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Markov Decision Processes

* State space S

* Action space A
* Transition probability distribution P

e Reward function R

Definition: A state has the Markov Property if state s; contains all the
information from the past necessary to predict the future.
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What if we don’t have enough information?

* The Markov property is a strong assumption.

* Most real world environments and problems do not give Markov
observations.
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Partially Observable MDPs

b
* State space S 'lfm
XD

* Action space A

* Transition probability distribution P
* Reward function R

* Observation space 0O

We no longer know what state we’re in!

States are still Markovian, but observations are not.
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How do we improve on observations?
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Belief States

Definition: Belief states are a posterior distribution over states.

p(O‘S/,CL,b)p(S/‘CL,b)
p(ola,d)
(0\3/ a,b) = p(o|s)

(s'|a,b) = Zp "la, s)b(
p(ola,b) = Zp (o|s")p(s|a,b)

s'eS

v'(s") = p(s'|a,0,b) =

Assumption: The state space is known.



Belief State MDPs

* Continuous state space B ‘]’_%14 &
XD

* probability distribution over S B: p(5)

* Action space A I
* Transition probability distribution P

0

e Reward function R -

The Markov property holds again at convergence, over states I

which are distributions over the original state.
Q(Oy, Ay) — Q(By, Ay) @
m(alo,0) — m(alb,d) s
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An alternative view to RL: Predictive State
Representations

Predictive machines that ground representations in the history of
observations

Make no assumptions about the underlying state space

Especially useful when you have issues of partial observability and state
aliasing



Predictive State Representations

Definition: (Littman, Sutton, & Singh, 2002) Predictive state
representations are vectors of predictions for a specially selected set of
action—observation sequences, called tests.

A history-based representation, instead of depending on the ground
truth states.

PSRs are a sufficient statistic for all future action-observation
sequences.



Learning PSRs: Formulation

* System-dynamics matrix D where Dij — p(tj |hz)
 probability of test tj — a101...an0n given a history

h; =a'ol...a™o™
t1 ..

hi| p(t1|h1) p(tjlh1)

# independent tests = rank of D |
P hi| p(tilhi)  p(tj|hi)




Learning PSRs

Core tests (linearly independent columns of D):

Q=191 -, q}

p(@\h) is a sufficient statistic of h for p(t|h), where tests t are
possible futures given history h

History h t Test t

Current time
=> This does not scale up well



Learning PSRs with gradient-based methods

e Recurrent encoder f: 8, A— S
* Next step prediction network n:SXxA—0O

* We train neural network ‘I’(ma ai) = (77w,,7 © fwf)(ma at)

* Learning Objective:

 Sufficiency:
T
wr?%l L, (P(Ot+1 ‘%7 at), \I/(m, at))
Al f ] +



Learning a Sufficient Statistic




One step further: Causality

* What is the notion of causality that is learnable in RL settings?

Definition: A causal model has the ability to understand how to
manipulate the world, robust to changes in behavior.

* We want to learn causal models as opposed to a predictive model.



Expanding on PSRs: Causal States

* Stochastic process:

YVt-1 Yt Vt+1 Yi+2

* Causal equivalence relation ~
T~ 5 = PY|Y =5)=P(Y|Y =5

* € — map: a mapping from past to corresponding causal state



Causal State Representations

Definition 1 (Crutchfield & Young, 1989; Shalizi & Crutchfield, 2001) The causal states of a stochas-
tic process are partitions o € S of the space of feasible pasts ? induced by the causal equivalence

) Ty = PYIY =9) =P |Y =%)). (1)

6.

Which implies:
P(Y|S;=o) =P(Y|Y =%) V ¥ co 2)



Equivalent Futures
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Our Goal

Given a stochastic process we can generate causal states
* Minimally sufficient in all future prediction
e Discrete states with deterministic transitions

HIS; 411, Si1 = 0.

* Near-Markovian




Method

* Minimal sufficient statistics can be computed from any other non-
minimal sufficient statistic.




