
Express – {Routing, Templating}
CS 390 – Web Application Development

J. Setpal

October 11, 2023

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 1 / 25



Outline

1 Why it’s Worth Your Time

2 Routing Details

3 Template Engines

4 ETC

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 2 / 25



Outline

1 Why it’s Worth Your Time

2 Routing Details

3 Template Engines

4 ETC

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 3 / 25



WIWYT – Query Parameters

https://www.youtube.com/watch?v=dQw4w9WgXcQ

-̂-------------̂

- Parameters provide state-specific information about a client.

- This allows us to personalize and optimize content delivery!

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 4 / 25

https://www.youtube.com/watch?v=dQw4w9WgXcQ


WIWYT – Query Parameters

https://www.youtube.com/watch?v=dQw4w9WgXcQ

-̂-------------̂

- Parameters provide state-specific information about a client.

- This allows us to personalize and optimize content delivery!

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 4 / 25

https://www.youtube.com/watch?v=dQw4w9WgXcQ


WIWYT – Regex-Based Routing

- Certain behaviours share routes with content modifications (ex.
https://doma.in/user/<uid>/; uid = 1 / 2 / 3 / . . . ).

- Regex-based routing allows us to minimize our program footprint.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 5 / 25



WIWYT – Regex-Based Routing

- Certain behaviours share routes with content modifications (ex.
https://doma.in/user/<uid>/; uid = 1 / 2 / 3 / . . . ).

- Regex-based routing allows us to minimize our program footprint.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 5 / 25



WIWYT – Template Engines

- Speeds up writing HTML by building off a template on the fly.

- Enables us to serve dynamic content using server-side rendering.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 6 / 25



WIWYT – Template Engines

- Speeds up writing HTML by building off a template on the fly.

- Enables us to serve dynamic content using server-side rendering.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 6 / 25



Outline

1 Why it’s Worth Your Time

2 Routing Details

3 Template Engines

4 ETC

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 7 / 25



Query Parameters

Each middleware prototype takes a req parameter as input. This request
object contains further information about the query.

One piece of data is the query object, which contains key-value pairs of
data conditionally supplied to the server.

Example:

function func(req , res , next) {

// some interesting code ...

console.log(req.query.variable);

// more interesting code ...

}

^ Logs the value of a variable with key ‘variable’.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 8 / 25



Query Parameters

Each middleware prototype takes a req parameter as input. This request
object contains further information about the query.

One piece of data is the query object, which contains key-value pairs of
data conditionally supplied to the server.

Example:

function func(req , res , next) {

// some interesting code ...

console.log(req.query.variable);

// more interesting code ...

}

^ Logs the value of a variable with key ‘variable’.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 8 / 25



Query Parameters

Each middleware prototype takes a req parameter as input. This request
object contains further information about the query.

One piece of data is the query object, which contains key-value pairs of
data conditionally supplied to the server.

Example:

function func(req , res , next) {

// some interesting code ...

console.log(req.query.variable);

// more interesting code ...

}

^ Logs the value of a variable with key ‘variable’.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 8 / 25



Route Parameters

For cases wherein URL segments contain parameter information, routes
can be globally specified using :<id> as part of a route.

The variable obtained from the route is parsed as a route parameter, and
can be directly accessed from the request variable.

Example:

app.get(‘/u/:uid/’, (req , res) => {

res.send(req.params.uid);

});

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 9 / 25



Route Parameters

For cases wherein URL segments contain parameter information, routes
can be globally specified using :<id> as part of a route.

The variable obtained from the route is parsed as a route parameter, and
can be directly accessed from the request variable.

Example:

app.get(‘/u/:uid/’, (req , res) => {

res.send(req.params.uid);

});

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 9 / 25



Route Parameters

For cases wherein URL segments contain parameter information, routes
can be globally specified using :<id> as part of a route.

The variable obtained from the route is parsed as a route parameter, and
can be directly accessed from the request variable.

Example:

app.get(‘/u/:uid/’, (req , res) => {

res.send(req.params.uid);

});

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 9 / 25



String-Based Regex

Route strings supports the following string-based regex primitives:

a. Optional Quantifier: ? makes characters optional.
Example: targets? accepts ‘target’ and ‘targets’.

b. Repitition Quantifier: + checks for one or more characters.
Example: targets+ accepts ‘targetssssss’ but not ‘target’.

c. Repitition Quantifier: * checks for zero or more characters.
Example: targets* accepts ‘targetssssss’ and ‘target’.

d. Capturing Group: () groups a charset.
Example: print(ed)* accepts ‘print’ and ‘printededededed’.

