Out-of-Distribution Generalization via Risk Extrapolation "learning to define a cow"

J. Setpal

March 28, 2023

ML@P - Reading Group

Risk Extrapolation

March 28, 2023

1/16

- 1 Task Description
- **2** Risk-Aware Optimization
- **3** Risk Extrapolation
- 4 Evaluation

Image: Image:

臣

1 Task Description

2 Risk-Aware Optimization

3 Risk Extrapolation

4 Evaluation

< ∃ >

< 口 > < 同 >

E

.∃ →

The objective is to maximize likelihood:

$$\mathcal{L}(\mathbf{W}, \{(x_i, y_i)\}_{i=1}^N) = \operatorname{argmax}_{\mathbf{W}} \prod_{i=1}^N p(\mathbf{y}_i | \mathbf{x}_i; \mathbf{W})$$

The objective is to maximize likelihood:

$$\mathcal{L}(\mathbf{W}, \{(x_i, y_i)\}_{i=1}^N) = \arg\max_{\mathbf{W}} \prod_{i=1}^N p(\mathbf{y}_i | \mathbf{x}_i; \mathbf{W})$$

This is almost *too powerful*!

The objective is to maximize likelihood:

$$\mathcal{L}(\mathbf{W}, \{(x_i, y_i)\}_{i=1}^N) = \operatorname{argmax}_{\mathbf{W}} \prod_{i=1}^N p(\mathbf{y}_i | \mathbf{x}_i; \mathbf{W})$$

This is almost *too powerful*! Most models are overparameterized, and maximum likelihood does not care about the causal basis for the data.

We can specify potential spurious correlations as **groups**, and individually observe the performance of those groups.

We can specify potential spurious correlations as **groups**, and individually observe the performance of those groups.

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

While the overall accuracy on the training set is maximized, it assumes that Group-1 is going to be 90% of the test set.

We can specify potential spurious correlations as **groups**, and individually observe the performance of those groups.

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

While the overall accuracy on the training set is maximized, it assumes that Group-1 is going to be 90% of the test set.

The prediction on an input from Group-4 is too inaccurate to be considered.

We can formalize this as a **pertubation set** of risk:

$$\mathcal{R}_{\mathcal{F}}^{\mathsf{OOD}}(\theta) = \max_{e \in \mathcal{F}} \mathcal{R}_{e}(\theta)$$

where \mathcal{F} is the set of possible test domains, & θ is our predictor.

We can formalize this as a **pertubation set** of risk:

$$\mathcal{R}_{\mathcal{F}}^{\mathsf{OOD}}(\theta) = \max_{e \in \mathcal{F}} \mathcal{R}_{e}(\theta)$$

where ${\cal F}$ is the set of possible test domains, & θ is our predictor.

The authors state that \mathcal{F} cannot be arbitrary, and we are restricted our assumptions of the possible test domains.

We can formalize this as a **pertubation set** of risk:

$$\mathcal{R}_{\mathcal{F}}^{\mathsf{OOD}}(\theta) = \max_{e \in \mathcal{F}} \mathcal{R}_{e}(\theta)$$

where \mathcal{F} is the set of possible test domains, & θ is our predictor.

The authors state that \mathcal{F} cannot be arbitrary, and we are restricted our assumptions of the possible test domains.

Risk Extrapolation uncovers **invariant relationships** between the input and outputs.

6/16

We can formalize this as a pertubation set of risk:

$$\mathcal{R}_{\mathcal{F}}^{\mathsf{OOD}}(\theta) = \max_{e \in \mathcal{F}} \mathcal{R}_{e}(\theta)$$

where \mathcal{F} is the set of possible test domains, & θ is our predictor.

The authors state that \mathcal{F} cannot be arbitrary, and we are restricted our assumptions of the possible test domains.

Risk Extrapolation uncovers **invariant relationships** between the input and outputs. A model that bases predictions on an invariant relationship is an **invariant predictor**. 1 Task Description

2 Risk-Aware Optimization

3 Risk Extrapolation

A Evaluation

< 口 > < 同 >

E

One way to correct the poor worst-group performance is simply **importance re-weighting**.

One way to correct the poor worst-group performance is simply **importance re-weighting**.

Instead of traditional likelihood maximization, ERM minimizes the average loss <u>across domains</u>:

$$\mathcal{J}_{\mathsf{ERM}}(heta) \doteq \operatorname{argmin}_{ heta} \frac{1}{|\mathcal{G}|} \sum_{g \in \mathcal{G}} \ell(x_i, y_i; heta)$$

One way to correct the poor worst-group performance is simply **importance re-weighting**.