Components

e Recurrent encoder f: 8, A— S
* Next step prediction network n:SXxA—0O
e Discretizer d*:S+— S

* Second prediction network — ensure sufficiency of the discretized
representation n:SxXxA— O



Model Architecture

* We train neural network \If(ﬁ,at) = (Nw, © fwf)(m, a)

* Discretizer and 2"9 prediction network

A(waat) — (ﬁ’w Ods Of’w )(ﬂ?at)

Learning Objectives

T

min Er( (Ot+1‘m at), (mvat))

 Sufficiency: W Wy
t

* Knowledge distillation: min Zﬁd m a), (m,at)).

Wqn,Wqg



Evaluation

* Our learning objective is next-step prediction
* How do we show usefulness of this representation?
* We evaluate by learning downstream policies with Q-learning

Q(St, Ar) + Q(St, Ar) + | Repa + ymax Q(Sit1,a) — Q(St, Ay)]



Environments

1. Stochastic processes:

1. Discrete observation
2. Continuous observation — stochastic rendering
3. High dimensional observation — stochastic rendering

2. GridWorlds
3. Doom
4. Atari



Stochastic Dynamics and High-dimensional
Observations

St—1 » 5 > 5141 < BIT%)




. . . . p if Ot—k — iv
* Action space: PO =il =0) = <\1|%2|9 otherwise.
. (p if Ot—k—1 =1,
P(Orr = il Ay ) <\1|%2|9 otherwise.
 +1 reward for state =0
Discrete (Gaussian MNIST
Method Y| k=2 Y| k=4 Y| k=2 Y| k=14 Y| k=2 Y| k=14
DQN on Y 50.1, 1.01 25.1, 1.12 50.6, 1.26 25.0, 1.35 50.1, 1.80 25.0, 1.27
DQN on ? 73.7, 0.73 55.5,1.62 | 73.3, 1.20 54.9, 1.71 | 72.3, 1.33 54.2, 1.39
DQN on §' 72.7, 1.04 54.6, 1.61 | 73.6, 0.82 55.3, 1.91 | 72.8, 1.23 50.8, 1.80
DQN on S 72.6, 4.10 49.2, 3.29 73.7, 2.18 52.7, 3.07 72.6, 2.50 43.2, 3.02




GridWorlds

(=]

i Method Layout 1 Layout 2
4 Tabular, S | 0.43+0. 0.01 £ 0.
. DQN, S 0.50 +£0.005 —0.17+0.24
i DQN,§ | 05+0. 0.30 + 0.
Dijkstra, S | 0.5, 0. 0.3, 0.
DQN, Y —9.46+0.06 —9.48+0.04
DQN, Y, —0.914+0.95 0.23+0.05
Layout 1 o Layout 2 _ DRQN,Y | —9.75+0.07 —563+1.18
0 Tabular, Y | —9.404+0.  —9.11+0.
Tabular, Sy | 0.45 0. 0.23 £ 0.
_s _5 DQN, Sy 0.44+0.01  0.30+0.003
Dijkstra, S | 0.5, O. 0.3, 0.
-10 -10
0 250 500 750 1000 0 250 500 750 1000
Episodes Episodes

—— s _bar —— s _hat —— obs —— obs, mem —— obs, rnn s gt



Doom Environment

Rewards

doom
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Game Causal States DRQN DVRL

Air Raid 950 + 271 518 £231 748 + 156
Asteroids 1129 + 345 929+ 285 349+ 54
Bowling 34+ 8 29+0 23+1
Boxing 4+4 0+2 16 +3
Centipede 4586 =763 3127+ 71 1157+ 130
Gopher 783 + 151 620 £ 129 255+ 129
Ice Hockey -3+1 -5+1 —11+0
Ms. Pacman 671 £+ 36 8491+ 60 181445
Pong —2+6 == —20x0
Space Invaders | 354 + 67 381 +14 68+9