These primitives can be included as part of the route string.
Example:
app.get(‘/targets?’, (req, res) => { res.send(req.url); });

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 10 / 25



String-Based Regex

Route strings supports the following string-based regex primitives:

a. Optional Quantifier: ? makes characters optional.
Example: targets? accepts ‘target’ and ‘targets’.

b. Repitition Quantifier: + checks for one or more characters.
Example: targets+ accepts ‘targetssssss’ but not ‘target’.

c. Repitition Quantifier: * checks for zero or more characters.
Example: targets* accepts ‘targetssssss’ and ‘target’.

d. Capturing Group: () groups a charset.
Example: print(ed)* accepts ‘print’ and ‘printededededed’.

These primitives can be included as part of the route string.
Example:
app.get(‘/targets?’, (req, res) => { res.send(req.url); });

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 10 / 25



String-Based Regex

Route strings supports the following string-based regex primitives:

a. Optional Quantifier: ? makes characters optional.
Example: targets? accepts ‘target’ and ‘targets’.

b. Repitition Quantifier: + checks for one or more characters.
Example: targets+ accepts ‘targetssssss’ but not ‘target’.

c. Repitition Quantifier: * checks for zero or more characters.
Example: targets* accepts ‘targetssssss’ and ‘target’.

d. Capturing Group: () groups a charset.
Example: print(ed)* accepts ‘print’ and ‘printededededed’.

These primitives can be included as part of the route string.
Example:
app.get(‘/targets?’, (req, res) => { res.send(req.url); });

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 10 / 25



String-Based Regex

Route strings supports the following string-based regex primitives:

a. Optional Quantifier: ? makes characters optional.
Example: targets? accepts ‘target’ and ‘targets’.

b. Repitition Quantifier: + checks for one or more characters.
Example: targets+ accepts ‘targetssssss’ but not ‘target’.

c. Repitition Quantifier: * checks for zero or more characters.
Example: targets* accepts ‘targetssssss’ and ‘target’.

d. Capturing Group: () groups a charset.
Example: print(ed)* accepts ‘print’ and ‘printededededed’.

These primitives can be included as part of the route string.
Example:
app.get(‘/targets?’, (req, res) => { res.send(req.url); });

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 10 / 25



String-Based Regex

Route strings supports the following string-based regex primitives:

a. Optional Quantifier: ? makes characters optional.
Example: targets? accepts ‘target’ and ‘targets’.

b. Repitition Quantifier: + checks for one or more characters.
Example: targets+ accepts ‘targetssssss’ but not ‘target’.

c. Repitition Quantifier: * checks for zero or more characters.
Example: targets* accepts ‘targetssssss’ and ‘target’.

d. Capturing Group: () groups a charset.
Example: print(ed)* accepts ‘print’ and ‘printededededed’.

These primitives can be included as part of the route string.
Example:
app.get(‘/targets?’, (req, res) => { res.send(req.url); });

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 10 / 25



Regex-Only Rules

For pure regex rules, use the JS Regex with /<exp>/ instead of string
route input.

Example: app.get(/[A-Za-z0-9]+, [A-Za-z0-9]+!/),

middleware);

^ Matches syntax based on two comma-separated words followed by ‘!’.

Regex Generator: https://regex-generator.olafneumann.org/

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 11 / 25

https://regex-generator.olafneumann.org/


Regex-Only Rules

For pure regex rules, use the JS Regex with /<exp>/ instead of string
route input.

Example: app.get(/[A-Za-z0-9]+, [A-Za-z0-9]+!/),

middleware);

^ Matches syntax based on two comma-separated words followed by ‘!’.

Regex Generator: https://regex-generator.olafneumann.org/

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 11 / 25

https://regex-generator.olafneumann.org/


Regex-Only Rules

For pure regex rules, use the JS Regex with /<exp>/ instead of string
route input.

Example: app.get(/[A-Za-z0-9]+, [A-Za-z0-9]+!/),

middleware);

^ Matches syntax based on two comma-separated words followed by ‘!’.

