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Markov Decision Processes

• State space 𝑆
• Action space 𝐴
• Transition probability distribution  𝑃
• Reward function 𝑅

Definition: A state has the Markov Property if state 𝑠! contains all the 
information from the past necessary to predict the future.

Pr{St+1 = s0, Rt+1 = r|S0, A0, R1, . . . , St�1, At�1, Rt, St, At}
= Pr{St+1 = s0, Rt+1 = r|St = s,At = a}

𝑆



What if we don’t have enough information?

• The Markov property is a strong assumption.
• Most real world environments and problems do not give Markov 

observations.



Partially Observable MDPs

• State space 𝑆
• Action space 𝐴
• Transition probability distribution  𝑃
• Reward function 𝑅
• Observation space 𝑂

We no longer know what state we’re in!

States are still Markovian, but observations are not.

𝑆

𝑂



How do we improve on observations?
Belief States Predictive State Representations Causal States



Belief States

Definition: Belief states are a posterior distribution over states.

Assumption: The state space is known.

b0(s0) = p(s0|a, o, b) = p(o|s0, a, b)p(s0|a, b)
p(o|a, b)

p(o|s0, a, b) = p(o|s0)

p(s0|a, b) =
X

s2S

p(s0|a, s)b(s)

p(o|a, b) =
X

s02S

p(o|s0)p(s0|a, b)



Belief State MDPs

• Continuous state space 𝐵
• probability distribution over 𝑆

• Action space 𝐴
• Transition probability distribution  𝑃
• Reward function 𝑅

The Markov property holds again at convergence, over states 
which are distributions over the original state.

𝑆

𝑂

𝐵: 𝑝(𝑆)

Q(Ot, At) ! Q(Bt, At)

⇡(a|o, ✓) ! ⇡(a|b, ✓)



An alternative view to RL: Predictive State 
Representations
Predictive machines that ground representations in the history of 
observations

Make no assumptions about the underlying state space

Especially useful when you have issues of partial observability and state 
aliasing



Predictive State Representations

Definition: (Littman, Sutton, & Singh, 2002) Predictive state 
representations are vectors of predictions for a specially selected set of 
action–observation sequences, called tests.

A history-based representation, instead of depending on the ground 
truth states.

PSRs are a sufficient statistic for all future action-observation 
sequences. 



Learning PSRs: Formulation

• System-dynamics matrix D where
• probability of test                                             given a history

# independent tests = rank of D

Dij = p(tj |hi)
tj = a1o1...anon

hi = a1o1...amom

hi

tjt1 … …

h1

…
…

p(t1|h1) p(tj |h1)

p(t1|hi) p(tj |hi)



Learning PSRs

Core tests (linearly independent columns of D):

is a sufficient statistic  of h for p(t|h), where tests t are 
possible futures given history h

Q = {q1, ..., qk}

p(Q|h)

Current time

History h Test t

=> This does not scale up well



Learning PSRs with gradient-based methods

• Recurrent encoder
• Next step prediction network

• We train neural network

• Learning Objective:
• Sufficiency:

f :
 ���
O,A 7! Ŝ

⌘ : Ŝ⇥A 7! Ô

 ( �o, a, at) = (⌘w⌘ � fwf )(
 �o, a, at)

min
wf ,w⌘

TX

t

Lr

�
P(Ot+1| �o, a, at), ( �o, a, at)

�



Learning a Sufficient Statistic



One step further: Causality 

• What is the notion of causality that is learnable in RL settings?

Definition: A causal model has the ability to understand how to 
manipulate the world, robust to changes in behavior.

• We want to learn causal models as opposed to a predictive model.



• Stochastic process:  
…                                                         …

• Causal equivalence relation ~"

• 𝜖 − 𝑚𝑎𝑝: a mapping from past to corresponding causal state

𝑦!𝑦!"# 𝑦!$%𝑦!$#

Expanding on PSRs: Causal States



Causal State Representations

when lim
L!1

H[St|
 �
Y L] = H[St|bt] = 0, where H is the conditional-entropy function. When

I[Ot+1;St, At] > I[Ot+1;
 �
Y ,At], the generator states contain more information about the future

observable than the complete history of observations
 �
Y , implying absence of asymptotical synchro-

nization (Crutchfield et al., 2010) and that belief states are only sufficient statistics of the history
 �
Y

such that I[
�!
O ;St, At] > I[

�!
O ; bt, At] = I[

�!
O ;
 �
Y ,At].

