
Intro to Servers & Node.js
CS 390 – Web Application Development

J. Setpal

October 3, 2023

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 1 / 19



Outline

1 Why it’s Worth Your Time

2 Servers

3 Node.js

4 ETC

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 2 / 19



Outline

1 Why it’s Worth Your Time

2 Servers

3 Node.js

4 ETC

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 3 / 19



WIWYT – Servers

- Servers allow us to render dynamic content to webpages.

- Even static webpages need a server to function!

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 4 / 19



WIWYT – Servers

- Servers allow us to render dynamic content to webpages.
- Even static webpages need a server to function!

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 4 / 19



WIWYT – Node.js

- Node is a JavaScript runtime environment that does not use a
browser to run.

- This backend allows us to develop a server that scales effectively, has
built-in concurrency, and does not require us to learn a new language.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 5 / 19



WIWYT – Node.js

- Node is a JavaScript runtime environment that does not use a
browser to run.

- This backend allows us to develop a server that scales effectively, has
built-in concurrency, and does not require us to learn a new language.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 5 / 19



Outline

1 Why it’s Worth Your Time

2 Servers

3 Node.js

4 ETC

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 6 / 19



What is a Server?
The internet effectively is a lot of computers communicating over a
network.

Certain computers host ‘services’ – black-box softwares that
perform abstracted functionality – these computers are servers.

The computers that access this abstracted functionality are clients.

Servers can refer to both hardware (HPC clusters) and software (services).
We will focus our discussion on the software aspect of servers – that forms
the backend of your web application.

Functionally, servers follow a straightforward lifecycle:
Response

Server

Request

Client

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 7 / 19



What is a Server?
The internet effectively is a lot of computers communicating over a
network. Certain computers host ‘services’ – black-box softwares that
perform abstracted functionality – these computers are servers.

The computers that access this abstracted functionality are clients.

Servers can refer to both hardware (HPC clusters) and software (services).
We will focus our discussion on the software aspect of servers – that forms
the backend of your web application.

Functionally, servers follow a straightforward lifecycle:
Response

Server

Request

Client

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 7 / 19



What is a Server?
The internet effectively is a lot of computers communicating over a
network. Certain computers host ‘services’ – black-box softwares that
perform abstracted functionality – these computers are servers.

The computers that access this abstracted functionality are clients.

Servers can refer to both hardware (HPC clusters) and software (services).
We will focus our discussion on the software aspect of servers – that forms
the backend of your web application.

Functionally, servers follow a straightforward lifecycle:
Response

Server

Request

Client

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 7 / 19



What is a Server?
The internet effectively is a lot of computers communicating over a
network. Certain computers host ‘services’ – black-box softwares that
perform abstracted functionality – these computers are servers.

The computers that access this abstracted functionality are clients.

Servers can refer to both hardware (HPC clusters) and software (services).
We will focus our discussion on the software aspect of servers – that forms
the backend of your web application.

Functionally, servers follow a straightforward lifecycle:
Response

Server

Request

Client

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 7 / 19



What is a Server?
The internet effectively is a lot of computers communicating over a
network. Certain computers host ‘services’ – black-box softwares that
perform abstracted functionality – these computers are servers.

The computers that access this abstracted functionality are clients.

Servers can refer to both hardware (HPC clusters) and software (services).
We will focus our discussion on the software aspect of servers – that forms
the backend of your web application.

Functionally, servers follow a straightforward lifecycle:
Response

Server

Request

Client

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 7 / 19



Server Types

There are three server protocols that are useful to know:
1. HTTP: Implements the standard client-server protocol for webpage

rendering.
a. Requests: GET, POST, OPTIONS, DELETE, TRACE methods

with headers that transmit metadata.
b. Repsonse: Codes (200, 404) for status and MIME for type.

2. WebSockets: Protocol for real-time communication, similar to Java
Sockets.

3. Proxy: Routes an HTTP request to a specific applications. Can be
used to host multiple services on a single sever endpoint.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 8 / 19



Server Types

There are three server protocols that are useful to know:
1. HTTP: Implements the standard client-server protocol for webpage

rendering.
a. Requests: GET, POST, OPTIONS, DELETE, TRACE methods

with headers that transmit metadata.
b. Repsonse: Codes (200, 404) for status and MIME for type.

