Introducing Mechanistic Interpretability:

Demistify black boxes with Circuit Analaysis ${ }^{1}$ \& Monosemanticity ${ }^{2}$

J. Setpal

February $\{1,8\}, 2024$

MACHINE LEARNING @ PURDUE

[^0]
Outline

(1) Background \& Intuition
(2) Transformer Circuit Analysis
(3) Towards Monosemanticity

Outline

(1) Background \& Intuition

(2) Transformer Circuit Analysis

(3) Towards Monosemanticity

What is Interpretability?

What is Interpretability?

Interpretability within Machine Learning is the degree to which we can understand the cause of a decision, and use it to consistently predict the model's prediction.

What is Interpretability?

Interpretability within Machine Learning is the degree to which we can understand the cause of a decision, and use it to consistently predict the model's prediction.

This is easy for shallow learning.

What is Interpretability?

Interpretability within Machine Learning is the degree to which we can understand the cause of a decision, and use it to consistently predict the model's prediction.

This is easy for shallow learning. For deep learning however, it is a lot harder.

What is Interpretability?

Interpretability within Machine Learning is the degree to which we can understand the cause of a decision, and use it to consistently predict the model's prediction.

This is easy for shallow learning. For deep learning however, it is a lot harder.

Today, we will interpret deep neural networks (transformer).

What will we Achieve Today?

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

What will we Achieve Today?

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

What will we Achieve Today?

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

If we are able to completely understand a toy model, we can:

- understand why attention works.

What will we Achieve Today?

Specifically, we'll analyze the 1-layer attention model.

For mathematical simplicity, this model ignores biases, layer-norm and dense layers.

Why is this useful?

If we are able to completely understand a toy model, we can:

- understand why attention works.
- observe recurring patterns in complex models.

What is Mechanistic Interpretability?

Most of interpretability seeks to extract representations from weights:

What is Mechanistic Interpretability?

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on reverse engineering neural networks.

What is Mechanistic Interpretability?

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on reverse engineering neural networks.

It seeks to understand functions that individual neurons play in the inference of a neural network.

What is Mechanistic Interpretability?

Most of interpretability seeks to extract representations from weights:

Mechanistic Interpretability is a subset of interpretability, that places a focus on reverse engineering neural networks.

It seeks to understand functions that individual neurons play in the inference of a neural network.

This can subsequently be used to offer high-level explanations for decisions, as well as guarantees during inference.

Outline

(1) Background \& Intuition

(2) Transformer Circuit Analysis

(3) Towards Monosemanticity

Self-Attention Synopsis

n-gram models used the following incorrect assumption:

$$
\begin{equation*}
p\left(x_{t} \mid\left\{x_{i}\right\}_{i=1}^{t-1} ; \theta\right) \not \approx p\left(x_{t} \mid x_{t-1} ; \theta\right) \tag{1}
\end{equation*}
$$

Self-Attention Synopsis

n-gram models used the following incorrect assumption:

$$
\begin{equation*}
p\left(x_{t} \mid\left\{x_{i}\right\}_{i=1}^{t-1} ; \theta\right) \not \approx p\left(x_{t} \mid x_{t-1} ; \theta\right) \tag{1}
\end{equation*}
$$

Why $\not \approx ?$

Self-Attention Synopsis

n-gram models used the following incorrect assumption:

$$
\begin{equation*}
p\left(x_{t} \mid\left\{x_{i}\right\}_{i=1}^{t-1} ; \theta\right) \not \approx p\left(x_{t} \mid x_{t-1} ; \theta\right) \tag{1}
\end{equation*}
$$

Why $\not \approx \boldsymbol{?}$? It's because context is important!

Self-Attention Synopsis

n-gram models used the following incorrect assumption:

$$
\begin{equation*}
p\left(x_{t} \mid\left\{x_{i}\right\}_{i=1}^{t-1} ; \theta\right) \not \approx p\left(x_{t} \mid x_{t-1} ; \theta\right) \tag{1}
\end{equation*}
$$

Why $\not \approx \boldsymbol{?}$? It's because context is important!
But, so is efficiency. Self-Attention solves this by effectively creating a trainable database.

