Neural Networks for Learning Counterfactual G-Invariances from Single Environments a.k.a. "Fixing the Image Rotation Problem"

J. Setpal

February 24, 2023

Outline

(1) Task Description

(2) A Lot of Linear Algebra

(3) Fun Part

Outline

(1) Task Description

(2) A Lot of Linear Algebra

(3) Fun Part

Introduction

Convolutional Neural Networks are fantastic. They efficiently extract a

 vast range of relevant contextual information and are resilient to pixel shift.

Introduction

Convolutional Neural Networks are fantastic. They efficiently extract a vast range of relevant contextual information and are resilient to pixel shift.

However, they have a critical flaw.

Why aren't CNNs rotationally robust?

Q_{1} : Do you think that a CNN trained on a distribution of the left image should correctly classify the right image?

Why aren't CNNs rotationally robust?

Q_{1} : Do you think that a CNN trained on a distribution of the left image should correctly classify the right image?

A_{1} : Definitely!

Why aren't CNNs rotationally robust?

Q_{1} : Do you think that a CNN trained on a distribution of the left image should correctly classify the right image?

A_{1} : Definitely!
Q_{2} : Does that actually happen?

Why aren't CNNs rotationally robust?

Q_{1} : Do you think that a CNN trained on a distribution of the left image should correctly classify the right image?

A_{1} : Definitely!
Q_{2} : Does that actually happen?
A_{2} : Nope - all these images were misclassified :(

Why aren't CNNs rotationally robust?

Q_{1} : Do you think that a CNN trained on a distribution of the left image should correctly classify the right image?

A_{1} : Definitely!
Q_{2} : Does that actually happen?
A_{2} : Nope - all these images were misclassified :(
Q_{3} : How can we fix this?
A_{3} : Data Augmentation (boring)

Why aren't CNNs rotationally robust?

Q_{1} : Do you think that a CNN trained on a distribution of the left image should correctly classify the right image?

A_{1} : Definitely!
Q_{2} : Does that actually happen?
A_{2} : Nope - all these images were misclassified :(
Q_{3} : How can we fix this?
A_{3} : Data Augmentation (boring), G-invariance (fun)!

Why aren't CNNs rotationally robust?

Q_{1} : Do you think that a CNN trained on a distribution of the left image should correctly classify the right image?

A_{1} : Definitely!
Q_{2} : Does that actually happen?
A_{2} : Nope - all these images were misclassified :(
Q_{3} : How can we fix this?
A_{3} : Data Augmentation (boring), G-invariance (fun)!
Today, we'll explore a rotation invariant solution for an MLP. CNN's need G-equivariance, which we'll discuss some other time.

Outline

(1) Task Description

(2) A Lot of Linear Algebra

(3) Fun Part

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$
c. Inverses always exist. $g_{n} \odot g_{n}^{-1}=\mathcal{I}$

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$
c. Inverses always exist. $g_{n} \odot g_{n}^{-1}=\mathcal{I}$
d. There exists an identity. $g_{n} \odot \mathcal{I}=g_{n}$

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$
c. Inverses always exist. $g_{n} \odot g_{n}^{-1}=\mathcal{I}$
d. There exists an identity. $g_{n} \odot \mathcal{I}=g_{n}$
e. The operation is associative. $g_{1} \odot\left(g_{2} \odot g_{3}\right)=\left(g_{1} \odot g_{2}\right) \odot g_{3}$

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$
c. Inverses always exist. $g_{n} \odot g_{n}^{-1}=\mathcal{I}$
d. There exists an identity. $g_{n} \odot \mathcal{I}=g_{n}$
e. The operation is associative. $g_{1} \odot\left(g_{2} \odot g_{3}\right)=\left(g_{1} \odot g_{2}\right) \odot g_{3}$

Optionally, it is commutative. $g_{1} \odot g_{2}=g_{2} \odot g_{1}$.

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$
c. Inverses always exist. $g_{n} \odot g_{n}^{-1}=\mathcal{I}$
d. There exists an identity. $g_{n} \odot \mathcal{I}=g_{n}$
e. The operation is associative. $g_{1} \odot\left(g_{2} \odot g_{3}\right)=\left(g_{1} \odot g_{2}\right) \odot g_{3}$

Optionally, it is commutative. $g_{1} \odot g_{2}=g_{2} \odot g_{1}$. If it is commutative, the group is called abelian.

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$
c. Inverses always exist. $g_{n} \odot g_{n}^{-1}=\mathcal{I}$
d. There exists an identity. $g_{n} \odot \mathcal{I}=g_{n}$
e. The operation is associative. $g_{1} \odot\left(g_{2} \odot g_{3}\right)=\left(g_{1} \odot g_{2}\right) \odot g_{3}$

Optionally, it is commutative. $g_{1} \odot g_{2}=g_{2} \odot g_{1}$. If it is commutative, the group is called abelian.

Q: Why is it important?

Understanding Groups

Groups: A set of elements G containing the following properties:
a. It has an operator that combines two elements. The operator is abstract. $g_{1} \odot g_{2}=g_{3}$
b. It is closed under operation. $g_{1}, g_{2}, g_{3} \in G$
c. Inverses always exist. $g_{n} \odot g_{n}^{-1}=\mathcal{I}$
d. There exists an identity. $g_{n} \odot \mathcal{I}=g_{n}$
e. The operation is associative. $g_{1} \odot\left(g_{2} \odot g_{3}\right)=\left(g_{1} \odot g_{2}\right) \odot g_{3}$

Optionally, it is commutative. $g_{1} \odot g_{2}=g_{2} \odot g_{1}$. If it is commutative, the group is called abelian.