2. WebSockets: Protocol for real-time communication, similar to Java
Sockets.

3. Proxy: Routes an HTTP request to a specific applications. Can be
used to host multiple services on a single sever endpoint.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 8 / 19



Server Types

There are three server protocols that are useful to know:
1. HTTP: Implements the standard client-server protocol for webpage

rendering.
a. Requests: GET, POST, OPTIONS, DELETE, TRACE methods

with headers that transmit metadata.
b. Repsonse: Codes (200, 404) for status and MIME for type.

2. WebSockets: Protocol for real-time communication, similar to Java
Sockets.

3. Proxy: Routes an HTTP request to a specific applications. Can be
used to host multiple services on a single sever endpoint.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 8 / 19



The Serverless Paradigm

Serverless services – like AWS’s Lambda – have replaced a lot of bepsoke
servers.

These work by specifying stand-alone functions that adopt a
pre-specified I/O, and are cold-started when a request is created.

Q: Does this mean that they are inherently different from the original
client-server paradigm?
A: No! Their only difference is that these are stateless in nature. A server
still processes user input and returns a response.

These are cost-efficient for hosting applications that perform a highly
specific operation on containerized input, are not called on continually,
and don’t have complicated initialization sequences.

Notably, it does not idle when unused.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 9 / 19



The Serverless Paradigm

Serverless services – like AWS’s Lambda – have replaced a lot of bepsoke
servers. These work by specifying stand-alone functions that adopt a
pre-specified I/O, and are cold-started when a request is created.

Q: Does this mean that they are inherently different from the original
client-server paradigm?

A: No! Their only difference is that these are stateless in nature. A server
still processes user input and returns a response.

These are cost-efficient for hosting applications that perform a highly
specific operation on containerized input, are not called on continually,
and don’t have complicated initialization sequences.

Notably, it does not idle when unused.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 9 / 19



The Serverless Paradigm

Serverless services – like AWS’s Lambda – have replaced a lot of bepsoke
servers. These work by specifying stand-alone functions that adopt a
pre-specified I/O, and are cold-started when a request is created.

Q: Does this mean that they are inherently different from the original
client-server paradigm?
A: No! Their only difference is that these are stateless in nature. A server
still processes user input and returns a response.

These are cost-efficient for hosting applications that perform a highly
specific operation on containerized input, are not called on continually,
and don’t have complicated initialization sequences.

Notably, it does not idle when unused.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 9 / 19



The Serverless Paradigm

Serverless services – like AWS’s Lambda – have replaced a lot of bepsoke
servers. These work by specifying stand-alone functions that adopt a
pre-specified I/O, and are cold-started when a request is created.

Q: Does this mean that they are inherently different from the original
client-server paradigm?
A: No! Their only difference is that these are stateless in nature. A server
still processes user input and returns a response.

These are cost-efficient for hosting applications that perform a highly
specific operation on containerized input, are not called on continually,
and don’t have complicated initialization sequences.

Notably, it does not idle when unused.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 9 / 19



The Serverless Paradigm

Serverless services – like AWS’s Lambda – have replaced a lot of bepsoke
servers. These work by specifying stand-alone functions that adopt a
pre-specified I/O, and are cold-started when a request is created.

Q: Does this mean that they are inherently different from the original
client-server paradigm?
A: No! Their only difference is that these are stateless in nature. A server
still processes user input and returns a response.

These are cost-efficient for hosting applications that perform a highly
specific operation on containerized input, are not called on continually,
and don’t have complicated initialization sequences.

Notably, it does not idle when unused.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 9 / 19



Server v/s Client Side Rendering

A naive approach to render dynamic page content is as follows:
1. Return a template HTML file.
2. The client sends a request to a server for data.
3. The client then uses the data returned as a JSON to render the

dynamic sections.
4. Render the HTML file to the browser.