Self-Attention Synopsis

n-gram models used the following incorrect assumption:

$$
\begin{equation*}
p\left(x_{t} \mid\left\{x_{i}\right\}_{i=1}^{t-1} ; \theta\right) \not \approx p\left(x_{t} \mid x_{t-1} ; \theta\right) \tag{1}
\end{equation*}
$$

Why $\not \approx \boldsymbol{?}$? It's because context is important!
But, so is efficiency. Self-Attention solves this by effectively creating a trainable database.

We query it to subset the important tokens. For $\left\{x_{i}\right\}_{i=1}^{t}$,

$$
\begin{equation*}
\alpha_{i}=\sigma_{\text {softmax }}\left(\frac{q_{i} k_{i}^{T}}{\sqrt{d_{k}}}\right) \tag{2}
\end{equation*}
$$

Where q_{i}, k_{i}, v_{i} are each independent parameter matrices,

Self-Attention Synopsis

n-gram models used the following incorrect assumption:

$$
\begin{equation*}
p\left(x_{t} \mid\left\{x_{i}\right\}_{i=1}^{t-1} ; \theta\right) \not \approx p\left(x_{t} \mid x_{t-1} ; \theta\right) \tag{1}
\end{equation*}
$$

Why $\not \approx \boldsymbol{?}$? It's because context is important!
But, so is efficiency. Self-Attention solves this by effectively creating a trainable database.

We query it to subset the important tokens. For $\left\{x_{i}\right\}_{i=1}^{t}$,

$$
\begin{gather*}
\alpha_{i}=\sigma_{\text {softmax }}\left(\frac{q_{i} k_{i}^{T}}{\sqrt{d_{k}}}\right) \tag{2}\\
h(x)=\sum_{i=1}^{t} \alpha_{i} v_{i} \tag{3}
\end{gather*}
$$

Where q_{i}, k_{i}, v_{i} are each independent parameter matrices,

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{equation*}
h(x)=\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}
\end{equation*}
$$

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{align*}
h(x) & =\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}\\
& =\left(A \otimes W_{O} W_{V}\right) \cdot x \tag{5}
\end{align*}
$$

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{align*}
h(x) & =\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}\\
& =\left(A \otimes W_{O} W_{V}\right) \cdot x \tag{5}
\end{align*}
$$

The disjointed nature of $A, W_{O} W_{V}$ tells us a lot!

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{align*}
h(x) & =\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}\\
& =\left(A \otimes W_{O} W_{V}\right) \cdot x \tag{5}
\end{align*}
$$

The disjointed nature of $A, W_{O} W_{V}$ tells us a lot! a. A and $W_{O} W_{V}$ are fundamentally independent entities.

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{align*}
h(x) & =\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}\\
& =\left(A \otimes W_{O} W_{V}\right) \cdot x \tag{5}
\end{align*}
$$

The disjointed nature of $A, W_{O} W_{V}$ tells us a lot!
a. A and $W_{O} W_{V}$ are fundamentally independent entities.
b. A describes which token information moves through, $W_{O} W_{V}$ describes which residual subspace to read from and write to.

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{align*}
h(x) & =\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}\\
& =\left(A \otimes W_{O} W_{V}\right) \cdot x \tag{5}
\end{align*}
$$

The disjointed nature of $A, W_{O} W_{V}$ tells us a lot!
a. A and $W_{O} W_{V}$ are fundamentally independent entities.
b. A describes which token information moves through, $W_{O} W_{V}$ describes which residual subspace to read from and write to.

$$
\begin{equation*}
M H A\left(x_{0}\right)=x_{0}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot x_{0} \tag{6}
\end{equation*}
$$

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{align*}
h(x) & =\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}\\
& =\left(A \otimes W_{O} W_{V}\right) \cdot x \tag{5}
\end{align*}
$$

The disjointed nature of $A, W_{O} W_{V}$ tells us a lot!
a. A and $W_{O} W_{V}$ are fundamentally independent entities.
b. A describes which token information moves through, $W_{O} W_{V}$ describes which residual subspace to read from and write to.

$$
\begin{equation*}
M H A\left(x_{0}\right)=x_{0}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot x_{0} \tag{6}
\end{equation*}
$$