Contributions and Discussion

* Two contributions:
* A gradient-based learning method for PSRs
* A notion of causality and discretization to achieve causal states

* Discrete vs. Continuous
* Causal states give additional interpretability
* There’s an inherent trade-off of interpretability and performance



1906.10437/

Arxiv



Invariant Causal Prediction for Rich Observation MDPs

Amy Zhang “ 23 Clare Lyle “* Shagun Sodhani> Angelos Filos* Marta Kwiatkowska* Joelle Pineau '?3
Yarin Gal* Doina Precup ! %>

1 2 3
TMcGill E:Mila  \ |

ICML 2020

i} .
Equal contribution Arxiv: 2003.06016



Markov Decision Processes

 State space S
* Action space A

* Transition probability distribution P

e Reward function R

What kind of additional structure is reasonable
to assume in MDPs ?



A realistic additional assumption

Irrelevant Relevant

, -l:
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* Goal: Generalization to new observations where the underlying MDP is
the same

 Solution: Ignore irrelevant information




Motivation

'l“; Player
. Enemy
. Unfilled track
B Filled track

(a) Default start (b) Default death (c) Modified start  (d) Modified death

Figure: Train and Test on Atari proposed by Witty et al. 2018

T
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Figure: Train and Test on CoinRun proposed by Cobbe et al. 2019

FREEWAY HERO BREAKOUT SPACE INVADERS

Figure: Train and Test on Atari proposed by Farebrother, Machado, and
Bowling 20182 .



State Abstractions

A state abstraction is a function ¢ : S = S which maps states s € S to simpler abstract state space S. This
can make it easier for an agent to learn and plan.

A model-irrelevance state abstraction (MISA) is a state abstraction that preserves the reward function and
transition dynamics of the MDP. i.e.

R(Sl) = R(Sg) :

Bs1) = $(52) = o :



Causal Graphs (Structural Causal Models)

* Target variable: Y (Y
* Causal feature set: X,, X, (xs)

. . . \
 Directed arrows = causal relationship @\ /
* X, causes Y @

(9

Figure from Peters et al. (2016)



Causal Inference Using Invariant Prediction

Peters et al. (2016) first introduced an algorithm, Invariant Causal
Prediction (ICP), to fino

the causal feature set.
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environment e = 1:
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Figure 1:

guarantee invariant prediction.

Figure from Peters et al. (2016)

An example including three environments. The invariance (1) and (2) holds
if we consider S* = {X3,X4}. Considering indirect causes instead of direct ones (e.g.

{Xs,X5}) or an incomplete set of direct causes (e.g. {X4}) may not be sufficient to



Block MDPs (Rich Observation MDPs)

Definition
A Block MDP is a tuple
(S, A X,p,q,R)

- unobservable state space S

- finite action space A

- observation space X
- transition distribution p
- reward function R

* emissiong: S — X




- Assumption 1: The observation space of
a Block MDP is fully observable, and
therefore exhibits the Markov property.

- Assumption 2: The components of the a,.
current observation are independent 1
conditioned on the previous >t

observation, i.e.

P(XQM |Xt1X1.?+1) = P(Xg+1 |X¢) (1)

- Assumption 3: The training
environments correspond to

Interventions on spurious variables in
the observation space.

Graphical model demonstrating Assumption 2.



Causality and MISAs

Causal Variables «—— State Abstractions

- Then the mapping ¢ : (x1,...Xn) = (Xi, ..., Xj ) -
Is a model irrelevance state abstraction

Theorem 1

Let Sk C {1,..., R} be the set of variables such that the reward R(x, a) is a function
only of [x]s, (x restricted to the indices in Sg). Then let S = AN(R) denote the
ancestors of Sg in the (fully observable) causal graph corresponding to the transition
dynamics of M¢. Then the state abstraction ¢s(x) = [x]s Is @ model-irrelevance
abstraction for every e € £.