This is client-side rendering. Alternatively:
1. Generate HTML infused with dynamic content in the server.
2. Return the complete HTML file.
3. Render the HTML file to the browser.

This is server-side rendering. It’s much quicker, since it does not rely on
multiple processes running synchronously.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 10 / 19



Server v/s Client Side Rendering

A naive approach to render dynamic page content is as follows:
1. Return a template HTML file.
2. The client sends a request to a server for data.
3. The client then uses the data returned as a JSON to render the

dynamic sections.
4. Render the HTML file to the browser.

This is client-side rendering.

Alternatively:
1. Generate HTML infused with dynamic content in the server.
2. Return the complete HTML file.
3. Render the HTML file to the browser.

This is server-side rendering. It’s much quicker, since it does not rely on
multiple processes running synchronously.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 10 / 19



Server v/s Client Side Rendering

A naive approach to render dynamic page content is as follows:
1. Return a template HTML file.
2. The client sends a request to a server for data.
3. The client then uses the data returned as a JSON to render the

dynamic sections.
4. Render the HTML file to the browser.

This is client-side rendering. Alternatively:
1. Generate HTML infused with dynamic content in the server.
2. Return the complete HTML file.
3. Render the HTML file to the browser.

This is server-side rendering. It’s much quicker, since it does not rely on
multiple processes running synchronously.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 10 / 19



Server v/s Client Side Rendering

A naive approach to render dynamic page content is as follows:
1. Return a template HTML file.
2. The client sends a request to a server for data.
3. The client then uses the data returned as a JSON to render the

dynamic sections.
4. Render the HTML file to the browser.

This is client-side rendering. Alternatively:
1. Generate HTML infused with dynamic content in the server.
2. Return the complete HTML file.
3. Render the HTML file to the browser.

This is server-side rendering.

It’s much quicker, since it does not rely on
multiple processes running synchronously.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 10 / 19



Server v/s Client Side Rendering

A naive approach to render dynamic page content is as follows:
1. Return a template HTML file.
2. The client sends a request to a server for data.
3. The client then uses the data returned as a JSON to render the

dynamic sections.
4. Render the HTML file to the browser.

This is client-side rendering. Alternatively:
1. Generate HTML infused with dynamic content in the server.
2. Return the complete HTML file.
3. Render the HTML file to the browser.

This is server-side rendering. It’s much quicker, since it does not rely on
multiple processes running synchronously.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 10 / 19



Outline

1 Why it’s Worth Your Time

2 Servers

3 Node.js

4 ETC

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 11 / 19



What is Node?

From https://nodejs.org/en/about: [Node.js is] an asynchronous
event-driven JavaScript runtime.

Let’s break it down, in reverse order :
1. JavaScript Runtime: An environment within which JavaScript can

be executed.
2. Event-driven: Node initializes an event-loop to evaluate user

requests. Actions taken by the driver thread are triggered by events.
3. Asynchronous: Despite being single-threaded by default, Node uses

asynchrony to handle multiple connections concurrently by
offloading operations to the system kernel.

This makes Node scalable without requiring significant manual
configuration when building low-latency applications.

Why Node? Node runs JavaScript, and using the same language for both
the front and backend reduces developer overhead.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 12 / 19

https://nodejs.org/en/about


What is Node?

From https://nodejs.org/en/about: [Node.js is] an asynchronous
event-driven JavaScript runtime. Let’s break it down, in reverse order :

1. JavaScript Runtime: An environment within which JavaScript can
be executed.

2. Event-driven: Node initializes an event-loop to evaluate user
requests. Actions taken by the driver thread are triggered by events.

3. Asynchronous: Despite being single-threaded by default, Node uses
asynchrony to handle multiple connections concurrently by
offloading operations to the system kernel.

This makes Node scalable without requiring significant manual
configuration when building low-latency applications.

Why Node? Node runs JavaScript, and using the same language for both
the front and backend reduces developer overhead.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 12 / 19

https://nodejs.org/en/about


What is Node?