Our final transformer has the following equation:

$$
\begin{equation*}
T\left(t_{0}\right)=\left(I \otimes W_{U}\right) \cdot M H A\left(\left(I \otimes W_{E}\right) \cdot t_{0}\right) \tag{7}
\end{equation*}
$$

Reframing using Tensorization (1/3)

We can represent attention using tensor products:

$$
\begin{align*}
h(x) & =\left(I \otimes W_{O}\right) \cdot(A \otimes I) \cdot\left(I \otimes W_{V}\right) \cdot x \tag{4}\\
& =\left(A \otimes W_{O} W_{V}\right) \cdot x \tag{5}
\end{align*}
$$

The disjointed nature of $A, W_{O} W_{V}$ tells us a lot!
a. A and $W_{O} W_{V}$ are fundamentally independent entities.
b. A describes which token information moves through, $W_{O} W_{V}$ describes which residual subspace to read from and write to.

$$
\begin{equation*}
M H A\left(x_{0}\right)=x_{0}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot x_{0} \tag{6}
\end{equation*}
$$

Our final transformer has the following equation:

$$
\begin{equation*}
T\left(t_{0}\right)=\left(I \otimes W_{U}\right) \cdot M H A\left(\left(I \otimes W_{E}\right) \cdot t_{0}\right) \tag{7}
\end{equation*}
$$

Why is this important?

Reframing using Tensorization (2/3)

We begin by simplifying to just T :

$$
\begin{equation*}
T=\left(I \otimes W_{U}\right) \cdot M H A\left(I \otimes W_{E}\right) \tag{8}
\end{equation*}
$$

(10)

Reframing using Tensorization (2/3)

We begin by simplifying to just T :

$$
\begin{align*}
T & =\left(I \otimes W_{U}\right) \cdot M H A\left(I \otimes W_{E}\right) \tag{8}\\
& =\left(I \otimes W_{U}\right) \cdot\left(I \otimes W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot I \otimes W_{E}\right) \tag{9}
\end{align*}
$$

(10)

Reframing using Tensorization (2/3)

We begin by simplifying to just T :

$$
\begin{align*}
T & =\left(I \otimes W_{U}\right) \cdot M H A\left(I \otimes W_{E}\right) \tag{8}\\
& =\left(I \otimes W_{U}\right) \cdot\left(I \otimes W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot I \otimes W_{E}\right) \tag{9}\\
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}
\end{align*}
$$

Reframing using Tensorization (2/3)

We begin by simplifying to just T :

$$
\begin{align*}
T & =\left(I \otimes W_{U}\right) \cdot M H A\left(I \otimes W_{E}\right) \tag{8}\\
& =\left(I \otimes W_{U}\right) \cdot\left(I \otimes W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot I \otimes W_{E}\right) \tag{9}\\
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}
\end{align*}
$$

Here's the breakdown:
a. $W_{U} W_{E}$ approximate bigram statistics.

Reframing using Tensorization (2/3)

We begin by simplifying to just T :

$$
\begin{align*}
T & =\left(I \otimes W_{U}\right) \cdot M H A\left(I \otimes W_{E}\right) \tag{8}\\
& =\left(I \otimes W_{U}\right) \cdot\left(I \otimes W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot I \otimes W_{E}\right) \tag{9}\\
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}
\end{align*}
$$

Here's the breakdown:
a. $W_{U} W_{E}$ approximate bigram statistics.
b. A^{h} dictates where the attention heads attend.

Reframing using Tensorization (2/3)

We begin by simplifying to just T :

$$
\begin{align*}
T & =\left(I \otimes W_{U}\right) \cdot M H A\left(I \otimes W_{E}\right) \tag{8}\\
& =\left(I \otimes W_{U}\right) \cdot\left(I \otimes W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot I \otimes W_{E}\right) \tag{9}\\
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}
\end{align*}
$$

Here's the breakdown:
a. $W_{U} W_{E}$ approximate bigram statistics.
b. A^{h} dictates where the attention heads attend.
c. $W_{U} W_{O}^{h} W_{V}^{h} W_{E}$ describes the behavior of logits if we attend to a given token.

