Omnipredictors¹: One Predictor to Rule Them All Heavily adapted from P. Gopalan's Talk at IAS

J. Setpal

April 18, 2024

¹Gopalan, Kalai, Reingold, Sharan, Wieder

Machine Learning @ Purdue

Omnipredictors

1/12

We'll start with an *overview* of supervised learning paradigm:

1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"

Э

< ∃ >

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$

Э

= =

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\boldsymbol{\theta}} : \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

3

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$?

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

5. Gradient Descent! $\theta = \theta - \alpha \cdot \frac{\partial L}{\partial \theta}$ Iterate (5) until convergence.

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

5. Gradient Descent! $\theta = \theta - \alpha \cdot \frac{\partial L}{\partial \theta}$ Iterate (5) until convergence.

L is minimized over \mathcal{D} , not over the real world.

We'll start with an overview of supervised learning paradigm:

- 1. Dataset $\mathcal{D} := \{(x_i, y_i)\}_{i=1}^N; \ 1 \ll N \ll \infty; \ \mathcal{D} \sim$ "Real World"
- 2. Parameterized model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$
- 3. Objective: Train θ s.t. $f_{\theta}(x) = \hat{y} \approx y$

How do we mathematically encode $\hat{y} \approx y$? A loss (distance) function!

4. Loss function $L: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$; $L(\hat{y}, y) \approx 0$ iff $\hat{y} \approx y$; L is continuous.

How can we update our weights to optimize against this loss function?

5. Gradient Descent! $\theta = \theta - \alpha \cdot \frac{\partial L}{\partial \theta}$ Iterate (5) until convergence.

L is minimized over \mathcal{D} , not over the real world. This is empirical risk:

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(f_{\theta}(x_i), y_i)$$
(1)

Э

= =

Image: Image:

We define a PAC-learnable concept *C* if a learner *L* can with $Pr = 1 - \delta$ output hypothesis $h \in \mathcal{H}$ s.t. $\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon$ with required samples $|\mathcal{D}| \in f(\epsilon, \delta, n) = \frac{1}{\epsilon^a} + \frac{1}{\delta^b} + |\mathcal{H}|^c$.

We define a PAC-learnable concept *C* if a learner *L* can with $Pr = 1 - \delta$ output hypothesis $h \in \mathcal{H}$ s.t. $\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon$ with required samples $|\mathcal{D}| \in f(\epsilon, \delta, n) = \frac{1}{\epsilon^a} + \frac{1}{\delta^b} + |\mathcal{H}|^c$.

One interpretation of PAC allows an <u>arbitrary concept function</u>, that learns by comparing error in the learner's hypothesis against the best predictor in a pre-specified comparison class of predictors.

We define a PAC-learnable concept *C* if a learner *L* can with $Pr = 1 - \delta$ output hypothesis $h \in \mathcal{H}$ s.t. $\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon$ with required samples $|\mathcal{D}| \in f(\epsilon, \delta, n) = \frac{1}{\epsilon^a} + \frac{1}{\delta^b} + |\mathcal{H}|^c$.

One interpretation of PAC allows an <u>arbitrary concept function</u>, that learns by comparing error in the learner's hypothesis against the best predictor in a pre-specified comparison class of predictors. This is **Agnostic Learning**.

We define a PAC-learnable concept *C* if a learner *L* can with $Pr = 1 - \delta$ output hypothesis $h \in \mathcal{H}$ s.t. $\operatorname{error}_{\mathcal{D}}(h) \leq \epsilon$ with required samples $|\mathcal{D}| \in f(\epsilon, \delta, n) = \frac{1}{\epsilon^a} + \frac{1}{\delta^b} + |\mathcal{H}|^c$.

One interpretation of PAC allows an <u>arbitrary concept function</u>, that learns by comparing error in the learner's hypothesis against the best predictor in a pre-specified comparison class of predictors. This is **Agnostic Learning**.

Boosting a weak agnostic learner is a critical aspect of the Omnipredictors approach to learning "multicalibrated partitions" (we'll get to this soon).

イロト イヨト イヨト -

Challenge Statement

Problem: Different loss functions typically have divergent geometries.

² usually	, local
usuany	, iocai

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a **different**² **optima** for two such functions, despite sharing minima for θ s.t. $\hat{y} \approx y$.

