
Out-of-Distribution Generalization
via Risk Extrapolation
“learning to define a cow”

J. Setpal

March 28, 2023

ML@P – Reading Group Risk Extrapolation March 28, 2023 1 / 16



Outline

1 Task Description

2 Risk-Aware Optimization

3 Risk Extrapolation

4 Evaluation

ML@P – Reading Group Risk Extrapolation March 28, 2023 2 / 16



Outline

1 Task Description

2 Risk-Aware Optimization

3 Risk Extrapolation

4 Evaluation

ML@P – Reading Group Risk Extrapolation March 28, 2023 3 / 16



Introduction

Training a neural network can be thought of as modelling a multivariate
distribution; i.e. p(y |x) where y is the expected output, and x is the
training data.

The objective is to maximize likelihood:

L(W, {(xi , yi)}N
i=1) = argmax

W

N∏
i=1

p(yi |xi ; W)

This is almost too powerful! Most models are overparameterized, and
maximum likelihood does not care about the causal basis for the data.
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Worst-Group Performance

This results in the network fitting to spurious correlations in the dataset.

We can specify potential spurious correlations as groups, and individually
observe the performance of those groups.

Group-1 Group-2 Group-3 Group-4

Accuracy 0.9593 0.6249 0.3157 0.2664
Loss 0.0021 0.4102 1.3457 1.7664
Proportion 0.9 0.08 0.0075 0.0025

While the overall accuracy on the training set is maximized, it assumes
that Group-1 is going to be 90% of the test set.

The prediction on an input from Group-4 is too inaccurate to be
considered.

ML@P – Reading Group Risk Extrapolation March 28, 2023 5 / 16



Worst-Group Performance

This results in the network fitting to spurious correlations in the dataset.

We can specify potential spurious correlations as groups, and individually
observe the performance of those groups.

Group-1 Group-2 Group-3 Group-4

Accuracy 0.9593 0.6249 0.3157 0.2664
Loss 0.0021 0.4102 1.3457 1.7664
Proportion 0.9 0.08 0.0075 0.0025

While the overall accuracy on the training set is maximized, it assumes
that Group-1 is going to be 90% of the test set.

The prediction on an input from Group-4 is too inaccurate to be
considered.

ML@P – Reading Group Risk Extrapolation March 28, 2023 5 / 16



Worst-Group Performance

This results in the network fitting to spurious correlations in the dataset.

We can specify potential spurious correlations as groups, and individually
observe the performance of those groups.

Group-1 Group-2 Group-3 Group-4

Accuracy 0.9593 0.6249 0.3157 0.2664
Loss 0.0021 0.4102 1.3457 1.7664
Proportion 0.9 0.08 0.0075 0.0025

While the overall accuracy on the training set is maximized, it assumes
that Group-1 is going to be 90% of the test set.

The prediction on an input from Group-4 is too inaccurate to be
considered.

ML@P – Reading Group Risk Extrapolation March 28, 2023 5 / 16



Worst-Group Performance

This results in the network fitting to spurious correlations in the dataset.

We can specify potential spurious correlations as groups, and individually
observe the performance of those groups.

Group-1 Group-2 Group-3 Group-4

Accuracy 0.9593 0.6249 0.3157 0.2664
Loss 0.0021 0.4102 1.3457 1.7664
Proportion 0.9 0.08 0.0075 0.0025

While the overall accuracy on the training set is maximized, it assumes
that Group-1 is going to be 90% of the test set.

The prediction on an input from Group-4 is too inaccurate to be
considered.

ML@P – Reading Group Risk Extrapolation March 28, 2023 5 / 16



Domain Robustness

To correct this, our new objective is to ensure domain robustness: our
model must generalize to a new, unseen test domain.

We can formalize this as a pertubation set of risk:

ROOD
F (θ) = max

e∈F
Re(θ)

where F is the set of possible test domains, & θ is our predictor.

The authors state that F cannot be arbitrary, and we are restricted our
assumptions of the possible test domains.

Risk Extrapolation uncovers invariant relationships between the input
and outputs. A model that bases predictions on an invariant relationship is
an invariant predictor.
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Empirical Risk Minimization (ERM)

One way to correct the poor worst-group performance is simply
importance re-weighting.

Instead of traditional likelihood maximization, ERM minimizes the average
loss across domains:

JERM(θ) =̇ argmin
θ

1
|G|

∑
g∈G

ℓ(xi , yi ; θ)

Just Train Twice (Liu, et.al; 2021) presents an interesting approach that
obtains group information by multi-stage training, re-weighting the cost
and subsequently re-training.
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Invariant Risk Minimization (IRM)

A more robust is to define group-invariance. The approach motivates the
model to learn invariant relationships, building an invariant predictor.

They generate a bi-leveled optimization task, where the objectives are: a)
minimizing risk, and b) actually make relevant predictions.

This is phrased as a penalized loss:

JIRM(θ, D) =̇
∑
e∈E

Re(θ ◦ D) + λ · D(θ, D, e)

where λ ∈ [0, ∞) is a hyper-parameter balancing prediction power and
invariance, D represents loss-specific risk.
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Distributionally Robust Optimization (DRO)
When only a a single domain (group) is available, it is common to assume
p(Y |X ) is fixed.

This is called the covariate shift assumption. REx
does not make this assumption.

For data containing multiple domains, test distributions are assumed to be
convex combinations of the training distribution. This is equivalent to
setting F =̇ E :

RRI(θ) =̇ max∑
e λe=1, λe≥0

m∑
e=1

λeRe(θ) = max
e∈E

Re(θ)
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Minimax Risk Extrapolation (MM-REx)
Minimax-REx fundamentally extrapolates on DRO.

By setting λe ≥ λmin:

RMM-REx(θ)=̇ max∑
e λe=1, λe≥λmin

m∑
e=1

λeRe(θ)

=̇ (1 − mλmin) max
e

Re(θ) + λmin

m∑
e=1

Re(θ)

where m is the number of domains, λmin defines the degree of
extrapolation.

The updated risk function extrapolates on convex combinations defined
earlier.

If λmin < 0, MM-REx sets negative weights to all but the worst-performing
group.
As λmin → −∞, it enforces equality between training risks. This is
proposed as a definition of fairness.
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Variance Risk Extrapolation (V-REx)

While MM-REx defines the extrapolation procedure very cleanly, the
resultant gradient (left) is extreme:

Making it difficult to converge.
Instead, using the variances of the
risks (right) obtains smoother
gradients, allowing for stabler
optimization.

Adding the variance-based risk regularizer, we obtain the following:

RV-REx(θ) =̇ βσ2({Ri}m
i=1) +

m∑
e=1

Re(θ)

where β ∈ [0, ∞) & β → ∞ motivates risk equality.
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Results

Algorithm ColoredMNIST VLCS PACS OfficeHome

ERM 52.0 ± 0.1 77.4 ± 0.3 85.7 ± 0.5 67.5 ± 0.5
IRM 51.8 ± 0.1 78.1 ± 0.0 84.4 ± 1.1 66.6 ± 1.0
V-REx 52.1 ± 0.1 77.9 ± 0.5 85.8 ± 0.6 66.7 ± 0.5

V-REx shows comparable performance on domain generalization benchmarks.

However, when you include a covariate shift, V-REx outperforms IRM on
dataset variants that include domain shift:
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Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/rex.pdf
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