From https://nodejs.org/en/about: [Node.js is] an asynchronous
event-driven JavaScript runtime. Let’s break it down, in reverse order :

1. JavaScript Runtime: An environment within which JavaScript can
be executed.

2. Event-driven: Node initializes an event-loop to evaluate user
requests. Actions taken by the driver thread are triggered by events.

3. Asynchronous: Despite being single-threaded by default, Node uses
asynchrony to handle multiple connections concurrently by
offloading operations to the system kernel.

This makes Node scalable without requiring significant manual
configuration when building low-latency applications.

Why Node? Node runs JavaScript, and using the same language for both
the front and backend reduces developer overhead.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 12 / 19

https://nodejs.org/en/about


What is Node?

From https://nodejs.org/en/about: [Node.js is] an asynchronous
event-driven JavaScript runtime. Let’s break it down, in reverse order :

1. JavaScript Runtime: An environment within which JavaScript can
be executed.

2. Event-driven: Node initializes an event-loop to evaluate user
requests. Actions taken by the driver thread are triggered by events.

3. Asynchronous: Despite being single-threaded by default, Node uses
asynchrony to handle multiple connections concurrently by
offloading operations to the system kernel.

This makes Node scalable without requiring significant manual
configuration when building low-latency applications.

Why Node? Node runs JavaScript, and using the same language for both
the front and backend reduces developer overhead.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 12 / 19

https://nodejs.org/en/about


What is Node?

From https://nodejs.org/en/about: [Node.js is] an asynchronous
event-driven JavaScript runtime. Let’s break it down, in reverse order :

1. JavaScript Runtime: An environment within which JavaScript can
be executed.

2. Event-driven: Node initializes an event-loop to evaluate user
requests. Actions taken by the driver thread are triggered by events.

3. Asynchronous: Despite being single-threaded by default, Node uses
asynchrony to handle multiple connections concurrently by
offloading operations to the system kernel.

This makes Node scalable without requiring significant manual
configuration when building low-latency applications.

Why Node? Node runs JavaScript, and using the same language for both
the front and backend reduces developer overhead.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 12 / 19

https://nodejs.org/en/about


What is Node?

From https://nodejs.org/en/about: [Node.js is] an asynchronous
event-driven JavaScript runtime. Let’s break it down, in reverse order :

1. JavaScript Runtime: An environment within which JavaScript can
be executed.

2. Event-driven: Node initializes an event-loop to evaluate user
requests. Actions taken by the driver thread are triggered by events.

3. Asynchronous: Despite being single-threaded by default, Node uses
asynchrony to handle multiple connections concurrently by
offloading operations to the system kernel.

This makes Node scalable without requiring significant manual
configuration when building low-latency applications.

Why Node?

Node runs JavaScript, and using the same language for both
the front and backend reduces developer overhead.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 12 / 19

https://nodejs.org/en/about


What is Node?

From https://nodejs.org/en/about: [Node.js is] an asynchronous
event-driven JavaScript runtime. Let’s break it down, in reverse order :

1. JavaScript Runtime: An environment within which JavaScript can
be executed.

2. Event-driven: Node initializes an event-loop to evaluate user
requests. Actions taken by the driver thread are triggered by events.

3. Asynchronous: Despite being single-threaded by default, Node uses
asynchrony to handle multiple connections concurrently by
offloading operations to the system kernel.

This makes Node scalable without requiring significant manual
configuration when building low-latency applications.

Why Node? Node runs JavaScript, and using the same language for both
the front and backend reduces developer overhead.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 12 / 19

https://nodejs.org/en/about


The Node Event Loop

The node event loop allows Node to efficiently perform non-blocking I/O
operations. It first processes the provided input script / REPL, and
begins running the following event loop:1

Poll Check
Close

Callbacks
Idle, Prepare

Pending
Callbacks

Timers

User Input

Event Loop

Each of the phases contains it’s own callback queue that is either triggered
or executed.