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a **different**² **optima** for two such functions, despite sharing minima for θ s.t. $\hat{y} \approx y$.

Let's evaluate this empirically on ℓ_1 and ℓ_2 losses, which optimize for median and mean respectively:

$$\ell_1 = |y - \hat{y}|, \ \ell_2 = (y - \hat{y})^2 \tag{2}$$
$$x \sim f(\epsilon \sim \mathcal{U}[0, 1]) := \begin{cases} 0 & \epsilon \le 0.4 \\ \mathcal{U}[0.8, 1] & \text{otherwise} \end{cases} \tag{3}$$

²usually, local

4/12

Problem: Different loss functions typically have divergent geometries.

This means gradient descent obtains a **different**² **optima** for two such functions, despite sharing minima for θ s.t. $\hat{y} \approx y$.

Let's evaluate this empirically on ℓ_1 and ℓ_2 losses, which optimize for median and mean respectively:

$$\ell_1 = |y - \hat{y}|, \ \ell_2 = (y - \hat{y})^2$$
(2)

$$\mathbf{x} \sim f(\epsilon \sim \mathcal{U}[0,1]) := \begin{cases} \mathbf{\mathcal{U}}[0.8,1] & \text{otherwise} \end{cases}$$
(3)

Omnipredictors provides a framework for rigorous guarantees, deriving $\tilde{p} \approx p^*$: a predictor that is able to *simultaneously minimize* a family of <u>convex loss functions</u>.

² usually, local			୬୯୯
Machine Learning @ Purdue	Omnipredictors	April 18, 2024	4 / 12

Accuracy in Expectation & Calibration

We subject the model's predicted probabilities to 'sanity checks'

a. \tilde{p} is accurate in expectation if:

$$\mathbb{E}[\tilde{\rho}(x)] = \mathbb{E}[y] \tag{4}$$

a. \tilde{p} is accurate in expectation if:

$$\mathbb{E}[\tilde{\rho}(x)] = \mathbb{E}[y] \tag{4}$$

b. \tilde{p} is <u>calibrated</u> if:

$$\mathbb{E}[y|\tilde{\rho}(x)] = \tilde{\rho}(x) \tag{5}$$

a. \tilde{p} is accurate in expectation if:

$$\mathbb{E}[\tilde{\rho}(x)] = \mathbb{E}[y] \tag{4}$$

b. \tilde{p} is <u>calibrated</u> if:

$$\mathbb{E}[y|\tilde{\rho}(x)] = \tilde{\rho}(x) \tag{5}$$

These may be orthogonal to model performance.

a. \tilde{p} is accurate in expectation if:

$$\mathbb{E}[\tilde{\rho}(x)] = \mathbb{E}[y] \tag{4}$$

b. \tilde{p} is <u>calibrated</u> if:

$$\mathbb{E}[y|\tilde{\rho}(x)] = \tilde{\rho}(x) \tag{5}$$

These may be orthogonal to model performance.

"If you posit a more complex view of the world, I will subject you to a more rigorous test." – P. Gopalan.

We can split \mathcal{D} into various *subgroups* based on **shared characteristics**. These can be explicit or implicit (i.e. subgroups we don't know of):

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

We can split \mathcal{D} into various *subgroups* based on **shared characteristics**. These can be explicit or implicit (i.e. subgroups we don't know of):

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

Empirical Risk is only 0.0492, but inference is unreliable for subgroups 2-4.

We can split \mathcal{D} into various *subgroups* based on **shared characteristics**. These can be explicit or implicit (i.e. subgroups we don't know of):

	Group-1	Group-2	Group-3	Group-4
Accuracy	0.9593	0.6249	0.3157	0.2664
Loss	0.0021	0.4102	1.3457	1.7664
Proportion	0.9	0.08	0.0075	0.0025

Empirical Risk is only 0.0492, but inference is unreliable for subgroups 2-4.

One notion of fairness stipulates equal risk for every subgroup. However, finding subgroups is hard for high-dimensional data.

Can we elicit more information from our model while retaining calibration?

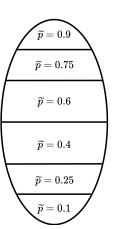
Can we elicit more information from our model while *retaining* calibration? Here, we introduce **multiaccuracy** and **multicalibration**.

