₂ as a by-product. **Light absorbed** by chlorophyll drives a **transfer of the electrons and hydrogen ions** from water to an acceptor called NADP⁺.

What can the splitting of water lead to?

A: Light absorption

B: Transfer of ions

1. Extracting events and event-event relations from articles



2. Matching questions and candidate answers with extracted event processes

Berant, et al. Modeling Biological Processes for Reading Comprehension. EMNLP, 2014 (Best Paper Award)

Video Segmentation

Events in a process as anchors of video segments.

wikiHow process: make pancakes: {add egg, add flour, ..., pour batter, remove pancake}

Video segments:

background

pour batter

background

remove pancake

Video:

8

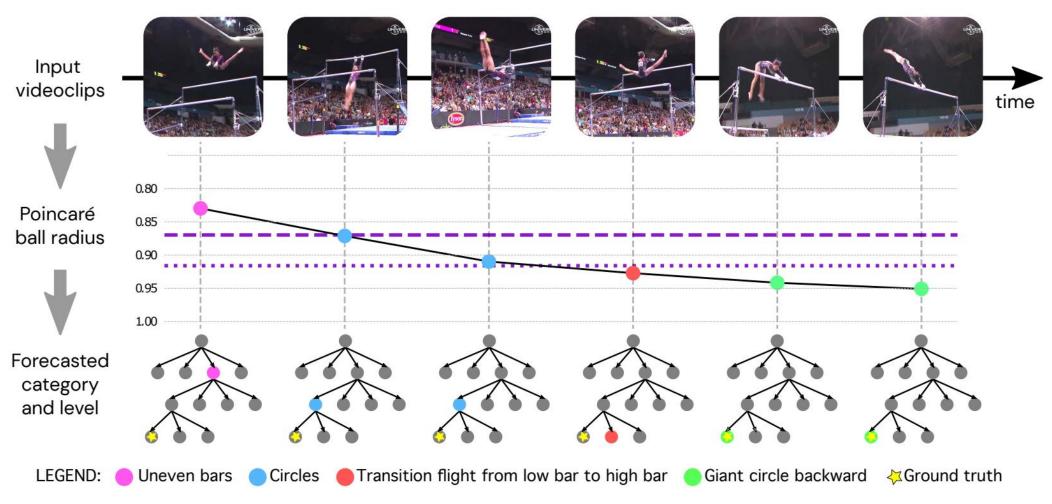
Video narration:

hey folks here welcome to my kitchen ... pour a nice-sized amount ... change the angle to show ... and take it out

Alignment learning between video narration and wikiHow event processes help action segmentation in videos.

Zhukov et al. Cross-task weakly supervised learning from instructional videos. CVPR 2019 Fried et al. Learning to Segment Actions from Observation and Narration. ACL 2020

Future Event Prediction in Videos



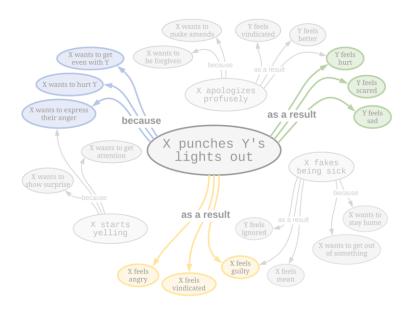
Hyperbolic embeddings model hierarchies of possible event evolution processes in videos.