Bounds on Generalization Error

Good state abstractions

MISAs generalize well to new environments because the agent can immediately apply
Its knowledge from previous environments.

Model error bound

Consider an MDP M, with M" denoting a coarser bisimulation of M. Let ¢ denote the
mapping from states of M to states of M". Suppose that the dynamics of M are
L-Lipschitz w.rt. ¢(X) and that T is some approximate transition model satisfying
maxs E||T(¢(s)) —¢(Tu(s))|| < J, for some § > 0. Let W4(my, 712) denote the
1-Wasserstein distance. Then

By [IT(#()) = ¢(Tw () ] < 8+ 2LW1 (7eyqu), Ty )



Bounds on Generalization Error

5 EEm E EEE 5 BN O Em b gy .
- = L
] - — n

IR = s |R((2),0,6(2) —r(z,a)] s

N reX,acA (4) ;

~ \Jlo)o = sup Wi(fs(¢(x),a),dpP(x,a)) /,‘
-~ rzeX,acA _

¥ oy . wm "

n
L -
|oEm o mm o omm s omm o n o o = -

Theorem 3. Let M be a block MDP and M the learned
invariant MDP with a mapping ¢ : X — Z. For any L-
Lipschitz valued policy m the value difference of that policy

is bounded by

Jg +vLJY

@"(z,0) - Q(6(x), a)| < ET T

, )

where Q™ is the value function for m in M and QT is the
value function for 7 in M.



Learning an abstraction

1. We first introduce a linear algorithm for learning Model-Irrelevance
State Abstractions (MISA) — based on Peters et al. (2016).

2. We extend to nonlinear settings with a gradient-based method for
disentangling the state space into a minimal representation that
causes reward, and everything else.



Observable Variables Setting

Algorithm: ICP for Model Irrelevance State Abstractions

Result: S C {1,..., R}, the causal state variables

Input: «, a confidence parameter, D, an replay buffer with observations X
(partitioned into environments e, ..., ex). S + @;

stack < r;

while stack is not empty do

v = stack.pop() ;

if v € S then

S+ ICP(v, D, —2%=);

mdim(&X)
S+ Sus;

stack.push(S’)
return S

When state is equal to the variables in the causal graph, it’s straightforward to apply known causal
prediction methods to find the causal ancestors of the reward.



Rich Observation Setting

r:Z'x.AxZ»—)R
Ve

Invariant I
Reward Model Jr(¢, R) = ZE'rb d(z;), a, ¢(z})) — i)’
e
o X = 2
Invariant B Invariant |
‘ Encoder Model | ol : ZxH > X

fs:AxZ = 2 Decoder
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Encoder Model

Y X H | Ip($,%, far f) = 3 B, [(671(fula, &(z),

2]

fn: AXH— H fala,¥(z:))) _x:)z]



Model Learning in Observable Variables Setting

We consider a simple family of MDPs with state space X = {(z1,z2,23)}
with a transition dynamics structure such that ! = 2! + €€,

t+1  t e t+1 t [
Lo —CU2—|—€2, and Lq :$2+€3
Generalization of Linear Predictor
300 1 — Least Squares Predictor ( _____________
Invariant Predictor e N i N
250 1

200

Bellman Error
[
w
o

00 05 10 15 20 25
Spurious Vanable Intevention Value



Model Learning in Rich Observation Setting
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Imitation Learning

Cheetah Run

MISA - 2 envs
109 —— MISA-1env
— |RM J
0.91 —— Baseline - 1 decoder ﬂMW&UMN “
0.8 - HW*

it
"l %!

actor error
o
~J

A

0.6 il

¥ ) Nl “'*n.’,“w W
0.5 W‘”‘"ﬂ -
0.4

0 200000 400000 600000 800000 1000000
steps



Reinforcement Learning
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Conclusions

* We show that causal inference methods can be used to find good state
abstractions for RL.

* We propose a method to obtain these state abstractions

* We demonstrate that this method works on a variety of deep RL tasks.