1from node.js documentation
CS 390 – WAP Intro to Servers & Node.js October 3, 2023 13 / 19



The Node Event Loop

The node event loop allows Node to efficiently perform non-blocking I/O
operations. It first processes the provided input script / REPL, and
begins running the following event loop:1

Poll Check
Close

Callbacks
Idle, Prepare

Pending
Callbacks

Timers

User Input

Event Loop

Each of the phases contains it’s own callback queue that is either triggered
or executed.

1from node.js documentation
CS 390 – WAP Intro to Servers & Node.js October 3, 2023 13 / 19



Blocking v/s Non-Blocking Processes

The event loop itself is a part of the overarching construct that sets up the
Node runtime:

Call Stack I/O Operations (libuv)

Overarching Runtime

Runner Event Queues

Event Loop

Within this context, the primary
distinction made between tasks is if
they are executed on the call stack.
Such a process is called a blocking
process.

Conversely, tasks that can be
offloaded to an asynchronous handler
(like libuv) is a non-blocking
process.

The objective is to maximize non-blocking asynchronous processes to
minimize latency.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 14 / 19



Blocking v/s Non-Blocking Processes

The event loop itself is a part of the overarching construct that sets up the
Node runtime:

Call Stack I/O Operations (libuv)

Overarching Runtime

Runner Event Queues

Event Loop

Within this context, the primary
distinction made between tasks is if
they are executed on the call stack.
Such a process is called a blocking
process.

Conversely, tasks that can be
offloaded to an asynchronous handler
(like libuv) is a non-blocking
process.

The objective is to maximize non-blocking asynchronous processes to
minimize latency.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 14 / 19



Blocking v/s Non-Blocking Processes

The event loop itself is a part of the overarching construct that sets up the
Node runtime:

Call Stack I/O Operations (libuv)

Overarching Runtime

Runner Event Queues

Event Loop

Within this context, the primary
distinction made between tasks is if
they are executed on the call stack.
Such a process is called a blocking
process.

Conversely, tasks that can be
offloaded to an asynchronous handler
(like libuv) is a non-blocking
process.

The objective is to maximize non-blocking asynchronous processes to
minimize latency.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 14 / 19



Blocking v/s Non-Blocking Processes

The event loop itself is a part of the overarching construct that sets up the
Node runtime:

Call Stack I/O Operations (libuv)

Overarching Runtime

Runner Event Queues

Event Loop

Within this context, the primary
distinction made between tasks is if
they are executed on the call stack.
Such a process is called a blocking
process.

Conversely, tasks that can be
offloaded to an asynchronous handler
(like libuv) is a non-blocking
process.

The objective is to maximize non-blocking asynchronous processes to
minimize latency.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 14 / 19



Variable Contexts

There a certain set of in-built functions within Node added on to the V8
runtime environment.

These can be accessed via global. It is a stand-in replacement for
window in a browser runtime environment.

There is also a file-specific module object that can be accessed, however is
not a part of the global context.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 15 / 19



Variable Contexts

There a certain set of in-built functions within Node added on to the V8
runtime environment.

These can be accessed via global. It is a stand-in replacement for
window in a browser runtime environment.

There is also a file-specific module object that can be accessed, however is
not a part of the global context.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 15 / 19



Variable Contexts

There a certain set of in-built functions within Node added on to the V8
runtime environment.

These can be accessed via global. It is a stand-in replacement for
window in a browser runtime environment.

There is also a file-specific module object that can be accessed, however is
not a part of the global context.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 15 / 19



Node Module Structure

Every file in a node application is called a module.

A series of modules
forms the package or the application that is being developed.

Node packages built-in modules which enable us to break the V8 sandbox,
to interface with the filesystem as well as parse and return HTTP queries.

You can import modules using the require keyword. For example, to load
the HTTP module, you can run: const http = require('http').

You can export local functions in different modules by modifying the
exports object.

Node has the world’s largest module repository, that can be accessed
using the Node Package Manager (npm). Notably, we will use the
Express.js module to abstract the process of building server-side APIs.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 16 / 19



Node Module Structure

Every file in a node application is called a module. A series of modules
forms the package or the application that is being developed.