Surís et al. Learning the Predictability of the Future. CVPR, 2021

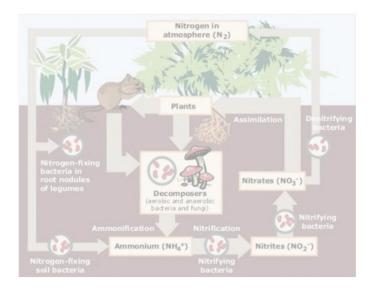
Agenda

1. Event process completion

2. Event intention prediction

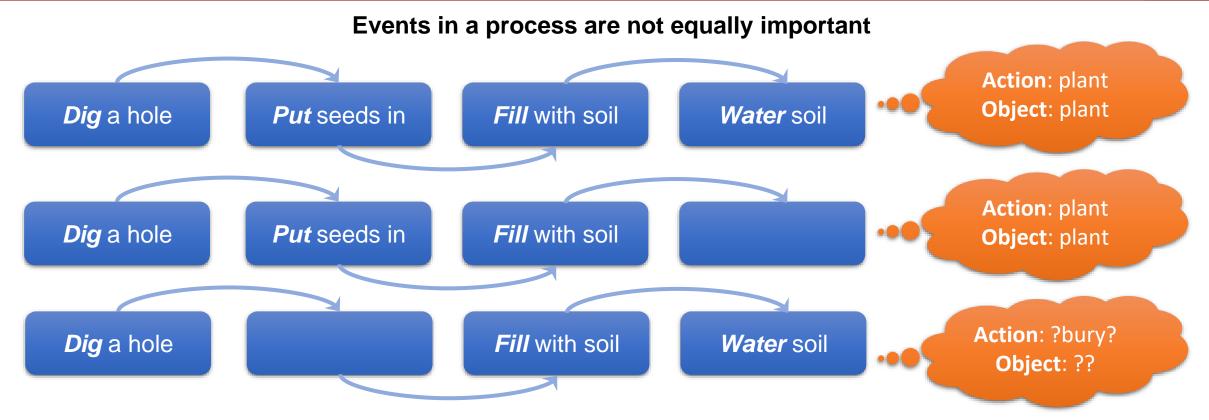


3. Event processes in downstream NLU tasks



4. Open Research Directions

Salience/Essentiality Detection in Event Processes



Defending your dissertation is essential; **Doing a TAShip** is less important; **Doing an internship** is optional...

How to automatically identify salient events in a process? Would those help downstream tasks such as abstractive summarization?

(Temporal) Commonsense Understanding

Do language models understand:

Time duration

- Earning a PhD takes several years; not several months; not lifelong time.
- Having a banquet dinner takes around an hour; not several minutes; not a day.

Typical time

- People eat break fast in the morning.
- Tornados may strike Florida typically in the middle of a year.

Typical frequency

- Cars change oil every year/half year.
- People pay utility bills every months/two months.

Ben Zhou and Daniel Khashabi and Qiang Ning and Dan Roth. "Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding", EMNLP 2019
Ben Zhou and Qiang Ning and Daniel Khashabi and Dan Roth. Temporal Common Sense Acquisition with Minimal Supervision, ACL 2020.

Reasoning About Event Ordering

Identifying the order of member events in a process?

Heavy <u>snow</u> is <u>causing disruption</u> to <u>transport</u> across the UK, with heavy <u>rainfall bringing flooding</u> to the south-west of England. Rescuers <u>searching</u> for a woman <u>trapped</u> in a <u>landslide</u> at her home in Looe, Cornwall, <u>said</u> they had <u>found</u> a body.

Q1: What events have already finished?
A: searching trapped landslide said found
Q2: What events have begun but has not finished?
A: snow causing disruption rainfall bringing flooding
Q3: What will happen in the future?
A: No answers.

Q4: What happened before a woman was trapped?

A: landslide

Q5: What had started before a woman was trapped?

A: snow rainfall landslide

Q6: What happened while a woman was trapped?

A: searching

Q7: What happened after a woman was trapped?

A: searching said found

User-provided

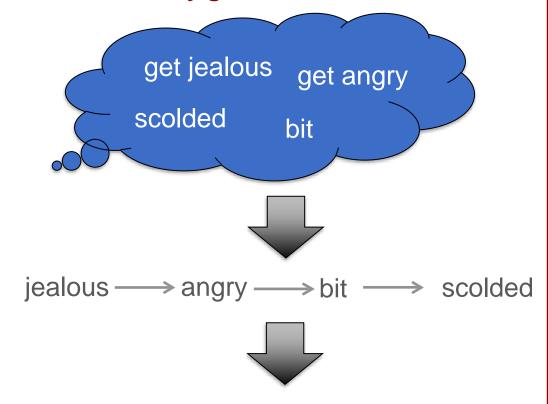
Ning, et al. TORQUE: A Reading Comprehension Dataset of Temporal Ordering Questions. EMNLP, 2020

• 3.2k news snippets with 21k human-generated questions querying temporal relationships

Lyu, et al. Reasoning about Goals, Steps, and Temporal Ordering with WikiHow. EMNLP, 2020

A wikiHow-based testbed about event ordering (and more)

Constrained story generation based on events?



