
Express – {Templating, Forms}
CS 390 – Web Application Development

J. Setpal

October 16, 2023

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 1 / 22



Outline

1 Why it’s Worth Your Time

2 Template Engines

3 Handling Form Data

4 ETC

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 2 / 22



Outline

1 Why it’s Worth Your Time

2 Template Engines

3 Handling Form Data

4 ETC

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 3 / 22



WIWYT – Template Engines (Recap)

- Speeds up writing HTML by building off a template on the fly.

- Enables us to serve dynamic content using server-side rendering.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 4 / 22



WIWYT – Form Handling

- Forms are great because they let us information in-take.

- BUT – they’re exhausting to work with.

- Express can do the heavy lifting!

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 5 / 22



WIWYT – Form Handling

- Forms are great because they let us information in-take.

- BUT – they’re exhausting to work with.

- Express can do the heavy lifting!

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 5 / 22



WIWYT – Form Handling

- Forms are great because they let us information in-take.

- BUT – they’re exhausting to work with.

- Express can do the heavy lifting!

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 5 / 22



Outline

1 Why it’s Worth Your Time

2 Template Engines

3 Handling Form Data

4 ETC

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 6 / 22



What’s a Template Engine? (Recap)

Template Engines are used to ease and automate writing HTML.

There are several popular engines - today we’ll be looking at pug:
https://pugjs.org/api/getting-started.html.

It uses a markdown-like syntax. Has features like conditions, loops,
includes & mixins.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 7 / 22

https://pugjs.org/api/getting-started.html


Pug Syntax (Recap)

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 8 / 22



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 9 / 22



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 9 / 22



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 9 / 22



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 9 / 22



Conditionals #1

Pug implements if/else and switch statements to conditionally render
elements.

Syntax:

if <condition >

... stuff to render

else if <condition >

... stuff to render

else <condition >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true}

if book.fiction

p= book.genre

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 10 / 22



Conditionals #1

Pug implements if/else and switch statements to conditionally render
elements.

Syntax:

if <condition >

... stuff to render

else if <condition >

... stuff to render

else <condition >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true}

if book.fiction

p= book.genre

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 10 / 22



Conditionals #2

Switch is helpful when evaluating categorical values.

Syntax:

case <var >

when <value >

... stuff to render

when <value >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true , rating: 10}

case book.genre

when "horror"

p= book.rating

when "sci -fi"

strong 10/10 best book ever

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 11 / 22



Conditionals #2

Switch is helpful when evaluating categorical values.

Syntax:

case <var >

when <value >

... stuff to render

when <value >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true , rating: 10}

case book.genre

when "horror"

p= book.rating

when "sci -fi"

strong 10/10 best book ever

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 11 / 22



Includes

Pug, fundamentally, is build around the idea of minimizing how much we
type.

Therefore, it integrates includes and mixins to follow DRY.

Includes are static renderable chunks of templates, that can be re-used in
various template files.

They are added using include /path/to/file.pug.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 12 / 22



Includes

Pug, fundamentally, is build around the idea of minimizing how much we
type.

Therefore, it integrates includes and mixins to follow DRY.

Includes are static renderable chunks of templates, that can be re-used in
various template files.

They are added using include /path/to/file.pug.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 12 / 22



Includes

Pug, fundamentally, is build around the idea of minimizing how much we
type.

Therefore, it integrates includes and mixins to follow DRY.

Includes are static renderable chunks of templates, that can be re-used in
various template files.

They are added using include /path/to/file.pug.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 12 / 22



Mixins

Mixins are cross between functions and includes.

You can specify the location at which a chunk is rendered, similar to
includes. However; unlike includes, mixins are not restricted to static
data.

Syntax:

mixin func(var1 , var2)

p= var1 + ‘ and ’ + var2

+func(‘Hello ’, ‘World ’)

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 13 / 22



Mixins

Mixins are cross between functions and includes.

You can specify the location at which a chunk is rendered, similar to
includes. However; unlike includes, mixins are not restricted to static
data.

Syntax:

mixin func(var1 , var2)

p= var1 + ‘ and ’ + var2

+func(‘Hello ’, ‘World ’)

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 13 / 22



Mixins

Mixins are cross between functions and includes.

You can specify the location at which a chunk is rendered, similar to
includes. However; unlike includes, mixins are not restricted to static
data.

Syntax:

mixin func(var1 , var2)

p= var1 + ‘ and ’ + var2

+func(‘Hello ’, ‘World ’)

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 13 / 22



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 14 / 22



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 14 / 22



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 14 / 22



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 14 / 22



Let’s Build a File Host Frontend!