Regex Generator: https://regex-generator.olafneumann.org/

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 11 / 25

https://regex-generator.olafneumann.org/


Regex-Only Rules

For pure regex rules, use the JS Regex with /<exp>/ instead of string
route input.

Example: app.get(/[A-Za-z0-9]+, [A-Za-z0-9]+!/),

middleware);

^ Matches syntax based on two comma-separated words followed by ‘!’.

Regex Generator: https://regex-generator.olafneumann.org/

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 11 / 25

https://regex-generator.olafneumann.org/


Route Error Handling

By default, Express handles errors by returning the error message (and
stack trace, if not deployed in production) to the client.

This behaviour can be customized by specifying a function with prototype
(err, req, res, next) and integrating it to the api with app.use.

We can specify response status code with res.sendStatus(<code>) or
res.status(<code>).send(<message>) with a message.

Example:

app.use((err , req , res , next) => {

console.error(err.stack);

res.status (500).send(‘Something went wrong :/’);

});

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 12 / 25



Route Error Handling

By default, Express handles errors by returning the error message (and
stack trace, if not deployed in production) to the client.

This behaviour can be customized by specifying a function with prototype
(err, req, res, next) and integrating it to the api with app.use.

We can specify response status code with res.sendStatus(<code>) or
res.status(<code>).send(<message>) with a message.

Example:

app.use((err , req , res , next) => {

console.error(err.stack);

res.status (500).send(‘Something went wrong :/’);

});

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 12 / 25



Route Error Handling

By default, Express handles errors by returning the error message (and
stack trace, if not deployed in production) to the client.

This behaviour can be customized by specifying a function with prototype
(err, req, res, next) and integrating it to the api with app.use.

We can specify response status code with res.sendStatus(<code>) or
res.status(<code>).send(<message>) with a message.

Example:

app.use((err , req , res , next) => {

console.error(err.stack);

res.status (500).send(‘Something went wrong :/’);

});

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 12 / 25



Route Error Handling

By default, Express handles errors by returning the error message (and
stack trace, if not deployed in production) to the client.

This behaviour can be customized by specifying a function with prototype
(err, req, res, next) and integrating it to the api with app.use.

We can specify response status code with res.sendStatus(<code>) or
res.status(<code>).send(<message>) with a message.

Example:

app.use((err , req , res , next) => {

console.error(err.stack);

res.status (500).send(‘Something went wrong :/’);

});

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 12 / 25



Let’s Implement (Naive) Auth!

If you can view this screen, I am making a mistake.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 13 / 25



Outline

1 Why it’s Worth Your Time

2 Routing Details

3 Template Engines

4 ETC

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 14 / 25



What’s a Template Engine?

Template Engines are used to ease and automate writing HTML.

There are several popular engines - today we’ll be looking at pug:
https://pugjs.org/api/getting-started.html.

It uses a markdown-like syntax. Has features like conditions, loops,
includes & mixins.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 15 / 25

https://pugjs.org/api/getting-started.html


What’s a Template Engine?

Template Engines are used to ease and automate writing HTML.

There are several popular engines - today we’ll be looking at pug:
https://pugjs.org/api/getting-started.html.

It uses a markdown-like syntax. Has features like conditions, loops,
includes & mixins.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 15 / 25

https://pugjs.org/api/getting-started.html


What’s a Template Engine?

Template Engines are used to ease and automate writing HTML.

There are several popular engines - today we’ll be looking at pug:
https://pugjs.org/api/getting-started.html.

It uses a markdown-like syntax. Has features like conditions, loops,
includes & mixins.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 15 / 25

https://pugjs.org/api/getting-started.html


Pug Syntax

Each element is only defined once.

Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Pug Syntax

Each element is only defined once. Indentation specifies scope.

a. Elements are div by default.

b. #<var> after the element specifies the element id.

c. .<var> after the element specifies the element class(es).

d. Elements can be made multiline using a ‘.’ at the end of the element.

e. Javascript can be injected using ‘-’ at the beginning of the line.

f. Attributes can be specified using elem(key="val" key2="val").

These are each included in a .pug file. This generates HTML output that
can be rendered on-the-fly or statically.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 16 / 25



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 17 / 25



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 17 / 25



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 17 / 25



Loops

Pug can loop through an array or object to procedurally render elements.