Reframing using Tensorization (2/3)

We begin by simplifying to just T :

$$
\begin{align*}
T & =\left(I \otimes W_{U}\right) \cdot M H A\left(I \otimes W_{E}\right) \tag{8}\\
& =\left(I \otimes W_{U}\right) \cdot\left(I \otimes W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{O}^{h} W_{V}^{h}\right) \cdot I \otimes W_{E}\right) \tag{9}\\
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}
\end{align*}
$$

Here's the breakdown:
a. $W_{U} W_{E}$ approximate bigram statistics.
b. A^{h} dictates where the attention heads attend.
c. $W_{U} W_{O}^{h} W_{V}^{h} W_{E}$ describes the behavior of logits if we attend to a given token.
Observation: The equation is linear, if we fix attention patterns.

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

First, we can display key-value matrix operations:

$$
\begin{align*}
q_{i} & =\left(I \otimes W_{Q} W_{E}\right) \cdot t_{0} \tag{11}\\
k_{i} & =\left(I \otimes W_{K} W_{E}\right) \cdot t_{0} \tag{12}
\end{align*}
$$

Reframing using Tensorization (3/3)

Finally, let's also unpack attention in tensor-product form.

First, we can display key-value matrix operations:

$$
\begin{align*}
q_{i} & =\left(I \otimes W_{Q} W_{E}\right) \cdot t_{0} \tag{11}\\
k_{i} & =\left(I \otimes W_{K} W_{E}\right) \cdot t_{0} \tag{12}
\end{align*}
$$

And then apply them to unnormalized ${ }^{3}$ attention:

$$
\begin{align*}
A & =\sigma_{\text {softmax }}\left(\left[q_{i} k_{j}^{T}\right]_{i, j}\right) \tag{13}\\
& =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot\left(I \otimes W_{E}^{T} W_{Q}^{T}\right) \cdot\left(I \otimes W_{K} W_{E}\right) \cdot t_{0}\right) \tag{14}\\
& =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

Unravelling QK, OV Circuits (1/3)

Here's the two tensor equations combined:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

Unravelling QK, OV Circuits (1/3)

Here's the two tensor equations combined:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

Q: Is there anything interesting about these two? (similarities, differences)

Unravelling QK, OV Circuits (1/3)

Here's the two tensor equations combined:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

Q: Is there anything interesting about these two? (similarities, differences)
Here's my observations:
a. It's a much simpler recomposition of feedforward inference.

Unravelling QK, OV Circuits (1/3)

Here's the two tensor equations combined:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

Q: Is there anything interesting about these two? (similarities, differences)
Here's my observations:
a. It's a much simpler recomposition of feedforward inference.
b. A is the only non-linear operation.

Unravelling QK, OV Circuits (1/3)

Here's the two tensor equations combined:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

Q: Is there anything interesting about these two? (similarities, differences)
Here's my observations:
a. It's a much simpler recomposition of feedforward inference.
b. A is the only non-linear operation.
c. A learns independently from the rest of the tensor equation.

Unravelling QK, OV Circuits (1/3)

Here's the two tensor equations combined:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

Q: Is there anything interesting about these two? (similarities, differences)
Here's my observations:
a. It's a much simpler recomposition of feedforward inference.
b. A is the only non-linear operation.
c. A learns independently from the rest of the tensor equation.

However, we're still missing one.

Unravelling QK, OV Circuits (2/3)

Importantly, both equations have (|voc|,|voc|) size matrices:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

These chained tensor operations are our circuits, and lie at the heart of the transformer architecture.

Unravelling QK, OV Circuits (2/3)

Importantly, both equations have (|voc|,|voc|) size matrices:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

These chained tensor operations are our circuits, and lie at the heart of the transformer architecture.
a. The Output-Value(OV) Circuit $W_{U} W_{O}^{h} W_{V}^{h} W_{E}$: determines how attending to a token affects logits.