The PSR approach relaxes the assumption of having any knowledge about the underlying generator
and constructs the representation using the outputs of the predictive model ML = {P(�!OL|

 �
Y ,
�!
AL =

q1), ..,P(
�!
OL|
 �
Y ,
�!
AL = qn)} of the next L observations, conditioned on the next L actions

�!
AL (the

test) sampled from the set of feasible L-length action sequences QL = {q1, .., qn}. By
�!M, we

indicate the collections of predictive models for all L 2 Z+. Each model ML is a sufficient statistic
of the L-length future observations

�!
OL, and the complete collection

�!M is a sufficient statistic of the
infinite future observations

�!
O , i.e. I[

�!
O ;
�!M, At] = I[

�!
O ;
 �
Y ,At]. Typically, PSRs are constructed

for decision processes using a linear model that enables approximate solutions by assuming that the
infinite-dimensional system dynamics matrix has finite rank (Singh et al., 2004).

2.2 Causal States Representations

We propose to use the causal states representation that expands PSRs to the general case of non-linear
predictive models and allows the definition of a formal equivalence between the eventual generator
states and the causal states reconstructed from history. As in the PSR framework, causal states depend
on a predictive model of the observation process.

Definition 1 (Crutchfield & Young, 1989; Shalizi & Crutchfield, 2001) The causal states of a stochas-
tic process are partitions � 2 S of the space of feasible pasts

 �
Y induced by the causal equivalence

⇠✏:
 �y ⇠✏

 �y
0
() P(�!Y | �Y = �y ) = P(�!Y | �Y = �y

0
). (1)

Which implies:
P(�!Y |St = �i) = P(�!Y | �Y = �y ) 8  �y 2 �i, (2)

where St is the variable denoting causal state at time t, overwriting the definition in Sec. 2 of the
unknown ground truth state. Since all histories belonging to the same equivalence class predict
the same (conditional) future, the corresponding causal state can be used to fully summarize the
information content of those histories. It can be demonstrated (Shalizi & Crutchfield, 2001) that the
partition induced by ⇠✏ is the coarsest possible and generates the minimal sufficient representation
across the model class. Sampling of new symbols in the sequence induces the creation of new
histories and consequently new causal states. Because of this mapping from histories to states, the
resulting hidden Markov model is unifilar.

Definition 2 (Shalizi & Crutchfield, 2001) A unifilar hidden Markov model is a HMM whose
state transition probability P(St+1|St) is deterministic if conditioned on the output symbol, i.e
H[St+1|Yt+1, St] = 0.

With explicit reference to the joint input-output history, the state transition dynamics are governed by
input-conditional transition matrices To|a 2 T with elements:

T o|a
ij

= P(St+1 = �j , Ot+1 = o|St = �i, At = a). (3)

Since the causal states are defined over histories of joint symbols, the causal state model is unifilar
with respect to the joint variable At, Ot+1, i.e. the transitions between states are deterministic
once the next action and observable have been sampled or H[St+1|At, Ot+1, St] = 0. The unifilar
property implies that the recurrent dynamics of the causal states are fully specified by the state-action-
conditional symbol emission probability P(Yt+1|St, At) and the action-symbol-conditional causal
state emission probability P(St+1|Yt+1, At, St). As a consequence, knowledge of the current causal
states St and of the future action-observation sequence

��!
O,A induces a deterministic sequence of

future causal states
�!
S , H(

�!
S |��!O,A, St) = 0.

3



Different Histories

Equivalent Futures

Causal States



Our Goal
Given a stochastic process we can generate causal states
• Minimally sufficient in all future prediction
• Discrete states with deterministic transitions

• Near-Markovian



Method
• Minimal sufficient statistics can be computed from any other non-

minimal sufficient statistic. 