Can we elicit more information from our model while *retaining* calibration? Here, we introduce **multiaccuracy** and **multicalibration**.

 $\widetilde{p} = 0.9$ $\widetilde{p} = 0.75$ $\widetilde{p} = 0.6$ $\widetilde{p} = 0.4$ $\widetilde{p} = 0.25$ $\widetilde{p} = 0.1$

Let $C = \{c : \mathcal{X} \rightarrow [-1, 1]\}$ be a collection of subsets, generalized as **real-valued functions**.

Can we elicit more information from our model while *retaining* calibration? Here, we introduce **multiaccuracy** and **multicalibration**.



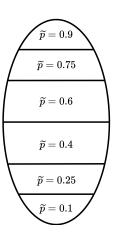
Let $C = \{c : \mathcal{X} \rightarrow [-1, 1]\}$ be a collection of subsets, generalized as **real-valued functions**.

 $\tilde{\rho}$ is (C, α) -multiaccurate if:

$$\max_{c \in C} |\mathbb{E}[c(x)(y - \tilde{p}(x))]| \le \alpha \tag{6}$$

7/12

Can we elicit more information from our model while *retaining* calibration? Here, we introduce **multiaccuracy** and **multicalibration**.



Let $C = \{c : \mathcal{X} \rightarrow [-1, 1]\}$ be a collection of subsets, generalized as **real-valued functions**.

 \tilde{p} is (C, α) -multiaccurate if:

$$\max_{c \in C} |\mathbb{E}[c(x)(y - \tilde{p}(x))]| \le \alpha \tag{6}$$

 \tilde{p} is (C, α) -multicalibrated if:

 $\max_{c \in C} \mathbb{E}[|\mathbb{E}[c(x)(y - \tilde{p}(x))]|] \le \alpha$ (7)

Can we elicit more information from our model while *retaining* calibration? Here, we introduce **multiaccuracy** and **multicalibration**.

 $\widetilde{p} = 0.9$ $\widetilde{p} = 0.75$ $\widetilde{p} = 0.6$ $\widetilde{p} = 0.4$ $\widetilde{p} = 0.25$ $\widetilde{p} = 0.1$

Let $C = \{c : \mathcal{X} \rightarrow [-1, 1]\}$ be a collection of subsets, generalized as **real-valued functions**.

 \tilde{p} is (C, α) -multiaccurate if:

$$\max_{c \in C} |\mathbb{E}[c(x)(y - \tilde{p}(x))]| \le \alpha$$
(6)

 \tilde{p} is (C, α) -multicalibrated if:

 $\max_{c \in C} \mathbb{E}[|\mathbb{E}[c(x)(y - \tilde{p}(x))]|] \le \alpha$ (7)

If we can find correlations with the error, there's some advantage to be gained. We enforce multicalibration to train the **weak agnostic learner**.

프 > 프

Image: Image:

For $y \in \{0, 1\}$, $y \sim \text{Bernoulli}(p^*)$. We denote optimal action $t := k_{\ell}^* \circ p^*$ as post-processing function.

()

Image: Image:

For $y \in \{0, 1\}$, $y \sim \text{Bernoulli}(p^*)$. We denote optimal action $t := k_{\ell}^* \circ p^*$ as post-processing function.

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors.

For $y \in \{0, 1\}$, $y \sim \text{Bernoulli}(p^*)$. We denote optimal action $t := k_{\ell}^* \circ p^*$ as post-processing function.

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors.

Intuitively: the idea is to extract the predictive power of the data.

For $y \in \{0, 1\}$, $y \sim \text{Bernoulli}(p^*)$. We denote optimal action $t := k_{\ell}^* \circ p^*$ as post-processing function.

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors.

Intuitively: the idea is to *extract the predictive power* of the data.

Let L_{cvx} be a set of Lipschitz, convex, bounded losses.

For $y \in \{0, 1\}$, $y \sim \text{Bernoulli}(p^*)$. We denote optimal action $t := k_{\ell}^* \circ p^*$ as post-processing function.

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors.

Intuitively: the idea is to *extract the predictive power* of the data.

Let L_{cvx} be a set of Lipschitz, convex, bounded losses. If \tilde{p} is *C*-multicalibrated with some error α , it is an (L_{cvx}, C, α) -omnipredictor.

