Introducing Mechanistic Interpretability: Demistify black boxes with **Circuit Analaysis**¹ & **Monosemanticity**²

J. Setpal

February {1, 8}, 2024

https://transformer-circuits.pub/2021/framework/

https://transformer-circuits.pub/2023/monosemantic-features/

Machine Learning @ Purdue

Mechanistic Interpretability

1/27

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

990

Э

< □ > < □ >

This is easy for shallow learning.

This is easy for shallow learning. For deep learning however, it is a **lot** harder.

This is easy for shallow learning. For deep learning however, it is a **lot** harder.

Today, we will interpret deep neural networks (transformer).

4 / 27

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful? If we are able to *completely understand* a toy model, we can:

- understand why attention works.

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

If we are able to *completely understand* a toy model, we can:

- understand why attention works.
- observe recurring patterns in complex models.

5/27

Most of interpretability seeks to extract representations from weights:

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

It seeks to understand functions that *individual neurons* play in the inference of a neural network.

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on **reverse engineering neural networks**.

It seeks to understand functions that *individual neurons* play in the inference of a neural network.

This can subsequently be used to offer high-level explanations for decisions, as well as guarantees during inference.

Machine Learning @ Purdue

Mechanistic Interpretability

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

< 口 > < 同

990

n-gram models used the following incorrect assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$

$$\tag{1}$$

n-gram models used the following incorrect assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$

$$\tag{1}$$

Why \approx ?

n-gram models used the following incorrect assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$

$$\tag{1}$$

Why $\not\approx$? It's because context is important!

n-gram models used the following incorrect assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$

$$(1)$$

Why $\not\approx$? It's because context is important!

But, so is *efficiency*. Self-Attention solves this by effectively creating a **trainable database**.

n-gram models used the following incorrect assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$

$$\tag{1}$$

Why $\not\approx$? It's because context is important!

But, so is *efficiency*. Self-Attention solves this by effectively creating a **trainable database**.

We query it to subset the important tokens. For $\{x_i\}_{i=1}^t$,

$$\alpha_i = \sigma_{softmax} \left(\frac{q_i k_i^T}{\sqrt{d_k}} \right) \tag{2}$$

(3)

Where q_i , k_i , v_i are each independent parameter matrices,

n-gram models used the following incorrect assumption:

$$p(x_t|\{x_i\}_{i=1}^{t-1};\theta) \not\approx p(x_t|x_{t-1};\theta)$$

$$\tag{1}$$

Why $\not\approx$? It's because context is important!

But, so is *efficiency*. Self-Attention solves this by effectively creating a **trainable database**.

We query it to subset the important tokens. For $\{x_i\}_{i=1}^t$,

$$\alpha_{i} = \sigma_{softmax} \left(\frac{q_{i}k_{i}^{T}}{\sqrt{d_{k}}} \right)$$

$$h(x) = \sum_{i=1}^{t} \alpha_{i}v_{i}$$
(2)
(3)

Where q_i , k_i , v_i are each independent parameter matrices.

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x \tag{4}$$

(4) (5)

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$
(4)
= $(A \otimes W_O W_V) \cdot x$ (5)

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$

$$= (A \otimes W_O W_V) \cdot x$$
(4)

The *disjointed* nature of A, $W_O W_V$ tells us a lot!

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$
$$= (A \otimes W_O W_V) \cdot x$$

The *disjointed* nature of A, $W_O W_V$ tells us a lot!

a. A and $W_O W_V$ are fundamentally independent entities.

(4) (5)

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$
(4)
= $(A \otimes W_O W_V) \cdot x$ (5)

The *disjointed* nature of A, $W_O W_V$ tells us a lot!

- a. A and $W_O W_V$ are fundamentally independent entities.
- b. A describes which token information moves through, $W_O W_V$ describes which residual subspace to read from and write to.

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$

$$= (A \otimes W_O W_V) \cdot x$$
(4)

The *disjointed* nature of A, $W_O W_V$ tells us a lot!

- a. A and $W_O W_V$ are fundamentally independent entities.
- b. A describes which token information moves through, $W_O W_V$ describes which residual subspace to read from and write to.

$$MHA(x_0) = x_0 + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot x_0$$
(6)

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$

$$= (A \otimes W_O W_V) \cdot x$$
(4)

The *disjointed* nature of A, $W_O W_V$ tells us a lot!

