Neural Networks for Learning Counterfactual G-Invariances from Single Environments "Fixing the Image Rotation Problem"

J. Setpal

January 23, 2024

Neural Networks Aren't Rotationally Robust.

\mathbf{Q}_{1} : Do you think that a CNN trained on a distribution of the left image should classify the right image as the same class for each of these pairs?

Neural Networks Aren't Rotationally Robust.

\mathbf{Q}_{1} : Do you think that a CNN trained on a distribution of the left image should classify the right image as the same class for each of these pairs?

\mathbf{A}_{1} : Definitely!

Neural Networks Aren't Rotationally Robust.

\mathbf{Q}_{1} : Do you think that a CNN trained on a distribution of the left image should classify the right image as the same class for each of these pairs?

\mathbf{A}_{1} : Definitely!
\mathbf{Q}_{2} : In practice, does this actually happen?

Neural Networks Aren't Rotationally Robust.

\mathbf{Q}_{1} : Do you think that a CNN trained on a distribution of the left image should classify the right image as the same class for each of these pairs?

\mathbf{A}_{1} : Definitely!
\mathbf{Q}_{2} : In practice, does this actually happen?
\mathbf{A}_{2} : Nope - all these images were misclassified.

Neural Networks Aren't Rotationally Robust.

\mathbf{Q}_{1} : Do you think that a CNN trained on a distribution of the left image should classify the right image as the same class for each of these pairs?

\mathbf{A}_{1} : Definitely!
\mathbf{Q}_{2} : In practice, does this actually happen?
\mathbf{A}_{2} : Nope - all these images were misclassified.
\mathbf{Q}_{3} : How can we fix this?

Neural Networks Aren't Rotationally Robust.

\mathbf{Q}_{1} : Do you think that a CNN trained on a distribution of the left image should classify the right image as the same class for each of these pairs?

\mathbf{A}_{1} : Definitely!
\mathbf{Q}_{2} : In practice, does this actually happen?
\mathbf{A}_{2} : Nope - all these images were misclassified.
\mathbf{Q}_{3} : How can we fix this?
\mathbf{A}_{3} : Data Augmentation (boring)

Neural Networks Aren't Rotationally Robust.

\mathbf{Q}_{1} : Do you think that a CNN trained on a distribution of the left image should classify the right image as the same class for each of these pairs?

\mathbf{A}_{1} : Definitely!
\mathbf{Q}_{2} : In practice, does this actually happen?
\mathbf{A}_{2} : Nope - all these images were misclassified.
\mathbf{Q}_{3} : How can we fix this?
\mathbf{A}_{3} : Data Augmentation (boring), G-Invariant Transformations (fun)!

Images as Transformations

We can visualize the image rotations as affine matrix transformations:

$$
\begin{gather*}
G_{\text {rot }} \equiv\left\{T^{0^{\circ}}, T^{90^{\circ}}, T^{180^{\circ}}, T^{270^{\circ}}\right\} \tag{1}\\
x_{\text {new }}=T x_{\text {origig }} ; T \in G_{\text {rot }} \tag{2}
\end{gather*}
$$

Mathematical Formulation

Defining the transformations as a group gives us guarantees we can exploit to ensure invariance to those transformations.

Mathematical Formulation

Defining the transformations as a group gives us guarantees we can exploit to ensure invariance to those transformations.

Formally, we create an embedding layer to achieve the following:

$$
\begin{equation*}
\sigma\left(w^{T} x+b\right) \stackrel{\text { def }}{=} \sigma\left(w^{T} \boldsymbol{T} x+b\right) ; \boldsymbol{T} \in G_{r o t} \tag{3}
\end{equation*}
$$

Mathematical Formulation

Defining the transformations as a group gives us guarantees we can exploit to ensure invariance to those transformations.

Formally, we create an embedding layer to achieve the following:

$$
\begin{equation*}
\sigma\left(w^{T} x+b\right) \stackrel{\text { def }}{=} \sigma\left(w^{T} \boldsymbol{T} x+b\right) ; \boldsymbol{T} \in G_{r o t} \tag{3}
\end{equation*}
$$

This is only possible if we can find a transformation \bar{T} such that:

$$
\begin{equation*}
\bar{T}(\boldsymbol{T} x)=\bar{T}_{x} ; \text { same as } \bar{T}_{x_{n e w}}=\bar{T}_{x_{\text {orig }}} \tag{4}
\end{equation*}
$$

Mathematical Formulation

Defining the transformations as a group gives us guarantees we can exploit to ensure invariance to those transformations.

Formally, we create an embedding layer to achieve the following:

$$
\begin{equation*}
\sigma\left(w^{T} x+b\right) \stackrel{\text { def }}{=} \sigma\left(w^{T} \boldsymbol{T}_{x}+b\right) ; \boldsymbol{T} \in G_{r o t} \tag{3}
\end{equation*}
$$

This is only possible if we can find a transformation \bar{T} such that:

$$
\begin{equation*}
\bar{T}(\boldsymbol{T} x)=\bar{T}_{x} ; \text { same as } \bar{T}_{x_{n e w}}=\bar{T}_{x_{\text {orig }}} \tag{4}
\end{equation*}
$$

Lemma: We can find \bar{T} using the Reynold's Operator.

$$
\begin{equation*}
\bar{T}=\frac{1}{|G|} \sum_{g \in G} g \tag{5}
\end{equation*}
$$

Mathematical Formulation

Defining the transformations as a group gives us guarantees we can exploit to ensure invariance to those transformations.

Formally, we create an embedding layer to achieve the following:

$$
\begin{equation*}
\sigma\left(w^{T} x+b\right) \stackrel{\text { def }}{=} \sigma\left(w^{T} \boldsymbol{T}_{x}+b\right) ; \boldsymbol{T} \in G_{r o t} \tag{3}
\end{equation*}
$$

This is only possible if we can find a transformation \bar{T} such that:

$$
\begin{equation*}
\bar{T}(\boldsymbol{T} x)=\bar{T}_{x ;} \text { same as } \bar{T}_{x_{n e w}}=\bar{T}_{x_{\text {orig }}} \tag{4}
\end{equation*}
$$

Lemma: We can find \bar{T} using the Reynold's Operator.

$$
\begin{equation*}
\bar{T}=\frac{1}{|G|} \sum_{g \in G} g \tag{5}
\end{equation*}
$$

Finally, we construct our group invariant layer:

$$
\begin{equation*}
h_{i n v}=\sigma\left(w^{\top} \bar{T}_{x}+b\right) \tag{6}
\end{equation*}
$$

Let's Demonstrate!

Here's what the final architecture looks like:

Thank you!

Hopefully, this was cool!

Paper: https://arxiv.org/abs/2104.10105/
Slides: https://cs.purdue.edu/homes/jsetpal/slides/gti.pdf
Notebook: https://cs.purdue.edu/homes/jsetpal/nb/gti.ipynb
Presentation: https://www.youtube.com/watch?v=znJsaCGiu10