Node packages built-in modules which enable us to break the V8 sandbox,
to interface with the filesystem as well as parse and return HTTP queries.

You can import modules using the require keyword. For example, to load
the HTTP module, you can run: const http = require('http').

You can export local functions in different modules by modifying the
exports object.

Node has the world’s largest module repository, that can be accessed
using the Node Package Manager (npm). Notably, we will use the
Express.js module to abstract the process of building server-side APIs.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 16 / 19



Node Module Structure

Every file in a node application is called a module. A series of modules
forms the package or the application that is being developed.

Node packages built-in modules which enable us to break the V8 sandbox,
to interface with the filesystem as well as parse and return HTTP queries.

You can import modules using the require keyword. For example, to load
the HTTP module, you can run: const http = require('http').

You can export local functions in different modules by modifying the
exports object.

Node has the world’s largest module repository, that can be accessed
using the Node Package Manager (npm). Notably, we will use the
Express.js module to abstract the process of building server-side APIs.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 16 / 19



Node Module Structure

Every file in a node application is called a module. A series of modules
forms the package or the application that is being developed.

Node packages built-in modules which enable us to break the V8 sandbox,
to interface with the filesystem as well as parse and return HTTP queries.

You can import modules using the require keyword. For example, to load
the HTTP module, you can run: const http = require('http').

You can export local functions in different modules by modifying the
exports object.

Node has the world’s largest module repository, that can be accessed
using the Node Package Manager (npm). Notably, we will use the
Express.js module to abstract the process of building server-side APIs.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 16 / 19



Node Module Structure

Every file in a node application is called a module. A series of modules
forms the package or the application that is being developed.

Node packages built-in modules which enable us to break the V8 sandbox,
to interface with the filesystem as well as parse and return HTTP queries.

You can import modules using the require keyword. For example, to load
the HTTP module, you can run: const http = require('http').

You can export local functions in different modules by modifying the
exports object.

Node has the world’s largest module repository, that can be accessed
using the Node Package Manager (npm). Notably, we will use the
Express.js module to abstract the process of building server-side APIs.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 16 / 19



Node Module Structure

Every file in a node application is called a module. A series of modules
forms the package or the application that is being developed.

Node packages built-in modules which enable us to break the V8 sandbox,
to interface with the filesystem as well as parse and return HTTP queries.

You can import modules using the require keyword. For example, to load
the HTTP module, you can run: const http = require('http').

You can export local functions in different modules by modifying the
exports object.

Node has the world’s largest module repository, that can be accessed
using the Node Package Manager (npm).

Notably, we will use the
Express.js module to abstract the process of building server-side APIs.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 16 / 19



Node Module Structure

Every file in a node application is called a module. A series of modules
forms the package or the application that is being developed.

Node packages built-in modules which enable us to break the V8 sandbox,
to interface with the filesystem as well as parse and return HTTP queries.

You can import modules using the require keyword. For example, to load
the HTTP module, you can run: const http = require('http').

You can export local functions in different modules by modifying the
exports object.

Node has the world’s largest module repository, that can be accessed
using the Node Package Manager (npm). Notably, we will use the
Express.js module to abstract the process of building server-side APIs.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 16 / 19



Building a Simple HTTP Server with Node

If you can view this screen, I am making a mistake.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 17 / 19



Outline

1 Why it’s Worth Your Time

2 Servers

3 Node.js

4 ETC

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 18 / 19



Thank you!

Have an awesome rest of your day!

Slides: https:
//cs.purdue.edu/homes/jsetpal/slides/intro-servers-node.pdf

If anything’s incorrect or unclear, please ping jsetpal@purdue.edu
I’ll patch it ASAP.

CS 390 – WAP Intro to Servers & Node.js October 3, 2023 19 / 19

https://cs.purdue.edu/homes/jsetpal/slides/intro-servers-node.pdf
https://cs.purdue.edu/homes/jsetpal/slides/intro-servers-node.pdf
mailto:jsetpal@purdue.edu

	Why it's Worth Your Time
	Servers
	Node.js
	ETC