- a. A and $W_O W_V$ are fundamentally independent entities.
- b. A describes which token information moves through, $W_O W_V$ describes which residual subspace to read from and write to.

$$MHA(x_0) = x_0 + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot x_0$$
(6)

Our final transformer has the following equation:

$$T(t_0) = (I \otimes W_U) \cdot MHA((I \otimes W_E) \cdot t_0)$$
(7)

9 / 27

We can represent attention using tensor products:

$$h(x) = (I \otimes W_O) \cdot (A \otimes I) \cdot (I \otimes W_V) \cdot x$$

$$= (A \otimes W_O W_V) \cdot x$$
(4)

The *disjointed* nature of A, $W_O W_V$ tells us a lot!

- a. A and $W_O W_V$ are fundamentally independent entities.
- b. A describes which token information moves through, $W_O W_V$ describes which residual subspace to read from and write to.

$$MHA(x_0) = x_0 + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot x_0$$
(6)

Our final transformer has the following equation:

$$T(t_0) = (I \otimes W_U) \cdot MHA((I \otimes W_E) \cdot t_0)$$
(7)

Why is this important?

Machine Learning @ Purdue

9/27

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

(9)

(10)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot I \otimes W_E)$$
(9)

(10)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot I \otimes W_E)$$
(9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot I \otimes W_E)$$
(9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)

Here's the breakdown:

a. $W_U W_E$ approximate bigram statistics.

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot I \otimes W_E)$$
(9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)

Here's the breakdown:

- a. $W_U W_E$ approximate bigram statistics.
- b. A^h dictates where the attention heads attend.
We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot I \otimes W_E)$$
(9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)

Here's the breakdown:

- a. $W_U W_E$ approximate bigram statistics.
- b. A^h dictates where the attention heads attend.
- c. $W_U W_O^h W_V^h W_E$ describes the **behavior of logits if we attend to a given token**.

We begin by simplifying to just T:

$$T = (I \otimes W_U) \cdot MHA(I \otimes W_E) \tag{8}$$

$$= (I \otimes W_U) \cdot (I \otimes W_E + \sum_{h \in H} (A^h \otimes W^h_O W^h_V) \cdot I \otimes W_E)$$
(9)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)

Here's the breakdown:

- a. $W_U W_E$ approximate bigram statistics.
- b. A^h dictates where the attention heads attend.
- c. $W_U W_O^h W_V^h W_E$ describes the **behavior of logits if we attend to a given token**.

Observation: The equation is linear, if we fix attention patterns.

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

First, we can display key-value matrix operations:

$$q_i = (I \otimes W_Q W_E) \cdot t_0$$
(11)
$$k_i = (I \otimes W_K W_E) \cdot t_0$$
(12)

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

First, we can display key-value matrix operations:

$$q_i = (I \otimes W_Q W_E) \cdot t_0 \tag{11}$$

$$k_i = (I \otimes W_K W_E) \cdot t_0 \tag{12}$$

And then apply them to unnormalized³ attention:

$$A = \sigma_{softmax} \left([q_i k_j^T]_{i,j} \right) \tag{13}$$

$$=\sigma_{softmax}\left(t_{0}^{T}\cdot\left(I\otimes W_{E}^{T}W_{Q}^{T}\right)\cdot\left(I\otimes W_{K}W_{E}\right)\cdot t_{0}\right)$$
(14)

$$=\sigma_{softmax}\left(t_{0}^{T}\cdot W_{E}^{T}W_{Q}^{T}W_{K}W_{E}\cdot t_{0}\right)$$
(15)

³to ease computation.

Machine Learning @ Purdue

Unravelling QK, OV Circuits (1/3)

Here's the two tensor equations combined:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

Э

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

Q: Is there anything interesting about these two? (similarities, differences)

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

a. It's a much simpler recomposition of feedforward inference.

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

- a. It's a much simpler recomposition of feedforward inference.
- b. A is the only non-linear operation.

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

- a. It's a much simpler recomposition of feedforward inference.
- b. A is the only non-linear operation.
- c. A learns independently from the rest of the tensor equation.

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

Q: Is there anything interesting about these two? (similarities, differences)

Here's my observations:

- a. It's a much simpler recomposition of feedforward inference.
- b. A is the only non-linear operation.

c. *A* **learns independently** from the rest of the tensor equation. However, we're still missing one. Importantly, both equations have (|voc|, |voc|) size matrices:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

These chained tensor operations are our **circuits**, and lie at the heart of the transformer architecture.

Importantly, both equations have (|voc|, |voc|) size matrices:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

These chained tensor operations are our **circuits**, and lie at the heart of the transformer architecture.

a. The **Output-Value(OV) Circuit** $W_U W_O^h W_V^h W_E$: determines how attending to a token affects logits.

Importantly, both equations have (|voc|, |voc|) size matrices:

$$T = W_U W_E + \sum_{h \in H} (A^h \otimes W_U W_O^h W_V^h W_E)$$
(10)
$$A = \sigma_{softmax} \left(t_0^T \cdot W_E^T W_Q^T W_K W_E \cdot t_0 \right)$$
(15)

These chained tensor operations are our **circuits**, and lie at the heart of the transformer architecture.

