How do Machines Learn? COM 100 π – Advanced Presentational Speaking

J. Setpal

February 28, 2024

S

Linear Regression

Let's start with the definition of a line.

$$y = mx + b$$

臣

y = mx + b

Using just these two sliders (m, b), I can make any line on the 2D plane!

y = mx + b

Using just these two sliders (m, b), I can make any line on the 2D plane!

We can use this to demonstrate a linear relationship between an input (x) an output (y).

y = mx + b

Using just these two sliders (m, b), I can make any line on the 2D plane!

x	у
1	2
2	3
3	4
4	5

y = mx + b

Using just these two sliders (m, b), I can make any line on the 2D plane!

x	у	(x,y) is mapped by $y = 1 \cdot x + 1$
1	2	
2	3	
3	4	
4	5	

y = mx + b

Using just these two sliders (m, b), I can make any line on the 2D plane!

x	у	(x,y) is mapped by $y = 1 \cdot x + 1$
1	2	This allows us to represent 4 data points with 2 numbers.
2	3	· · · · · · · · · · · · · · · · · · ·
3	4	
4	5	

y = mx + b

Using just these two sliders (m, b), I can make any line on the 2D plane!

x	у	(x,y) is mapped by $y = 1 \cdot x + 1$
1	2	This allows us to represent 4 data points with 2 numbers.
2	3	····· ································
3	4	It quantifies the essence of the data <i>without memorizing it</i> ;
4	5	so, is machine learning.

Now, what do we do if our data is weird¹?

x	у
1	1.8
2	3.2
3	4.1
4	6

¹weird = not strictly linear

J. Setpal

How do Machines Learn?

990 February 28, 2024

Э

Now, what do we do if our data is weird¹?

x	У	We cannot find a pair of weights that satisfies all our
1	1.8	input-output pairs (the dataset).

- 2 3.2
- 3 4.1
- 4 6

¹weird = not strictly linear

Э

Now, what do we do if our data is weird¹?

X	У	We cannot find a pair of weights that satisfies all our
1	1.8	input-output pairs (the dataset).
2	3.2	
3	4.1	However, we can still find a line that <i>approximately</i> satisfies
4	6	the data. It's called the line of best fit .

¹weird = not strictly linear

Now, what do we do if our data is weird¹?

t pairs (the dataset).
e can still find a line that <i>approximately</i> satisfies
's called the line of best fit .

So; how would we find this line?

Now, what do we do if our data is weird¹?

x	У	We cannot find a pair of weights that satisfies all our
1	1.8	input-output pairs (the dataset).
2	3.2	
3	4.1	However, we can still find a line that <i>approximately</i> satisfies
4	6	the data. It's called the line of best fit .

So; how would we find this line? We create a <u>differentiable</u> function we can use as the **score** for the line.

Now, what do we do if our data is weird¹?

x	У	We cannot find a pair of weights that satisfies all our
1	1.8	input-output pairs (the dataset).
2	3.2	
3	4.1	However, we can still find a line that <i>approximately</i> satisfies
4	6	the data. It's called the line of best fit .

So; how would we find this line? We create a <u>differentiable</u> function we can use as the **score** for the line.

Whichever line has the best score, is the line of best fit. For Linear Regression, we can use **Mean Squared Error**:

$$L(y_{pred}, y_{actual}) = (y_{actual} - y_{pred})^2$$

¹weird = not strictly linear

J. Setpal

Now, what do we do if our data is categorical?

у
0
0
1
1

E

Now, what do we do if our data is categorical?

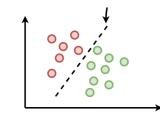
We can subvert the linear paradigm we saw before.

x	у
1	0
2	0
3	1
4	1

Now, what do we do if our data is categorical?

We can subvert the linear paradigm we saw before. Instead of y denoting the output, it denotes a **decision boundary**.

