Neural Networks for Learning Counterfactual G-Invariances from Single Environments a.k.a. "Fixing the Image Rotation Problem"

J. Setpal

February 24, 2023

ML@P - Reading Group

G-Invariant Transformations

February 24, 2023

1 Task Description

2 A Lot of Linear Algebra

3 Fun Part

Image: Image:

문 논 문

1 Task Description

A Lot of Linear Algebra

3 Fun Part

 $\exists \rightarrow$

< 口 > < 円

E

Convolutional Neural Networks are *fantastic*. They efficiently extract a vast range of relevant contextual information and are resilient to pixel shift.

4/16

Convolutional Neural Networks are *fantastic*. They efficiently extract a vast range of relevant contextual information and are resilient to pixel shift.

However, they have a critical flaw.

ML@P - Reading Group

4/16

 Q_1 : Do you think that a CNN trained on a distribution of the left image *should* correctly classify the right image?

 Q_1 : Do you think that a CNN trained on a distribution of the left image *should* correctly classify the right image?

A₁: Definitely!

 Q_1 : Do you think that a CNN trained on a distribution of the left image *should* correctly classify the right image?

A₁: Definitely!

Q₂: Does that actually happen?

 Q_1 : Do you think that a CNN trained on a distribution of the left image *should* correctly classify the right image?

- A₁: Definitely!
- Q₂: Does that actually happen?
- A₂: Nope all these images were misclassified :(

 Q_1 : Do you think that a CNN trained on a distribution of the left image *should* correctly classify the right image?

- A_1 : Definitely!
- Q₂: Does that actually happen?
- A₂: Nope all these images were misclassified :(
- Q_3 : How can we fix this?
- A₃: Data Augmentation (boring)

 Q_1 : Do you think that a CNN trained on a distribution of the left image *should* correctly classify the right image?

- A₁: Definitely!
- Q₂: Does that actually happen?
- A2: Nope all these images were misclassified :(
- Q_3 : How can we fix this?
- A₃: Data Augmentation (boring), G-invariance (fun)!

 Q_1 : Do you think that a CNN trained on a distribution of the left image *should* correctly classify the right image?

- A_1 : Definitely!
- Q₂: Does that actually happen?
- A₂: Nope all these images were misclassified :(
- Q_3 : How can we fix this?
- A₃: Data Augmentation (boring), **G-invariance** (fun)!

Today, we'll explore a rotation invariant solution for an \underline{MLP} . CNN's need **G-equivariance**, which we'll discuss some other time.

1 Task Description

2 A Lot of Linear Algebra

B Fun Part

< 口 > < 円

E

Understanding Groups

Groups: A set of elements *G* containing the following properties:

a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$
- c. Inverses always exist. $g_n \odot g_n^{-1} = \mathcal{I}$

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$
- c. Inverses always exist. $g_n \odot g_n^{-1} = \mathcal{I}$
- d. There exists an identity. $g_n \odot \mathcal{I} = g_n$

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$
- c. Inverses always exist. $g_n \odot g_n^{-1} = \mathcal{I}$
- d. There exists an identity. $g_n \odot \mathcal{I} = g_n$
- e. The operation is associative. $g_1 \odot (g_2 \odot g_3) = (g_1 \odot g_2) \odot g_3$

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$
- c. Inverses always exist. $g_n \odot g_n^{-1} = \mathcal{I}$
- d. There exists an identity. $g_n \odot \mathcal{I} = g_n$

e. The operation is associative. $g_1 \odot (g_2 \odot g_3) = (g_1 \odot g_2) \odot g_3$ Optionally, it is commutative. $g_1 \odot g_2 = g_2 \odot g_1$.

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$
- c. Inverses always exist. $g_n \odot g_n^{-1} = \mathcal{I}$
- d. There exists an identity. $g_n \odot \mathcal{I} = g_n$

e. The operation is associative. $g_1 \odot (g_2 \odot g_3) = (g_1 \odot g_2) \odot g_3$ Optionally, it is commutative. $g_1 \odot g_2 = g_2 \odot g_1$. If it is commutative, the group is called **abelian**.

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$
- c. Inverses always exist. $g_n \odot g_n^{-1} = \mathcal{I}$
- d. There exists an identity. $g_n \odot \mathcal{I} = g_n$

e. The operation is associative. $g_1 \odot (g_2 \odot g_3) = (g_1 \odot g_2) \odot g_3$ Optionally, it is commutative. $g_1 \odot g_2 = g_2 \odot g_1$. If it is commutative, the group is called **abelian**.

Q: Why is it important?

- a. It has an operator that combines two elements. The operator is abstract. $\overline{g_1 \odot g_2} = g_3$
- b. It is closed under operation. $\mathit{g}_1, \mathit{g}_2, \mathit{g}_3 \in \mathit{G}$
- c. Inverses always exist. $g_n \odot g_n^{-1} = \mathcal{I}$
- d. There exists an identity. $g_n \odot \mathcal{I} = g_n$

e. The operation is associative. $g_1 \odot (g_2 \odot g_3) = (g_1 \odot g_2) \odot g_3$ Optionally, it is commutative. $g_1 \odot g_2 = g_2 \odot g_1$. If it is commutative, the group is called **abelian**.

Q: Why is it important?