- a. The **Output-Value(OV) Circuit** $W_U W_O^h W_V^h W_E$: determines how attending to a token affects logits.
- b. The **Query-Key(QK)** Circuit $W_E^T W_Q^T W_K W_E$: determines which tokens to attend to.

Unravelling QK, OV Circuits (3/3)

Mechanistic Interpretability

February {1, 8}, 2024

990 14 / 27

Э

Interpretation as Skip-Trigrams

We can think through inference procedure with single source token.⁴

⁴for simplicity.

Machine Learning @ Purdue

Mechanistic Interpretability

Interpretation as Skip-Trigrams

We can think through inference procedure with single source token.⁴

From there, we look at the largest QK and OV entries.

Some examples of large entries QK/OV circuit

Source Token	Destination Token	Out Token	Example Skip Tri-grams	
" perfect"	" are", " looks",	" perfect" , " super",	" perfect are perfect",	
	" is", " provides"	" absolute", " pure"	" perfect looks super"	
" large"	" contains", " using",	" large", " small",	" large using large",	
	" specify", " contain"	" very", " huge"	" large contains small"	
" two"	" One", "\n ", " has",	" two", " three", " four",	" two One two",	
	"\r\n ", "One"	" five", " one"	" two has three"	
"lambda"	"\$\\", "}{\\", "+\\",	"lambda", "sorted",	"lambda \$\\lambda",	
	"(\\", "\${\\"	" lambda", "operator"	"lambda +\\lambda"	
"nbsp"	"&", "\"&", "}&",	"nbsp", "01", "gt", "00012",	"nbsp ",	
	">&", "=&"	"nbs", "quot"	"nbsp > "	
"Great"	"The", " The", " the",	" Great", " great",	"Great The Great",	
	" contains", " /"	" poor", " Every"	"Great the great"	

⁴for simplicity.

Machine Learning @ Purdue

Mechanistic Interpretability

February {1, 8}, 2024 15 / 27

Eigenvalue Analysis

Most of the prominent behaviours include <u>copying</u>. We can identify this using **eigenvalue analysis**.

Э

Eigenvalue Analysis

Most of the prominent behaviours include copying. We can identify this using **eigenvalue analysis**. Recall from the definition of eigenvectors,

$$Wv = \lambda v; \lambda \in \mathbb{C}$$
 (16)

This is useful when we map a vector space upon itself.

Eigenvalue Analysis

Most of the prominent behaviours include copying. We can identify this using **eigenvalue analysis**. Recall from the definition of eigenvectors,

$$Wv = \lambda v; \lambda \in \mathbb{C}$$
 (16)

This is useful when we map a vector space upon itself.

Eigenvalue analysis of first layer attention head OV circuits

10/12 of layer 1 heads have mostly positive OV eigenvalues, and appear to significantly perform copying

We use a **log scale** to represent magnitude, since it varies by many orders of magnitude.

Eigenvalue distribution for randomly initialized weights. Note that the mostly – and in some cases, entirely – positive eigenvalues we observe are very different from what we randomly expect.

Importantly, note that positive eigenvalues mean they are copying 'on average', and are not definitive.

Machine Learning @ Purdue

Mechanistic Interpretability

February {1, 8}, 2024

16 / 27

Background & Intuition

2 Transformer Circuit Analysis

3 Towards Monosemanticity

990

臣

Q: Is anyone familiar with the the curse of dimensionality?

990

Э

Q: Is anyone familiar with the the curse of dimensionality? **A:** For NNs, basically latent space $\propto |layers|^c$.

This makes them tough to analyze at scale.

nge

Q: Is anyone familiar with the the curse of dimensionality? **A:** For NNs, basically latent space $\propto |layers|^c$.

This makes them tough to analyze at scale. In addition, models are *incredibly efficient* at information compression.

Q: Is anyone familiar with the the curse of dimensionality? **A:** For NNs, basically latent space $\propto |layers|^c$.

This makes them tough to analyze at scale. In addition, models are *incredibly efficient* at information compression.

This is superposition.

Q: Is anyone familiar with the the curse of dimensionality? **A:** For NNs, basically latent space \propto |layers|^c.

This makes them tough to analyze at scale. In addition, models are *incredibly efficient* at information compression.

This is superposition.

When we perform an indvidual analysis of neurons, it fires for unrelated concepts.

This is **polysemanticity**.

18 / 27

Updated Architecture

Previously, we used an **attention-only** model, since the MLP was too hard to analyze mathematically.