Components

• Recurrent encoder
• Next step prediction network
• Discretizer
• Second prediction network – ensure sufficiency of the discretized 

representation

f :
 ���
O,A 7! Ŝ

⌘ : Ŝ⇥A 7! Ô

d̄s : Ŝ 7! S̄

⌘̄ : S̄⇥A 7! O



Model Architecture

• We train neural network
• Discretizer and 2nd prediction network

• Sufficiency:

• Knowledge distillation:

min
wf ,w⌘

TX

t

Lr

�
P(Ot+1| �o, a, at), ( �o, a, at)

�

min
w⌘̄,wd̄

TX

t

Ld

�
 ( �o, a, at),⇤( �o, a, at)

�
.

 ( �o, a, at) = (⌘w⌘ � fwf )(
 �o, a, at)

⇤( �o, a, at) = (⌘̄w⌘̄ � d̄swd̄
� fw⇤

f
)( �o, a, at)

Learning Objectives



Evaluation

• Our learning objective is next-step prediction
• How do we show usefulness of this representation?
• We evaluate by learning downstream policies with Q-learning

Q(St, At) Q(St, At) + ↵
⇥
Rt+1 + �max

a
Q(St+1, a)�Q(St, At)

⇤



Environments

1. Stochastic processes:
1. Discrete observation
2. Continuous observation – stochastic rendering
3. High dimensional observation – stochastic rendering

2. GridWorlds
3. Doom
4. Atari



Stochastic Dynamics and High-dimensional 
Observations

• Transition function:

P(Ot+1 = o
0|Ot�k = o

0) = p

P(Ot+1 = o
0|Ot�k 6= o

0) = 1� p

|O| o0 2 O

p = 0.75



• Action space:

• +1 reward for state = 0

p(Ot+1 = i|At = 0) =

(
p if ot�k = i,

1�p

|O| otherwise.
,

p(Ot+1 = i|At = 1) =

(
p if ot�k�1 = i,

1�p

|O| otherwise.
.



GridWorlds



Doom Environment



Atari



Contributions and Discussion

• Two contributions: 
• A gradient-based learning method for PSRs
• A notion of causality and discretization to achieve causal states

• Discrete vs. Continuous
• Causal states give additional interpretability
• There’s an inherent trade-off of interpretability and performance



Arxiv: 1906.10437 



Arxiv: 2003.06016

54321

* Equal contribution
ICML 2020

Rich Observation MDPs



What kind of additional structure is reasonable 
to assume in MDPs ?

Markov Decision Processes

• State space 𝑆
• Action space 𝐴
• Transition probability distribution  𝑃
• Reward function 𝑅

𝑆



𝑆

𝑂

Emission mapping

A realistic additional assumption 



• Goal: Generalization to new observations where the underlying MDP is 
the same
• Solution: Ignore irrelevant information

Motivation



Motivation



A state abstraction is a function 𝜙 ∶ 𝑆 ↦ ,𝑆 which maps states 𝑠 ∈ 𝑆 to simpler abstract state space ̅𝑆. This 
can make it easier for an agent to learn and plan.

A model-irrelevance state abstraction (MISA) is a state abstraction that preserves the reward function and 
transition dynamics of the MDP. i.e.

�(s1) = �(s2) =) R(s1) = R(s2)

<latexit sha1_base64="iRhx/qp/9MoWAB01Msbx32KmJkk=">AAACHHicbVDLSgMxFM3UV62vqks3wSK0mzJTC+qiUHTjwkUt9gGdUjJp2oZmkiHJKGXoh7jxV9y4UMSNC8G/MZ3OQlsPBA7nnMvNPV7AqNK2/W2lVlbX1jfSm5mt7Z3dvez+QVOJUGLSwIIJ2faQIoxy0tBUM9IOJEG+x0jLG1/N/NY9kYoKfqcnAen6aMjpgGKkjdTLnrrBiOZVzynACkx4qQDdG8GHkg5HGkkpHmA9jlTqsdvL5uyiHQMuEychOZCg1st+un2BQ59wjRlSquPYge5GSGqKGZlm3FCRAOExGpKOoRz5RHWj+LgpPDFKHw6ENI9rGKu/JyLkKzXxPZP0kR6pRW8m/ud1Qj0470aUB6EmHM8XDUIGtYCzpmCfSoI1mxiCsKTmrxCPkERYmz4zpgRn8eRl0iwVnXLx4racq14mdaTBETgGeeCAM1AF16AGGgCDR/AMXsGb9WS9WO/WxzyaspKZQ/AH1tcPXm6fFA==</latexit>