Syntax:

for/each <var > in <array/object >

<elem >= <var >

... additional interesting code

Example:

ul

for i in [0, 1, 2, 3]

li= i

The input array can be specified dynamically by supplying a variable
through express.

else can be used to specify default behavior when no items are present to
iterate through.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 17 / 25



Conditionals #1

Pug implements if/else and switch statements to conditionally render
elements.

Syntax:

if <condition >

... stuff to render

else if <condition >

... stuff to render

else <condition >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true}

if book.fiction

p= book.genre

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 18 / 25



Conditionals #1

Pug implements if/else and switch statements to conditionally render
elements.

Syntax:

if <condition >

... stuff to render

else if <condition >

... stuff to render

else <condition >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true}

if book.fiction

p= book.genre

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 18 / 25



Conditionals #2

Switch is helpful when evaluating categorical values.

Syntax:

case <var >

when <value >

... stuff to render

when <value >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true , rating: 10}

case book.genre

when "horror"

p= book.rating

when "sci -fi"

strong 10/10 best book ever

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 19 / 25



Conditionals #2

Switch is helpful when evaluating categorical values.

Syntax:

case <var >

when <value >

... stuff to render

when <value >

... stuff to render

Example:

- const book = {genre: "horror", fiction: true , rating: 10}

case book.genre

when "horror"

p= book.rating

when "sci -fi"

strong 10/10 best book ever

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 19 / 25



Includes

Pug, fundamentally, is build around the idea of minimizing how much we
type.

Therefore, it integrates includes and mixins to follow DRY.

Includes are static renderable chunks of templates, that can be re-used in
various template files.

They are added using include /path/to/file.pug.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 20 / 25



Includes

Pug, fundamentally, is build around the idea of minimizing how much we
type.

Therefore, it integrates includes and mixins to follow DRY.

Includes are static renderable chunks of templates, that can be re-used in
various template files.

They are added using include /path/to/file.pug.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 20 / 25



Includes

Pug, fundamentally, is build around the idea of minimizing how much we
type.

Therefore, it integrates includes and mixins to follow DRY.

Includes are static renderable chunks of templates, that can be re-used in
various template files.

They are added using include /path/to/file.pug.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 20 / 25



Mixins

Mixins are cross between functions and includes.

You can specify the location at which a chunk is rendered, similar to
includes. However; unlike includes, mixins are not restricted to static
data.

Syntax:

mixin func(var1 , var2)

p= var1 + ‘ and ’ + var2

+func(‘Hello ’, ‘World ’)

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 21 / 25



Mixins

Mixins are cross between functions and includes.

You can specify the location at which a chunk is rendered, similar to
includes. However; unlike includes, mixins are not restricted to static
data.

Syntax:

mixin func(var1 , var2)

p= var1 + ‘ and ’ + var2

+func(‘Hello ’, ‘World ’)

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 21 / 25



Mixins

Mixins are cross between functions and includes.

You can specify the location at which a chunk is rendered, similar to
includes. However; unlike includes, mixins are not restricted to static
data.

Syntax:

mixin func(var1 , var2)

p= var1 + ‘ and ’ + var2

+func(‘Hello ’, ‘World ’)

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 21 / 25



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 22 / 25



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 22 / 25



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 22 / 25



Express Integration

To integrate pug with express, you can do the following:

a. Create your views in a folder.

b. Set this folder as ‘views’ using app.set.

c. Set ‘view engine’ as ‘pug’ using app.set.

d. In the route response, specify res.render(<file>, {<key>:
<value>}); to dynamically render the file server-side.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 22 / 25



Let’s Build a File Host Frontend!

If you can view this screen, I am making a mistake (again).

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 23 / 25



Outline

1 Why it’s Worth Your Time

2 Routing Details

3 Template Engines

4 ETC

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 24 / 25



Thank you!

Have an awesome rest of your day!

Slides: https://www.cs.purdue.edu/homes/jsetpal/slides/
routing,templating.pdf

If anything’s incorrect or unclear, please ping: jsetpal@purdue.edu
I’ll patch it ASAP.

CS 390 – WAP Express – {Routing, Templating} October 11, 2023 25 / 25

https://www.cs.purdue.edu/homes/jsetpal/slides/routing,templating.pdf
https://www.cs.purdue.edu/homes/jsetpal/slides/routing,templating.pdf
mailto:jsetpal@purdue.edu

	Why it's Worth Your Time
	Routing Details
	Template Engines
	ETC