Updated Architecture

Previously, we used an **attention-only** model, since the MLP was too hard to analyze mathematically.

Let's instead analyze the following architecture *empirically*:

Machine Learning @ Purdue

February {1, 8}, 2024 19 / 27

Training Setup

	Transformer	Sparse Autoencoder	
Layers 1 Attention Block 1 MLP Block	1 Attention Block	1 ReLU	
	1 MLP Block	1 Linear	
MLP Size	512	$512 imes f \in \{1, \dots, 256\}^5$	
Dataset	The Pile (100B tokens)	Activations (8B samples)	
Loss		L2 Reconstruction	
	Autoregressive Log-Likelihood	L1 on hidden-layer activation	

990

20 / 27

Training Setup

	Transformer	Sparse Autoencoder	
Layers	1 Attention Block	1 ReLU	
5	I MLP Block	1 Linear	
MLP Size	512	$512 imes f\in\{1,\ldots,256\}^5$	
Dataset	The Pile (100B tokens)	Activations (8B samples)	
Loss	Autorogrossive Log Likelihood	L2 Reconstruction	
		<i>L</i> 1 on hidden-layer activation	

Objective: polysemantic activations $\stackrel{Tr}{\rightarrow}$ monosemantic features.

⁵ f	=	8	for	our	ana	ysis
----------------	---	---	-----	-----	-----	------

	Transformer	Sparse Autoencoder	
Layers	1 Attention Block	1 ReLU	
	1 MLP Block	1 Linear	
MLP Size	512	$512 imes f\in\{1,\ldots,256\}^5$	
Dataset	The Pile (100B tokens)	Activations (8B samples)	
Loss	Autorographical and likelihood	L2 Reconstruction	
	Autoregressive Log-Likelinood	L1 on hidden-layer activation	

Objective: polysemantic activations $\stackrel{Tr}{\rightarrow}$ monosemantic features.

The sparse, overcomplete autoencoder is trained against this objective.

- 1. **Sparse** because we constrain activations (L1 penalty).
- 2. **Overcomplete** because the hidden layer exceeds the input dimension.

 $^{{}^{5}}f = 8$ for our analysis

Given $X := \{x^j\}_{j=1}^K$; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t: $||X - DR||_F^2 \approx 0$ (17)

3

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(17)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
(18)

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(19)

where d_i is the 'feature direction' represented as columns of the W_D .

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(17)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
(18)

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(19)

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

a. Training data $\propto n$ (interpretable features).

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(17)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
(18)

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(19)

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

- a. Training data $\propto n$ (interpretable features).
- b. Tying b_D before the encoder and after the decoder improves performance.

Given
$$X := \{x^j\}_{j=1}^K$$
; $x_j \in \mathbb{R}^d$, we wish to find $D \in \mathbb{R}^{d \times n}$, $R \in \mathbb{R}^n$ s.t:
$$||X - DR||_F^2 \approx 0$$
(17)

We can motivate our objective transformation by linear factorization:

$$x^{j} \approx b + \sum_{i} f_{i}(x^{j})d_{i}$$
(18)

$$f_i = \sigma_{ReLU}(W_E(x - b_D) + b_E)$$
(19)

where d_i is the 'feature direction' represented as columns of the W_D .

Some interesting implementation notes:

- a. Training data \propto *n*(interpretable features).
- b. Tying b_D before the encoder and after the decoder improves performance.
- c. Dead neurons are periodically *resampled* to improve feature representations.

Machine Learning @ Purdue

February {1, 8}, 2024 21/27
Evaluating Interpretability

Reliable evaluations on interpretability were scored based on a rubric:

Automated Interpretability - Activation

Features were found to be interpretable when score > 8.

Machine Learning @ Purdue

February {1, 8}, 2024

22 / 27

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

3

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

This is effectively *invisible* when viewed through the polysemantic model!

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.

This is effectively *invisible* when viewed through the polysemantic model!

 $LL(t) = \log \left(P(t | \text{Arabic}) / P(t) \right)$

We can evaluate each token using the log-likelihood ratio:

Despite representing 0.13% of training data, arabic script makes up 81% of active tokens:

Mechanistic Interpretability

February {1, 8}, 2024

(20)

They can be used to steer generation.

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

< □ > < □ >

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

We observe that interpreted features are actively used by the model.

< □ > < □ >

Finite State Automaton

A unique feature of features is their role as finite state automaton.

Finite State Automaton

A unique feature of features is their role as finite state automaton.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

A unique feature of features is their role as finite state automaton.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

These present partial explanations of memorizations within transformers:

Machine Learning @ Purdue

February {1, 8}, 2024 25 / 27

If you can view this screen, I am making a mistake.

Э

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/mechinterp.pdf