X

s02��1(s̄0)

p(s0|s1) =
X

s02��1(s̄0)

p(s0|s2)

<latexit sha1_base64="BZVxoqqyGE8oChA5heZjRRTaaUI="></latexit>

and

�(s1) = �(s2) =) R(s1) = R(s2)

<latexit sha1_base64="iRhx/qp/9MoWAB01Msbx32KmJkk=">AAACHHicbVDLSgMxFM3UV62vqks3wSK0mzJTC+qiUHTjwkUt9gGdUjJp2oZmkiHJKGXoh7jxV9y4UMSNC8G/MZ3OQlsPBA7nnMvNPV7AqNK2/W2lVlbX1jfSm5mt7Z3dvez+QVOJUGLSwIIJ2faQIoxy0tBUM9IOJEG+x0jLG1/N/NY9kYoKfqcnAen6aMjpgGKkjdTLnrrBiOZVzynACkx4qQDdG8GHkg5HGkkpHmA9jlTqsdvL5uyiHQMuEychOZCg1st+un2BQ59wjRlSquPYge5GSGqKGZlm3FCRAOExGpKOoRz5RHWj+LgpPDFKHw6ENI9rGKu/JyLkKzXxPZP0kR6pRW8m/ud1Qj0470aUB6EmHM8XDUIGtYCzpmCfSoI1mxiCsKTmrxCPkERYmz4zpgRn8eRl0iwVnXLx4racq14mdaTBETgGeeCAM1AF16AGGgCDR/AMXsGb9WS9WO/WxzyaspKZQ/AH1tcPXm6fFA==</latexit>

State Abstractions



• Target variable: Y
• Causal feature set: X2, X4 

• Directed arrows = causal relationship
• X2 causes Y

Figure from Peters et al. (2016)

Causal Graphs  (Structural Causal Models)



Peters et al. (2016) first introduced an algorithm, Invariant Causal 
Prediction (ICP), to find the causal feature set.

Figure from Peters et al. (2016)

Causal Inference Using Invariant Prediction



Block  MDPs (Rich Observation MDPs)



Graphical model demonstrating Assumption 2.

Assumptions



Causality and MISAs



Bounds on Generalization ErrorBounds on Generalization Error



Bounds on Generalization Error



1. We first introduce a linear algorithm for learning Model-Irrelevance 
State Abstractions (MISA) – based on Peters et al. (2016).

2. We extend to nonlinear settings with a gradient-based method for 
disentangling the state space into a minimal representation that 
causes reward, and everything else.

Learning an abstraction



Observable Variables Setting

When state is equal to the variables in the causal graph, it’s straightforward to apply known causal 
prediction methods to find the causal ancestors of the reward.



Rich Observation Setting



We consider a simple family of MDPs with state space 
with a transition dynamics structure such that

and

X =
�
(x1, x2, x3)

 
<latexit sha1_base64="3KdkYB9PT7LlqCGzkSvkOHzI1Lc=">AAACIXicbVDNS8MwHE39nPOr6tFLcAgTxmg3wV2EgRePE9wHrKWkWbqFpWlJUtko+1e8+K948aDIbuI/Y7b2oJsPEh7v/X4k7/kxo1JZ1pexsbm1vbNb2CvuHxweHZsnpx0ZJQKTNo5YJHo+koRRTtqKKkZ6sSAo9Bnp+uO7hd99IkLSiD+qaUzcEA05DShGSkue2XBCpEYYsbQ3g7fQ8enQYb5AmMDyxLMrEE68WkVf9avMFJkJPbNkVa0l4Dqxc1ICOVqeOXcGEU5CwhVmSMq+bcXKTZFQFDMyKzqJJDHCYzQkfU05Col002XCGbzUygAGkdCHK7hUf2+kKJRyGvp6cpFHrnoL8T+vn6ig4aaUx4kiHGcPBQmDKoKLuuCACoIVm2qCsKD6rxCPkK5A6VKLugR7NfI66dSqdr1ae7guNRt5HQVwDi5AGdjgBjTBPWiBNsDgGbyCd/BhvBhvxqcxz0Y3jHznDPyB8f0Dez6hKA==</latexit>