He got **jealous**. He got **angry** at his auntie and **bit** his sister's hand when she wasn't looking. Then he was **scolded**.

Aligning Subevent Structures and Discourse Structures

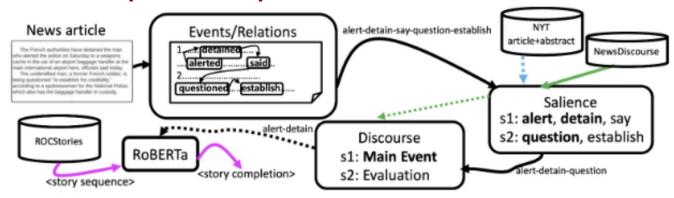
Learning subevent detection and discourse segmentation

Wang, et al. Learning Constraints and Descriptive Segmentation for Subevent Detection. EMNLP, 2021

• Automatically capturing the logical constraints between event membership relations and discourse segmentations

Former Penn State football coach Jerry Sandusky posted (e1) bail Thursday after spending a night in jall following a new round of sex-abuse charges (e2) filed against him. Sandusky secured his release using (e3) \$200,000 in real estate holdings and a \$50,000 certified check provided (e4) by his wife, Dorothy, according to online court record ... He was also charged (e5) last month with abusing eight boys, some on campus, over 15 years, allegations that were not immediately brought to the attention of authorities even though high-level people at Penn State apparently knew about them. In all, he faces more than 50 charges (e6). The scandal (e7) has resulted in the ousting (e8) of school President Graham Spanier and longtime coach Joe Paterno.

Salience- and disourse-awareness help narrative prediction

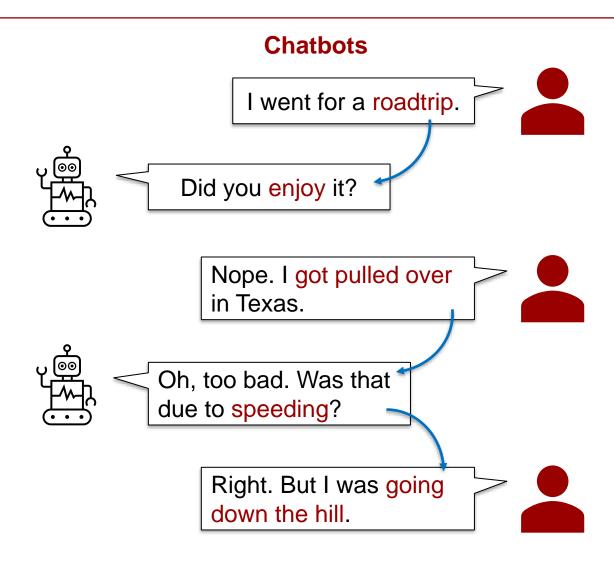


Zhang, et al. Salience-Aware Event Chain Modeling for Narrative Understanding. EMNLP, 2021

 Filtering event sequences with salience and discourse consistency help narrative prediction (ROCStories) and temporal reasoning (TORQUE)

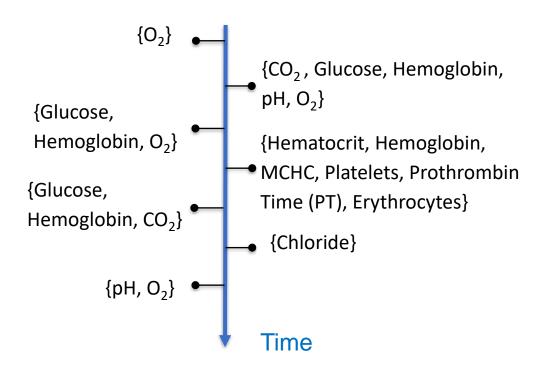
What about subevent understanding + salience/discourse awareness for summarization tasks?

More Tasks



Can event processes improve the consistency of utterance generation/retrieval?

Understanding clinical event processes



Diagnostic prediction (Zhang et al. AIME-20), phenotype prediction, ...