Instead of traditional likelihood maximization, ERM minimizes the average loss <u>across domains</u>:

$$\mathcal{J}_{\mathsf{ERM}}(heta) \doteq \operatorname{argmin}_{ heta} rac{1}{|\mathcal{G}|} \sum_{m{g} \in \mathcal{G}} \ell(x_i, y_i; heta)$$

Just Train Twice (Liu, et.al; 2021) presents an interesting approach that obtains group information by multi-stage training, re-weighting the cost and subsequently re-training.

They generate a bi-leveled optimization task, where the objectives are:

They generate a bi-leveled optimization task, where the objectives are: a) minimizing risk,

They generate a bi-leveled optimization task, where the objectives are: a) minimizing risk, and b) actually make relevant predictions.

They generate a bi-leveled optimization task, where the objectives are: a) minimizing risk, and b) actually make relevant predictions.

This is phrased as a penalized loss:

$$\mathcal{J}_{\mathsf{IRM}}(heta, \mathcal{D}) \doteq \sum_{e \in \mathcal{E}} \mathcal{R}^{e}(heta \circ \mathcal{D}) + \lambda \cdot \mathbb{D}(heta, \mathcal{D}, e)$$

where $\lambda \in [0, \infty)$ is a hyper-parameter balancing prediction power and invariance, \mathbb{D} represents loss-specific risk.

When only a a single domain (group) is available, it is common to assume p(Y|X) is fixed.

< ∃⇒

When only a a single domain (group) is available, it is common to assume p(Y|X) is fixed. This is called the **covariate shift assumption**. REx does not make this assumption.

When only a a single domain (group) is available, it is common to assume p(Y|X) is fixed. This is called the **covariate shift assumption**. REx does not make this assumption.

For data containing multiple domains, test distributions are assumed to be **convex combinations** of the training distribution.

When only a a single domain (group) is available, it is common to assume p(Y|X) is fixed. This is called the **covariate shift assumption**. REx does not make this assumption.

For data containing multiple domains, test distributions are assumed to be **convex combinations** of the training distribution. This is equivalent to setting $\mathcal{F} \doteq \mathcal{E}$:

$$\mathcal{R}_{\mathsf{RI}}(\theta) \doteq \max_{\sum_{e} \lambda_{e}=1, \lambda_{e} \ge 0} \sum_{e=1}^{m} \lambda_{e} \mathcal{R}_{e}(\theta) = \max_{e \in \mathcal{E}} \mathcal{R}_{e}(\theta)$$

$$\overset{\mathcal{R}_{e}(\theta)}{\underset{e_{1}}{\overset{\circ}{\underset{e_{2}}{\underset{e_{2}}{\overset{\circ}{\underset{e_{2}}{\underset{e_{2}}{\overset{\circ}{\underset{e_{2}}{\underset{e_{2}}{\overset{\circ}{\underset{e_{2}}{\underset{e_{2}}{\overset{\circ}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\overset{\circ}{\underset{e_{2}}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}{\underset{e_{2}}}{\underset{e_{2}}{\atope_{2}}{\underset{$$

ML@P - Reading Group

Task Description

2 Risk-Aware Optimization

3 Risk Extrapolation

4 Evaluation

< ∃⇒

< 口 > < 同 >

E

Minimax-REx fundamentally extrapolates on DRO.

э

Minimax-REx fundamentally *extrapolates* on DRO. By setting $\lambda_e \geq \lambda_{\min}$:

$$\mathcal{R}_{\mathsf{MM-REx}}(\theta) \doteq \max_{\sum_{e} \lambda_e = 1, \ \lambda_e \ge \lambda_{\min}} \sum_{e=1}^{m} \lambda_e \mathcal{R}_e(\theta)$$

 $\doteq (1 - m\lambda_{\min}) \max_e \mathcal{R}_e(\theta) + \lambda_{\min} \sum_{e=1}^{m} \mathcal{R}_e(\theta)$

where m is the number of domains, λ_{\min} defines the degree of extrapolation.

Minimax-REx fundamentally *extrapolates* on DRO. By setting $\lambda_e \geq \lambda_{\min}$:

$$\begin{aligned} \mathcal{R}_{\mathsf{MM-REx}}(\theta) &\doteq \max_{\sum_{e} \lambda_e = 1, \ \lambda_e \geq \lambda_{\min}} \sum_{e=1}^{m} \lambda_e \mathcal{R}_e(\theta) \\ &\doteq (1 - m\lambda_{\min}) \max_{e} \mathcal{R}_e(\theta) + \lambda_{\min} \sum_{e=1}^{m} \mathcal{R}_e(\theta) \end{aligned}$$

where *m* is the number of domains, λ_{\min} defines the degree of extrapolation.

The updated risk function extrapolates on convex combinations defined earlier.