xt+1
1 = xt

1 + ✏e1,
<latexit sha1_base64="G8HX/ThfL5Javhgd98hr9iukEzQ=">AAACCnicbZDJSgNBEIZ7XGPcRj16aQ2CEAkzUTAXIeDFYwSzQDZ6OpWkSc9Cd40Yhpy9+CpePCji1Sfw5tvYWQ6aWNDw8f9VVNfvRVJodJxva2l5ZXVtPbWR3tza3tm19/YrOowVhzIPZahqHtMgRQBlFCihFilgvieh6g2ux371HpQWYXCHwwiaPusFois4QyO17aOHtttKMOuO6BUdM9IsbUCkhTS224Kztp1xcs6k6CK4M8iQWZXa9lejE/LYhwC5ZFrXXSfCZsIUCi5hlG7EGiLGB6wHdYMB80E3k8kpI3pilA7thsq8AOlE/T2RMF/roe+ZTp9hX897Y/E/rx5jt9BMRBDFCAGfLurGkmJIx7nQjlDAUQ4NMK6E+SvlfaYYR5Ne2oTgzp+8CJV8zj3P5W8vMsXCLI4UOSTH5JS45JIUyQ0pkTLh5JE8k1fyZj1ZL9a79TFtXbJmMwfkT1mfP0dtmLQ=</latexit>

xt+1
2 = xt

2 + ✏e2,
<latexit sha1_base64="mx4rt00I7JfFKL+Jl7V2jG8F4jc=">AAACDHicbVDJSgNBFOxxjXGLevTSGAQhEmZGwVyEgBePEcwC2ejpvCRNeha634hhiHcv/ooXD4p49QO8+Td2loMmFjQUVfV4/cqLpNBo29/W0vLK6tp6aiO9ubW9s5vZ26/oMFYcyjyUoap5TIMUAZRRoIRapID5noSqN7ga+9U7UFqEwS0OI2j6rBeIruAMjdTOZO/bbivBnDOil3TMkeZoAyItpLHdFpw+UJOy8/YEdJE4M5IlM5Tama9GJ+SxDwFyybSuO3aEzYQpFFzCKN2INUSMD1gP6oYGzAfdTCbHjOixUTq0GyrzAqQT9fdEwnyth75nkj7Dvp73xuJ/Xj3GbqGZiCCKEQI+XdSNJcWQjpuhHaGAoxwawrgS5q+U95liHE1/aVOCM3/yIqm4eecs796cZ4uFWR0pckiOyAlxyAUpkmtSImXCySN5Jq/kzXqyXqx362MaXbJmMwfkD6zPH5xJmWk=</latexit>

xt+1
3 = xt

2 + ✏e3
<latexit sha1_base64="8siCtefjImroy3/po8pkOAeSOFM=">AAACCXicbZDJSgNBEIZ74hbjNurRS2MQhECYSQRzEQJePEYwC2Sjp1NJmvQsdNeIYcjVi6/ixYMiXn0Db76NneWgiQUNH/9fRXX9XiSFRsf5tlJr6xubW+ntzM7u3v6BfXhU02GsOFR5KEPV8JgGKQKookAJjUgB8z0JdW90PfXr96C0CIM7HEfQ9tkgEH3BGRqpa9OHbrGTYM6d0CvDhQ7SHG1BpIU0drEDXTvr5J1Z0VVwF5Ali6p07a9WL+SxDwFyybRuuk6E7YQpFFzCJNOKNUSMj9gAmgYD5oNuJ7NLJvTMKD3aD5V5AdKZ+nsiYb7WY98znT7DoV72puJ/XjPGfqmdiCCKEQI+X9SPJcWQTmOhPaGAoxwbYFwJ81fKh0wxjia8jAnBXT55FWqFvFvMF24vsuXSIo40OSGn5Jy45JKUyQ2pkCrh5JE8k1fyZj1ZL9a79TFvTVmLmWPyp6zPH9y3mIM=</latexit>

x1

x2
x3

x1

x2
x3

t t+1

Model Learning in Observable Variables Setting



Model Learning in Rich Observation Setting



Imitation Learning



Reinforcement Learning



• We show that causal inference methods can be used to find good state 
abstractions for RL.
• We propose a method to obtain these state abstractions
• We demonstrate that this method works on a variety of deep RL tasks.

Conclusions