Unravelling QK, OV Circuits (2/3)

Importantly, both equations have (|voc|,|voc|) size matrices:

$$
\begin{align*}
T & =W_{U} W_{E}+\sum_{h \in H}\left(A^{h} \otimes W_{U} W_{O}^{h} W_{V}^{h} W_{E}\right) \tag{10}\\
A & =\sigma_{\text {softmax }}\left(t_{0}^{T} \cdot W_{E}^{T} W_{Q}^{T} W_{K} W_{E} \cdot t_{0}\right) \tag{15}
\end{align*}
$$

These chained tensor operations are our circuits, and lie at the heart of the transformer architecture.
a. The Output-Value(OV) Circuit $W_{U} W_{O}^{h} W_{V}^{h} W_{E}$: determines how attending to a token affects logits.
b. The Query-Key(QK) Circuit $W_{E}^{T} W_{Q}^{T} W_{K} W_{E}$: determines which tokens to attend to.

Unravelling QK, OV Circuits (3/3)

Interpretation as Skip-Trigrams

We can think through inference procedure with single source token. ${ }^{4}$

Interpretation as Skip-Trigrams

We can think through inference procedure with single source token. ${ }^{4}$
From there, we look at the largest QK and OV entries.
Some examples of large entries QK/OV circuit

Source Token	Destination Token			Out Token	

${ }^{4}$ for simplicity.

Eigenvalue Analysis

Most of the prominent behaviours include copying. We can identify this using eigenvalue analysis.

Eigenvalue Analysis

Most of the prominent behaviours include copying. We can identify this using eigenvalue analysis. Recall from the definition of eigenvectors,

$$
\begin{equation*}
W_{v}=\lambda v ; \lambda \in \mathbb{C} \tag{16}
\end{equation*}
$$

This is useful when we map a vector space upon itself.

Eigenvalue Analysis

Most of the prominent behaviours include copying. We can identify this using eigenvalue analysis. Recall from the definition of eigenvectors,

$$
\begin{equation*}
W v=\lambda v ; \lambda \in \mathbb{C} \tag{16}
\end{equation*}
$$

This is useful when we map a vector space upon itself.
Eigenvalue analysis of first layer attention head OV circuits

We use a log scale to represent magnitude,
since it varies by many orders of magnitude.

Eigenvalue distribution for randomly initialized weights. Note that the mostly - and in some cases, entirely- positive eigenvalues we observe are very different from what we randomly expect

Importantly, note that positive eigenvalues mean they are copying 'on average', and are not definitive.

Outline

(1) Background \& Intuition

(2) Transformer Circuit Analysis

(3) Towards Monosemanticity

Problem Setup

Q: Is anyone familiar with the the curse of dimensionality?

Problem Setup

Q: Is anyone familiar with the the curse of dimensionality?
A: For NNs, basically latent space $\propto \mid$ layers $\left.\right|^{c}$.
This makes them tough to analyze at scale.

Problem Setup

Q: Is anyone familiar with the the curse of dimensionality?
A: For NNs, basically latent space $\propto \mid$ layers $\left.\right|^{c}$.
This makes them tough to analyze at scale. In addition, models are incredibly efficient at information compression.

Problem Setup

Q: Is anyone familiar with the the curse of dimensionality?
A: For NNs, basically latent space $\propto \mid$ layers $\left.\right|^{c}$.
This makes them tough to analyze at scale. In addition, models are incredibly efficient at information compression.

Problem Setup

Q: Is anyone familiar with the the curse of dimensionality?
A: For NNs, basically latent space $\propto \mid$ layers $\left.\right|^{c}$.
This makes them tough to analyze at scale. In addition, models are incredibly efficient at information compression.

This is superposition.
When we perform an indvidual analysis of neurons, it fires for unrelated concepts.

This is polysemanticity.

Updated Architecture

Previously, we used an attention-only model, since the MLP was too hard to analyze mathematically.

Updated Architecture

Previously, we used an attention-only model, since the MLP was too hard to analyze mathematically.