Minimax-REx fundamentally *extrapolates* on DRO. By setting $\lambda_e \geq \lambda_{\min}$:

$$\begin{aligned} \mathcal{R}_{\mathsf{MM-REx}}(\theta) &\doteq \max_{\sum_{e} \lambda_e = 1, \ \lambda_e \geq \lambda_{\min}} \sum_{e=1}^{m} \lambda_e \mathcal{R}_e(\theta) \\ &\doteq (1 - m\lambda_{\min}) \max_{e} \mathcal{R}_e(\theta) + \lambda_{\min} \sum_{e=1}^{m} \mathcal{R}_e(\theta) \end{aligned}$$

where *m* is the number of domains, λ_{\min} defines the degree of extrapolation.

The updated risk function extrapolates on convex combinations defined earlier.

If $\lambda_{min} <$ 0, MM-REx sets negative weights to all but the worst-performing group.

Minimax-REx fundamentally *extrapolates* on DRO. By setting $\lambda_e \geq \lambda_{\min}$:

$$\begin{aligned} \mathcal{R}_{\mathsf{MM-REx}}(\theta) &\doteq \max_{\sum_{e} \lambda_e = 1, \ \lambda_e \geq \lambda_{\min}} \sum_{e=1}^{m} \lambda_e \mathcal{R}_e(\theta) \\ &\doteq (1 - m\lambda_{\min}) \max_{e} \mathcal{R}_e(\theta) + \lambda_{\min} \sum_{e=1}^{m} \mathcal{R}_e(\theta) \end{aligned}$$

where m is the number of domains, λ_{\min} defines the degree of extrapolation.

The updated risk function extrapolates on convex combinations defined earlier.

If $\lambda_{min} <$ 0, MM-REx sets negative weights to all but the worst-performing group.

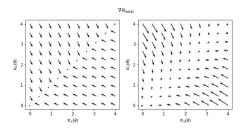
As $\lambda_{\min} \to -\infty$, it enforces equality between training risks. This is proposed as a definition of **fairness**.

ML@P - Reading Group

1

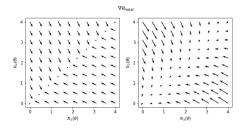
Risk Extrapolation

While MM-REx defines the extrapolation procedure very cleanly, the resultant gradient (left) is extreme:

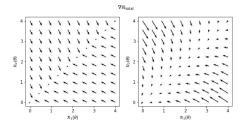


- E > - E >

While MM-REx defines the extrapolation procedure very cleanly, the resultant gradient (left) is extreme:



Making it difficult to converge. Instead, using the **variances of the risks** (right) obtains smoother gradients, allowing for stabler optimization. While MM-REx defines the extrapolation procedure very cleanly, the resultant gradient (left) is extreme:



Making it difficult to converge. Instead, using the **variances of the risks** (right) obtains smoother gradients, allowing for stabler optimization.

Adding the variance-based risk regularizer, we obtain the following: $\mathcal{R}_{\text{V-REx}}(\theta) \doteq \beta \sigma^2(\{\mathcal{R}_i\}_{i=1}^m) + \sum_{e=1}^m \mathcal{R}_e(\theta)$

where $\beta \in [0,\infty)$ & $\beta \to \infty$ motivates risk equality.

· · · · · · · · ·

Task Description

2 Risk-Aware Optimization

3 Risk Extrapolation

< ∃ >

< 口 > < 同 >

E

Algorithm		VLCS	PACS	OfficeHome
ERM	52.0 ± 0.1	77.4 ± 0.3	85.7 ± 0.5	67.5 ± 0.5
IRM	51.8 ± 0.1	78.1 ± 0.0	84.4 ± 1.1	66.6 ± 1.0
V-REx	52.1 ± 0.1	77.9 ± 0.5	85.8 ± 0.6	66.7 ± 0.5

V-REx shows comparable performance on domain generalization benchmarks.

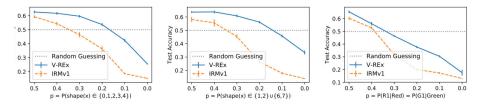
토▶ 토

- 一司

Algorithm		VLCS	PACS	OfficeHome
ERM	52.0 ± 0.1	$\textbf{77.4} \pm \textbf{0.3}$	85.7 ± 0.5	67.5 ± 0.5
IRM	51.8 ± 0.1	78.1 ± 0.0	84.4 ± 1.1	66.6 ± 1.0
V-REx	52.1 ± 0.1	$\textbf{77.9} \pm \textbf{0.5}$	85.8 ± 0.6	66.7 ± 0.5

V-REx shows comparable performance on domain generalization benchmarks.

However, when you include a *covariate shift*, V-REx **outperforms** IRM on dataset variants that include domain shift:



- 一司

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/rex.pdf