A: These are the axioms on which we define our solution to the rotation problem. Only if these axioms hold true can our solution exist.

 GL_n : $(M_{n \times n}(\mathbb{R}), \cdot)$

 GL_n : $(M_{n \times n}(\mathbb{R}), \cdot)$

Our training dataset contains inputs $x \in \mathbb{R}^{3n^2}$.

$$GL_n:(M_{n\times n}(\mathbb{R}),\cdot)$$

Our training dataset contains inputs $x \in \mathbb{R}^{3n^2}$. Therefore $GL_{3n^2} : (M_{3n^2}(\mathbb{R}), \cdot)$ represents images within our dataset.

$$GL_n:(M_{n\times n}(\mathbb{R}),\cdot)$$

Our training dataset contains inputs $x \in \mathbb{R}^{3n^2}$. Therefore $GL_{3n^2} : (M_{3n^2}(\mathbb{R}), \cdot)$ represents images within our dataset.

Now, we can define *transformations* that can be performed on this group – the only restriction being the axioms of a group.

To set up the transformations we can run, we define another group, called a **Transformation Group**. We assume the same prior input $x \in \mathbb{R}^{3n^2}$

To set up the transformations we can run, we define another group, called a **Transformation Group**. We assume the same prior input $x \in \mathbb{R}^{3n^2}$

$$G_{rot} \equiv \left\{ T^{\theta} \right\}_{\theta \in \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}}$$
(1)
$$G_{flip} \equiv \left\{ T^{\nu}, T^{h}, T^{180^{\circ}}, T^{0^{\circ}} \right\}$$
(2)

To set up the transformations we can run, we define another group, called a **Transformation Group**. We assume the same prior input $x \in \mathbb{R}^{3n^2}$

To set up the transformations we can run, we define another group, called a **Transformation Group**. We assume the same prior input $x \in \mathbb{R}^{3n^2}$

$$G_{rot} \equiv \left\{ T^{\theta} \right\}_{\theta \in \{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\}}$$
(1)

$$G_{flip} \equiv \left\{ T^{\nu}, T^{h}, T^{180^{\circ}}, T^{0^{\circ}} \right\}$$
(2)

$$\prod_{j=1}^{T^{(0)}} \prod_{j=1}^{T^{(0)}} \prod_{j=1$$

Both groups are defined $G: \mathbb{R}^{3n^2} \to \mathbb{R}^{3n^2}$

ML@P - Reading Group

1 Task Description

A Lot of Linear Algebra

3 Fun Part

< 口 > < 同 >

E

Our objective is to learn the optimal weight on a layer such that

$$\sigma(w^T x + b) = \sigma(w^T T_G x + b)$$

where T_G is the transformation group.

Our objective is to learn the optimal weight on a layer such that

$$\sigma(w^T x + b) = \sigma(w^T T_G x + b)$$

where T_G is the transformation group.

This latent subspace is transformation invariant!

Our objective is to learn the optimal weight on a layer such that

$$\sigma(w^T x + b) = \sigma(w^T T_G x + b)$$

where T_G is the transformation group.

This latent subspace is transformation invariant!

If the above equation holds, that means that our layer is G-invariant.

Our objective is to learn the optimal weight on a layer such that

$$\sigma(w^T x + b) = \sigma(w^T T_G x + b)$$

where T_G is the transformation group.

This latent subspace is transformation invariant!

If the above equation holds, that means that our layer is G-invariant. Q: How can we go about finding this?

ML@P - Reading Group

Reynolds Operator

A given transformation is G-invariant if,

$$T_1(T_2x) = T_1x; T_2 \in G, x \in \mathbb{R}^{3n^2}$$

So the objective is to find T_2 , formally called the **Reynolds Operator**.

э

Reynolds Operator

A given transformation is G-invariant if,

$$T_1(T_2x) = T_1x; T_2 \in G, x \in \mathbb{R}^{3n^2}$$

So the objective is to find T_2 , formally called the **Reynolds Operator**. Incidentally, we can find this using mean of the group:

$$T_2 = \frac{1}{|G|} \sum_{g \in G}^{G} g$$

Reynolds Operator

A given transformation is G-invariant if,

$$T_1(T_2x) = T_1x; T_2 \in G, x \in \mathbb{R}^{3n^2}$$

So the objective is to find T_2 , formally called the **Reynolds Operator**. Incidentally, we can find this using mean of the group:

$$T_2 = \frac{1}{|G|} \sum_{g \in G}^{G} g$$

Extracting the left eigenvectors of T_2 , we obtain v_n . By definition of the eigenvectors:

$$v_i T_2 = \lambda_i v_i$$

 $v_i T_2 = v_i$

 T_2 is a projection operator

Image: A matrix

We can now define our weights such that,

$$w^{T} = \sum_{i=1}^{k} \alpha_{i} v_{i}^{T}$$

where T stands for transpose, & α_i is arbitrary

Bringing it all Together

In order to set up our complete neural network, all we have to do is prepend the G-invariant layer we just built to our standard model.

ML@P - Reading Group

э

Bringing it all Together

In order to set up our complete neural network, all we have to do is prepend the G-invariant layer we just built to our standard model.

This will ensure that we build a feature space that's invariant to rotation!

ML@P - Reading Group

Let's classify!!

If you can view this screen, I am making a mistake.

э

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/g-invariance.pdf

э