If you can view this screen, I am making a mistake (again).

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 15 / 22



Outline

1 Why it’s Worth Your Time

2 Template Engines

3 Handling Form Data

4 ETC

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 16 / 22



Forms – GET v POST

There are two primary ways for forms to send data to a monitoring route.

a. GET:

- Integrates data within the URL.
- Cached by default.
- Cannot handle sensitive data.

b. POST:

- Integrates data within the request body.
- Doesn’t cache data by default.
- Ideal for sensitive information.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 17 / 22



Forms – GET v POST

There are two primary ways for forms to send data to a monitoring route.

a. GET:

- Integrates data within the URL.

- Cached by default.
- Cannot handle sensitive data.

b. POST:

- Integrates data within the request body.
- Doesn’t cache data by default.
- Ideal for sensitive information.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 17 / 22



Forms – GET v POST

There are two primary ways for forms to send data to a monitoring route.

a. GET:

- Integrates data within the URL.
- Cached by default.

- Cannot handle sensitive data.

b. POST:

- Integrates data within the request body.
- Doesn’t cache data by default.
- Ideal for sensitive information.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 17 / 22



Forms – GET v POST

There are two primary ways for forms to send data to a monitoring route.

a. GET:

- Integrates data within the URL.
- Cached by default.
- Cannot handle sensitive data.

b. POST:

- Integrates data within the request body.
- Doesn’t cache data by default.
- Ideal for sensitive information.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 17 / 22



Forms – GET v POST

There are two primary ways for forms to send data to a monitoring route.

a. GET:

- Integrates data within the URL.
- Cached by default.
- Cannot handle sensitive data.

b. POST:

- Integrates data within the request body.

- Doesn’t cache data by default.
- Ideal for sensitive information.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 17 / 22



Forms – GET v POST

There are two primary ways for forms to send data to a monitoring route.

a. GET:

- Integrates data within the URL.
- Cached by default.
- Cannot handle sensitive data.

b. POST:

- Integrates data within the request body.
- Doesn’t cache data by default.

- Ideal for sensitive information.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 17 / 22



Forms – GET v POST

There are two primary ways for forms to send data to a monitoring route.

a. GET:

- Integrates data within the URL.
- Cached by default.
- Cannot handle sensitive data.

b. POST:

- Integrates data within the request body.
- Doesn’t cache data by default.
- Ideal for sensitive information.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 17 / 22



Forms – Workflow

Here’s how we build a form using Express:

a. Have a .pug file that contains a form.

b. Setup a route that can host the form.

c. Direct the response to a route monitored by Express.

d. Handle the data!

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 18 / 22



Forms – Workflow

Here’s how we build a form using Express:

a. Have a .pug file that contains a form.

b. Setup a route that can host the form.

c. Direct the response to a route monitored by Express.

d. Handle the data!

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 18 / 22



Forms – Workflow

Here’s how we build a form using Express:

a. Have a .pug file that contains a form.

b. Setup a route that can host the form.

c. Direct the response to a route monitored by Express.

d. Handle the data!

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 18 / 22



Forms – Workflow

Here’s how we build a form using Express:

a. Have a .pug file that contains a form.

b. Setup a route that can host the form.

c. Direct the response to a route monitored by Express.

d. Handle the data!

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 18 / 22



Let’s Build a Basic Form!

If you can view this screen, I am making a mistake (again again).

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 19 / 22



Outline

1 Why it’s Worth Your Time

2 Template Engines

3 Handling Form Data

4 ETC

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 20 / 22



Homework 3

Change of Plan: Homework 3 covering part 1 of Node was supposed to
be released last Wednesday, but we were only able to complete Templating
today.

So, Homework 3 will be a larger assignment with 2x the time and point
value, and covers concepts throughout the Node / Express.js module.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 21 / 22



Thank you!

Have an awesome rest of your day!

Slides: https://www.cs.purdue.edu/homes/jsetpal/slides/
templating,forms.pdf

If anything’s incorrect or unclear, please ping: jsetpal@purdue.edu
I’ll patch it ASAP.

CS 390 – WAP Express – {Templating, Forms} October 16, 2023 22 / 22

https://www.cs.purdue.edu/homes/jsetpal/slides/templating,forms.pdf
https://www.cs.purdue.edu/homes/jsetpal/slides/templating,forms.pdf
mailto:jsetpal@purdue.edu

	Why it's Worth Your Time
	Template Engines
	Handling Form Data
	ETC