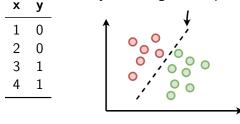
x	У
1	0
2	0
3	1
4	1



Everything *under* the line belongs to the **green** class, while everything *over* the line belongs to the **red** class.

Now, what do we do if our data is categorical?

We can subvert the linear paradigm we saw before. Instead of y denoting the output, it denotes a **decision boundary**.



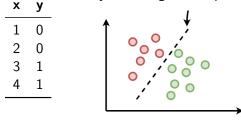
Everything *under* the line belongs to the **green** class, while everything *over* the line belongs to the **red** class.

Mathematically, we can simply map linear outputs using the sigmoid:

$$\sigma_{\mathsf{sigmoid}}(x) = rac{e^x}{1+e^x}$$

Now, what do we do if our data is categorical?

We can subvert the linear paradigm we saw before. Instead of y denoting the output, it denotes a **decision boundary**.



Everything *under* the line belongs to the **green** class, while everything *over* the line belongs to the **red** class.

Mathematically, we can simply map linear outputs using the sigmoid:

$$\sigma_{\mathsf{sigmoid}}(x) = rac{e^x}{1+e^x}$$

This map called an activation function. Our new line function is:

$$y = \sigma_{sigmoid}(mx + b)$$

This is where we bring it all togther.

- (A)

Э

This is where we bring it all togther. What do we do if our *data* is not linearly separable?

x	У
1	1
2	0
3	0
4	1

This is where we bring it all togther. What do we do if our *data* is not linearly separable?

x	у	Idea: Let's stack two linear predictors one after another.
1	1	$y = m_2(m_1x + b_1) + b_2$
2	0	<i>y</i> 2(1 + 1) + 2
3	0	
4	1	

This is where we bring it all togther. What do we do if our *data* is not linearly separable?

x	у	Idea: Let's stack two linear predictors one after another.
1	1	$y = m_2(m_1x + b_1) + b_2$
2	0	<i>y</i> 2(1 + 1) + 2
3	0	This will allow the decision boundary to be <i>non-linear</i> !
4	1	The architecture is called a Multi-Layer Perceptron .

This is where we bring it all togther. What do we do if our *data* is not linearly separable?

x	У	Idea: Let's stack two linear predictors one after another.
1	1	$y = m_2(m_1x + b_1) + b_2$
2	0	<i>y</i> 2(1, 1), 2
3	0	This will allow the decision boundary to be <i>non-linear</i> !
4	1	The architecture is called a Multi-Layer Perceptron.

However, there is a problem. The above equation can be reduced down to a single linear function.

This is where we bring it all togther. What do we do if our *data* is not linearly separable?

x	у	Idea: Let's stack two linear predictors one after another.
1	1	$y = m_2(m_1x + b_1) + b_2$
2	0	y 2(1 + 1) + 2
3	0	This will allow the decision boundary to be <i>non-linear</i> !
4	1	The architecture is called a Multi-Layer Perceptron.

However, there is a problem. The above equation can be reduced down to a single linear function.

We can solve this by adding **nonlinearity**, using the ReLU activation:

$$\sigma_{relu}(x) = max(0, x)$$

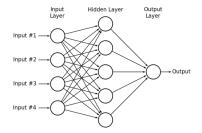
Finally, we add the sigmoid activation to make the predictions class probabilities. Our new equation looks like:

$$y = \sigma_{sigmoid}(m_2(\sigma_{relu}(m_1x + b_1)) + b_2)$$

Finally, we add the sigmoid activation to make the predictions class probabilities. Our new equation looks like:

$$y = \sigma_{\text{sigmoid}}(m_2(\sigma_{\text{relu}}(m_1x + b_1)) + b_2)$$

Graphically, this is what it looks like:



Let's have some fun: https://playground.tensorflow.org/

J. Setpal

Have an awesome rest of your day!

Slides:

https://www.cs.purdue.edu/homes/jsetpal/slides/how-ml.pdf

Э