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ERM Synopsis

We’ll start with an overview of supervised learning paradigm:

1. Dataset D := {(xi , yi )}Ni=1; 1 ≪ N ≪ ∞; D ∼ “Real World”

2. Parameterized model fθ : X → Y
3. Objective: Train θ s.t. fθ(x) = ŷ ≈ y

How do we mathematically encode ŷ ≈ y? A loss (distance) function!

4. Loss function L : Y × Y → R; L(ŷ , y) ≈ 0 iff ŷ ≈ y ; L is continuous.

How can we update our weights to optimize against this loss function?

5. Gradient Descent! θ = θ − α · ∂L
∂θ

Iterate (5) until convergence.

L is minimized over D, not over the real world. This is empirical risk:

min
θ

1

N

N∑
i=1

L(fθ(xi ), yi ) (1)

Machine Learning @ Purdue Omnipredictors April 18, 2024 2 / 12



ERM Synopsis

We’ll start with an overview of supervised learning paradigm:

1. Dataset D := {(xi , yi )}Ni=1; 1 ≪ N ≪ ∞; D ∼ “Real World”

2. Parameterized model fθ : X → Y

3. Objective: Train θ s.t. fθ(x) = ŷ ≈ y

How do we mathematically encode ŷ ≈ y? A loss (distance) function!
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Agnostic Boosting

Probably Approximately Correct (PAC) Learning is a generalization of
ERM.

We define a PAC-learnable concept C if a learner L can with Pr = 1− δ
output hypothesis h ∈ H s.t. errorD(h) ≤ ϵ with required samples
|D| ∈ f (ϵ, δ, n) = 1

ϵa +
1
δb

+ |H|c .

One interpretation of PAC allows an arbitrary concept function, that learns
by comparing error in the learner’s hypothesis against the best predictor in
a pre-specified comparison class of predictors. This is Agnostic Learning.

Boosting a weak agnostic learner is a critical aspect of the Omnipredictors
approach to learning “multicalibrated partitions” (we’ll get to this soon).
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Challenge Statement

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a different2 optima for two such
functions, despite sharing minima for θ s.t. ŷ ≈ y .

Let’s evaluate this empirically on ℓ1 and ℓ2 losses, which optimize for
median and mean respectively:

ℓ1 = |y − ŷ |, ℓ2 = (y − ŷ)2 (2)

x ∼ f (ϵ ∼ U [0, 1]) :=

{
0 ϵ ≤ 0.4

U [0.8, 1] otherwise
(3)

Omnipredictors provides a framework for rigorous guarantees, deriving
p̃ ≈ p∗: a predictor that is able to simultaneously minimize a family of
convex loss functions.

2usually, local
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Accuracy in Expectation & Calibration

We subject the model’s predicted probabilities to ‘sanity checks’

– these
are classic interpretability notions:

a. p̃ is accurate in expectation if:

E[p̃(x)] = E[y ] (4)

b. p̃ is calibrated if:

E[y |p̃(x)] = p̃(x) (5)

These may be orthogonal to model performance.

“If you posit a more complex view of the world, I will subject you to a
more rigorous test.” – P. Gopalan.
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Multigroup Fairness

We can split D into various subgroups based on shared characteristics.
These can be explicit or implicit (i.e. subgroups we don’t know of):

Group-1 Group-2 Group-3 Group-4

Accuracy 0.9593 0.6249 0.3157 0.2664
Loss 0.0021 0.4102 1.3457 1.7664
Proportion 0.9 0.08 0.0075 0.0025

Empirical Risk is only 0.0492, but inference is unreliable for subgroups 2-4.

One notion of fairness stipulates equal risk for every subgroup. However,
finding subgroups is hard for high-dimensional data.
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Multiaccuracy & Multicalibration

Can we elicit more information from our model while retaining calibration?

Here, we introduce multiaccuracy and multicalibration.

Let C = {c : X → [−1, 1]} be a collection of
subsets, generalized as real-valued functions.

p̃ is (C , α)-multiaccurate if:

max
c∈C

|E[c(x)(y − p̃(x))]| ≤ α (6)

p̃ is (C , α)-multicalibrated if:

max
c∈C

E[|E[c(x)(y − p̃(x))]|] ≤ α (7)

If we can find correlations with the error, there’s
some advantage to be gained. We enforce
multicalibration to train the weak agnostic learner.
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Omnipredictors

If we know p∗, it is easy for us take take the optimal action.

For y ∈ {0, 1}, y ∼ Bernoulli(p∗). We denote optimal action t := k∗ℓ ◦ p∗
as post-processing function.

This paper connects multigroup fairness with the notion of a weak
agnostic learner, to formulate (L,C )-omnipredictors.

Intuitively: the idea is to extract the predictive power of the data.

Let Lcvx be a set of Lipschitz, convex, bounded losses. If p̃ is
C -multicalibrated with some error α, it is an (Lcvx ,C , α)-omnipredictor.

Multicalibration implies omniprediction for all convex loss functions.
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Proof of Optimality

As proof for optimality, we evaluate binary classification. Assumptions:

1. p∗ is boolean.
2. Perfect Mutlicalibration:

E[c(x)(y∗ − v)|p̃(x) = v ] = 0,∀v ∈ [0, 1], c ∈ C
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Training Agnostic Learners

We can train an agnostic learner using the following setup:

H : X → {0, 1} (8)

D : X × {0, 1} (9)

ℓ(h ∈ H) = Pr(x ,y)∼D[h(x) ̸= y ] = E(x ,y)∼D[ℓ1(y , h(x))] (10)

OPT (H) = min
h∈H

ℓ(h) (11)

An agnostic learner for H produces f s.t. ℓ(f ) ≤ OPT(H) + ϵ.

We (ϵ,W )-approximate H by C if ∀h ∈ H, ϵ > 0, gw ∈ LinC(W ):

E(x ,y)∼D[|gw (x)− h(x)|] ≤ ϵ (12)

If partition S is ϵ
2W -approximately multicalibrated for C,D,

ℓ(hSℓ1) ≤ OPT(H) + ϵ and can identify multicalibrated partitions.
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Thank you!

Have an awesome rest of your day!

Slides:
https://cs.purdue.edu/homes/jsetpal/slides/omnipredictors.pdf
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