- Transfer learning can be important (naturally lack of data)
- Structured prediction can be important (dependency of phenotypes, disease labels)

Event-Centric Natural Language Processing



Muhao Chen

Hongming Zhang

Qiang Ning

Manling Li

Heng Ji

Kathleen McKeown

Dan Roth

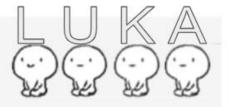
Contents

- **Event extraction** (Manling & Heng @UIUC)
- **Event relation extraction** (Qiang @Amazon)
- Event process understanding (Muhao @USC)
- **Eventuality knowledge acquisition** (Hongming @UPenn)
- **Event Summarization** (Kathleen @Columbia)
- The future of event-centric NLP (Dan @UPenn)

The Event-Centric Natural Language Processing Tutorial @ACL-21

- Slides and recordings are available
- https://cogcomp.seas.upenn.edu/page/tutorial.202108/

The Language Understanding & Knowledge Acquisition Group



Director

Muhao Chen

Assistant Research Professor of Computer Science

Ph.D., Computer Science, UCLA 2019

Email: muhaoche@usc.edu

Current Members

Wenxuan Zhou

Ph.D. Student, Computer Science

Email: zhouwenx@usc.edu

Eric (Ehsan) Qasemi

Ph.D. Student, Computer Science (Co-advised with Pedro Szekely)

Email: qasemi.ehs@gmail.com

James Y. Huang

Ph.D. Student, Computer Science

Email: huangjam@usc.edu

Fei Wang

M.S. Student, Computer Science

The Viterbi Honors Program

Email: fwang598@usc

Shikhar Singh

M.S. Student, Computer Science

Email: ssingh43@usc.edu

Google Scholar

Jiashu Xu

Undergraduate Student, Computer Science

CURVE Fellowship

Email: jiashuxu@usc.edu

Zhewei Xu

Undergraduate Student, Computer Science

CURVE Fellowship

Email: zheweixu@usc.edu

Visiting scholars/Students

Jihoon Sohn

Ph.D. Student, Mathematics, USC

Email: jihoon.sohn@usc.edu

Homepage

Bangzheng Li

B.S. in Computer Science, UIUC

Google Scholar

Website: https://luka-group.github.io/

Our main research interests: data-driven machine learning, natural language processing.

Our research directions

- Natural Language Understanding (information extraction, knowledge acquisition, natural language inference, multilingualism)
- Knowledge Technologies (KBC, knowledge transfer, structured inference, commonsense inference)
- Al for the common good (applications to biology, medicine, healthcare)

Our long-term goal

To develop robust, generalizable and minimally supervised knowledge-aware learning systems that help machines understand nature.

References

- Zack, et al. Human brain activity time-locked to perceptual event boundaries. Nature neuroscience, 4(6):651–655, 2001
- Chambers and Jurafsky. Unsupervised learning of narrative event chains. ACL, 2008
- Radinsky and Horvitz. Mining the Web to Predict Future Events. WSDM, 2013
- Berant, et al. Modeling Biological Processes for Reading Comprehension. EMNLP, 2014
- Chaturvedi, et al. Story comprehension for predicting what happens next. EMNLP, 2017
- Rashkin, et al. Event2Mind: Commonsense Inference on Events, Intents, and Reactions. ACL, 2018
- Liu, et al. Automatic event salience identification. EMNLP, 2018
- Zhukov et al. Cross-task weakly supervised learning from instructional videos. CVPR, 2019
- Zhang, et al. Analogous Process Structure Induction for Sub-event Sequence Prediction. EMNLP, 2020
- Chen, et al. "What are you trying to do?" Semantic typing of event processes. CoNLL, 2020
- Ning et al. TORQUE: A Reading Comprehension Dataset of Temporal Ordering Questions. EMNLP, 2020
- Lyu, et al. Reasoning about Goals, Steps, and Temporal Ordering with WikiHow. EMNLP, 2020
- Jindai, et al. Is Killed More Significant than Fled? A Contextual Model for Salient Event Detection.
 COLING, 2020
- Fried, et al. Learning to Segment Actions from Observation and Narration. ACL, 2020
- Zhang, et al. Diagnostic Prediction with Sequence-of-sets Representation Learning for Clinical Events.
 AIME, 2020
- Surís, et al. Learning the Predictability of the Future. CVPR, 2021

Thank You