Let's instead analyze the following architecture empirically:

Training Setup

Transformer

Sparse Autoencoder

Layers	1 Attention Block	1 ReLU
MLP Size	1 MLP Block	1 Linear
Dataset	The Pile (100B tokens)	$512 \times f \in\{1, \ldots, 256\}^{5}$
Activations (8B samples)		
Loss	Autoregressive Log-Likelihood	L2 Reconstruction
L1 on hidden-layer activation		

[^1]
Training Setup

Transformer

Sparse Autoencoder

Layers
MLP Size Dataset

Loss \quad Autoregressive Log-Likelihood
The Pile (100B tokens)

1 Attention Block 1 ReLU 1 MLP Block 1 Linear
$512 \times f \in\{1, \ldots, 256\}^{5}$
Activations (8B samples)
L2 Reconstruction
L1 on hidden-layer activation

Objective: polysemantic activations $\xrightarrow{\text { Tr }^{r}}$ monosemantic features.
${ }^{5} f=8$ for our analysis

Training Setup

Transformer

Sparse Autoencoder

Layers
 MLP Size Dataset

Loss \quad Autoregressive Log-Likelihood

1 ReLU
1 Linear

$$
512 \times f \in\{1, \ldots, 256\}^{5}
$$

Activations (8B samples)
L2 Reconstruction
L1 on hidden-layer activation

Objective: polysemantic activations $\xrightarrow{T_{r}}$ monosemantic features.
The sparse, overcomplete autoencoder is trained against this objective.

1. Sparse because we constrain activations (L1 penalty).
2. Overcomplete because the hidden layer exceeds the input dimension.
${ }^{5} f=8$ for our analysis

Sparse Dictionary Learning

Given $X:=\left\{x^{j}\right\}_{j=1}^{K} ; x_{i} \in \mathbb{R}^{d}$, we wish to find $D \in \mathbb{R}^{d \times n}, R \in \mathbb{R}^{n}$ s.t:

$$
\begin{equation*}
\|X-D R\|_{F}^{2} \approx 0 \tag{17}
\end{equation*}
$$

Sparse Dictionary Learning

Given $X:=\left\{x^{j}\right\}_{j=1}^{K} ; x_{i} \in \mathbb{R}^{d}$, we wish to find $D \in \mathbb{R}^{d \times n}, R \in \mathbb{R}^{n}$ s.t:

$$
\begin{equation*}
\|X-D R\|_{F}^{2} \approx 0 \tag{17}
\end{equation*}
$$

We can motivate our objective transformation by linear factorization:

$$
\begin{gather*}
x^{j} \approx b+\sum_{i} f_{i}\left(x^{j}\right) d_{i} \tag{18}\\
f_{i}=\sigma_{\operatorname{ReLU} U}\left(W_{E}\left(x-b_{D}\right)+b_{E}\right) \tag{19}
\end{gather*}
$$

where d_{i} is the 'feature direction' represented as columns of the W_{D}.

Sparse Dictionary Learning

Given $X:=\left\{x^{j}\right\}_{j=1}^{K} ; x_{i} \in \mathbb{R}^{d}$, we wish to find $D \in \mathbb{R}^{d \times n}, R \in \mathbb{R}^{n}$ s.t:

$$
\begin{equation*}
\|X-D R\|_{F}^{2} \approx 0 \tag{17}
\end{equation*}
$$

We can motivate our objective transformation by linear factorization:

$$
\begin{gather*}
x^{j} \approx b+\sum_{i} f_{i}\left(x^{j}\right) d_{i} \tag{18}\\
f_{i}=\sigma_{\operatorname{ReLU} U}\left(W_{E}\left(x-b_{D}\right)+b_{E}\right) \tag{19}
\end{gather*}
$$

where d_{i} is the 'feature direction' represented as columns of the W_{D}.
Some interesting implementation notes:
a. Training data $\propto n$ (interpretable features).

Sparse Dictionary Learning

Given $X:=\left\{x^{j}\right\}_{j=1}^{K} ; x_{i} \in \mathbb{R}^{d}$, we wish to find $D \in \mathbb{R}^{d \times n}, R \in \mathbb{R}^{n}$ s.t:

$$
\begin{equation*}
\|X-D R\|_{F}^{2} \approx 0 \tag{17}
\end{equation*}
$$

We can motivate our objective transformation by linear factorization:

$$
\begin{gather*}
x^{j} \approx b+\sum_{i} f_{i}\left(x^{j}\right) d_{i} \tag{18}\\
f_{i}=\sigma_{\operatorname{ReLU} U}\left(W_{E}\left(x-b_{D}\right)+b_{E}\right) \tag{19}
\end{gather*}
$$

where d_{i} is the 'feature direction' represented as columns of the W_{D}.
Some interesting implementation notes:
a. Training data $\propto n$ (interpretable features).
b. Tying b_{D} before the encoder and after the decoder improves performance.