For $y \in \{0, 1\}$, $y \sim \text{Bernoulli}(p^*)$. We denote optimal action $t := k_{\ell}^* \circ p^*$ as post-processing function.

This paper connects multigroup fairness with the notion of a weak agnostic learner, to formulate (L, C)-omnipredictors.

Intuitively: the idea is to *extract the predictive power* of the data.

Let L_{cvx} be a set of Lipschitz, convex, bounded losses. If \tilde{p} is *C*-multicalibrated with some error α , it is an (L_{cvx}, C, α) -omnipredictor.

Multicalibration implies omniprediction for all convex loss functions.

イロト イ理ト イヨト イヨト

Proof of Optimality

As proof for optimality, we evaluate binary classification. Assumptions:

- 1. p^* is boolean.
- 2. Perfect Mutlicalibration:

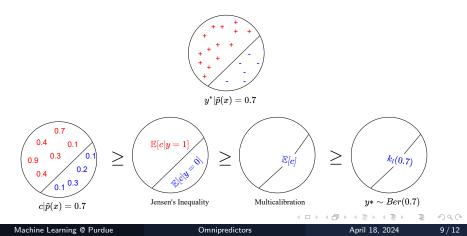
$$\mathbb{E}[c(x)(y^*-v)|\tilde{p}(x)=v]=0, \forall v\in[0,1], c\in C$$

Proof of Optimality

As proof for optimality, we evaluate binary classification. Assumptions:

- 1. p^* is boolean.
- 2. Perfect Mutlicalibration:

$$\mathbb{E}[c(x)(y^*-v)| ilde{
ho}(x)=v]=0, orall v\in [0,1], c\in C$$



Training Agnostic Learners

We can train an agnostic learner using the following setup:

$$\mathcal{H}: \mathcal{X} \to \{0, 1\} \tag{8}$$

$$\mathcal{D}: \mathcal{X} \times \{0, 1\} \tag{9}$$

$$\ell(h \in \mathcal{H}) = \Pr_{(x,y)\sim\mathcal{D}}[h(x) \neq y] = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell_1(y,h(x))]$$
(10)
$$OPT(\mathcal{H}) = \min_{h \in \mathcal{H}} \ell(h)$$
(11)

990

Training Agnostic Learners

We can train an agnostic learner using the following setup:

$$\mathcal{H}: \mathcal{X} \to \{0, 1\}$$
 (8)

$$\mathcal{D}: \mathcal{X} \times \{0, 1\} \tag{9}$$

$$\ell(h \in \mathcal{H}) = \Pr_{(x,y)\sim\mathcal{D}}[h(x) \neq y] = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell_1(y,h(x))]$$
(10)
$$OPT(\mathcal{H}) = \min_{h \in \mathcal{H}} \ell(h)$$
(11)

An agnostic learner for \mathcal{H} produces f s.t. $\ell(f) \leq \mathsf{OPT}(\mathcal{H}) + \epsilon$.

Training Agnostic Learners

We can train an agnostic learner using the following setup:

$$\mathcal{H}: \mathcal{X} \to \{0, 1\} \tag{8}$$

$$\mathcal{D}: \mathcal{X} \times \{0, 1\} \tag{9}$$

$$\ell(h \in \mathcal{H}) = \Pr_{(x,y)\sim\mathcal{D}}[h(x) \neq y] = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell_1(y,h(x))]$$
(10)
$$OPT(\mathcal{H}) = \min_{h \in \mathcal{H}} \ell(h)$$
(11)

An agnostic learner for \mathcal{H} produces f s.t. $\ell(f) \leq \mathsf{OPT}(\mathcal{H}) + \epsilon$.

We (ϵ, W) -approximate \mathcal{H} by \mathcal{C} if $\forall h \in \mathcal{H}, \epsilon > 0$, $g_w \in Lin_{\mathcal{C}}(W)$:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}[|g_w(x) - h(x)|] \le \epsilon$$
(12)

If partition S is $\frac{\epsilon}{2W}$ -approximately multicalibrated for C, D, $\ell(h_{\ell_1}^S) \leq \mathsf{OPT}(\mathcal{H}) + \epsilon$ and can identify multicalibrated partitions.

Have an awesome rest of your day!

Slides:

https://cs.purdue.edu/homes/jsetpal/slides/omnipredictors.pdf

Machine Learning @ Purdue

Э

nga