Sparse Dictionary Learning

Given $X:=\left\{x^{j}\right\}_{j=1}^{K} ; x_{i} \in \mathbb{R}^{d}$, we wish to find $D \in \mathbb{R}^{d \times n}, R \in \mathbb{R}^{n}$ s.t:

$$
\begin{equation*}
\|X-D R\|_{F}^{2} \approx 0 \tag{17}
\end{equation*}
$$

We can motivate our objective transformation by linear factorization:

$$
\begin{gather*}
x^{j} \approx b+\sum_{i} f_{i}\left(x^{j}\right) d_{i} \tag{18}\\
f_{i}=\sigma_{R e L U}\left(W_{E}\left(x-b_{D}\right)+b_{E}\right) \tag{19}
\end{gather*}
$$

where d_{i} is the 'feature direction' represented as columns of the W_{D}.
Some interesting implementation notes:
a. Training data $\propto n$ (interpretable features).
b. Tying b_{D} before the encoder and after the decoder improves performance.
c. Dead neurons are periodically resampled to improve feature representations.

Evaluating Interpretability

Reliable evaluations on interpretability were scored based on a rubric:

Features were found to be interpretable when score >8.

Analyzing Arabic Features

Let's analyze feature $\mathbf{A} / \mathbf{1} / \mathbf{3 4 5 0}$, that fires on Arabic Script.

Analyzing Arabic Features

Let's analyze feature A/1/3450, that fires on Arabic Script.
This is effectively invisible when viewed through the polysemantic model!

Analyzing Arabic Features

Let's analyze feature $\mathbf{A} / \mathbf{1} / \mathbf{3 4 5 0}$, that fires on Arabic Script.
This is effectively invisible when viewed through the polysemantic model!
We can evaluate each token using the log-likelihood ratio:

$$
\begin{equation*}
L L(t)=\log (P(t \mid \text { Arabic }) / P(t)) \tag{20}
\end{equation*}
$$

Feature Activation Distribution (A/1/3450)

Despite representing 0.13\% of training data, arabic script makes up $\mathbf{8 1 \%}$ of active tokens:

Pinned Feature Sampling

They can be used to steer generation．

1，2，3，4，5，6，7，8，9，10	No Intervention $\longrightarrow, 8,30,20,8,10,10$
We sample from the	＋Han Chinese（A）1／2000）\longrightarrow ，女泳美圳，
	＋base64（A／1／2357）\longrightarrow 29VHA98Z1Y9Z1
0.5 with various features pinned to a	＋DNA（A／1／2937）\longrightarrow AGACCAGAGAGAGACAGAGAGAGGG
high value．This	＋Uppercase（A／1／3405）\longrightarrow USING IN THE UNITED STATES
generates text consistent with	+ Hexadecimal（A／1／3817）\longrightarrow E9D9A0C1C2C3
feature	＋Arabic（A／1／3450）\longrightarrow ¢سوع الديد الت
interpretations．	＋Hebrew（A／1／416）

Pinned Feature Sampling

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

Pinned Feature Sampling

They can be used to steer generation.

Approach: Set high values of features demonstrating desired behaviors, and then sample from the model.

We observe that interpreted features are actively used by the model.

Finite State Automaton

A unique feature of features is their role as finite state automaton.

Finite State Automaton

A unique feature of features is their role as finite state automaton.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

Finite State Automaton

A unique feature of features is their role as finite state automaton.

Unlike circuits, these work by daisy chaining features that increase the probability of another feature firing in a loop-like fashion.

These present partial explanations of memorizations within transformers:

Reimplementation

If you can view this screen, I am making a mistake.

Thank you!

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/mechinterp.pdf

[^0]: $1_{\text {https://transformer-circuits.pub/2021/framework/ }}$
 2
 https://transformer-circuits.pub/2023/monosemantic-features/

[^1]: ${ }^{5} f=8$ for our analysis