Q: Why is it important?
A: These are the axioms on which we define our solution to the rotation problem. Only if these axioms hold true can our solution exist.

The General Linear Group

It's a special group G consisting of $n \times n$ matrices with matrix product as the defined operation. Formally,

$$
G L_{n}:\left(M_{n \times n}(\mathbb{R}), \cdot\right)
$$

The General Linear Group

It's a special group G consisting of $n \times n$ matrices with matrix product as the defined operation. Formally,

$$
G L_{n}:\left(M_{n \times n}(\mathbb{R}), \cdot\right)
$$

Our training dataset contains inputs $x \in \mathbb{R}^{3 n^{2}}$.

The General Linear Group

It's a special group G consisting of $n \times n$ matrices with matrix product as the defined operation. Formally,

$$
G L_{n}:\left(M_{n \times n}(\mathbb{R}), \cdot\right)
$$

Our training dataset contains inputs $x \in \mathbb{R}^{3 n^{2}}$.
Therefore $G L_{3 n^{2}}:\left(M_{3 n^{2}}(\mathbb{R}), \cdot\right)$ represents images within our dataset.

The General Linear Group

It's a special group G consisting of $n \times n$ matrices with matrix product as the defined operation. Formally,

$$
G L_{n}:\left(M_{n \times n}(\mathbb{R}), \cdot\right)
$$

Our training dataset contains inputs $x \in \mathbb{R}^{3 n^{2}}$. Therefore $G L_{3 n^{2}}:\left(M_{3 n^{2}}(\mathbb{R}), \cdot\right)$ represents images within our dataset.

Now, we can define transformations that can be performed on this group the only restriction being the axioms of a group.

Setting Up Transformations

To set up the transformations we can run, we define another group, called a Transformation Group. We assume the same prior input $x \in \mathbb{R}^{3 n^{2}}$

Setting Up Transformations

To set up the transformations we can run, we define another group, called a Transformation Group. We assume the same prior input $x \in \mathbb{R}^{3 n^{2}}$

$$
\begin{align*}
G_{\text {rot }} & \equiv\left\{T^{\theta}\right\}_{\theta \in\left\{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\right\}} \tag{1}\\
G_{\text {flip }} & \equiv\left\{T^{v}, T^{h}, T^{180^{\circ}}, T^{0^{\circ}}\right\} \tag{2}
\end{align*}
$$

Setting Up Transformations

To set up the transformations we can run, we define another group, called a Transformation Group. We assume the same prior input $x \in \mathbb{R}^{3 n^{2}}$

$$
\begin{aligned}
& G_{\text {rot }} \equiv\left\{T^{\theta}\right\}_{\theta \in\left\{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\right\}} \\
& G_{\text {flip }} \equiv\left\{T^{\vee}, T^{h}, T^{180^{\circ}}, T^{0^{\circ}}\right\}
\end{aligned}
$$

Setting Up Transformations

To set up the transformations we can run, we define another group, called a Transformation Group. We assume the same prior input $x \in \mathbb{R}^{3 n^{2}}$

$$
\begin{aligned}
G_{r o t} & \equiv\left\{T^{\theta}\right\}_{\theta \in\left\{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\right\}} \\
G_{\text {flip }} & \equiv\left\{T^{v}, T^{h}, T^{180^{\circ}}, T^{0^{\circ}}\right\}
\end{aligned}
$$

Both groups are defined $G: \mathbb{R}^{3 n^{2}} \rightarrow \mathbb{R}^{3 n^{2}}$

Outline

(1) Task Description

(2) A Lot of Linear Algebra

(3) Fun Part

The G-Invariant Neuron

Our objective is to learn the optimal weight on a layer such that

$$
\sigma\left(w^{\top} x+b\right)=\sigma\left(w^{T} T_{G} x+b\right)
$$

where T_{G} is the transformation group.

The G-Invariant Neuron

Our objective is to learn the optimal weight on a layer such that

$$
\sigma\left(w^{T} x+b\right)=\sigma\left(w^{T} T_{G} x+b\right)
$$

where T_{G} is the transformation group.

This latent subspace is transformation invariant!

The G-Invariant Neuron

Our objective is to learn the optimal weight on a layer such that

$$
\sigma\left(w^{T} x+b\right)=\sigma\left(w^{T} T_{G} x+b\right)
$$

where T_{G} is the transformation group.

This latent subspace is transformation invariant!
If the above equation holds, that means that our layer is G-invariant.

The G-Invariant Neuron

Our objective is to learn the optimal weight on a layer such that

$$
\sigma\left(w^{\top} x+b\right)=\sigma\left(w^{T} T_{G} x+b\right)
$$

where T_{G} is the transformation group.

This latent subspace is transformation invariant!
If the above equation holds, that means that our layer is G-invariant.
Q: How can we go about finding this?

Reynolds Operator

A given transformation is G-invariant if,

$$
T_{1}\left(T_{2} x\right)=T_{1} x ; T_{2} \in G, x \in \mathbb{R}^{3 n^{2}}
$$

So the objective is to find T_{2}, formally called the Reynolds Operator.

Reynolds Operator

A given transformation is G-invariant if,

$$
T_{1}\left(T_{2} x\right)=T_{1} x ; T_{2} \in G, x \in \mathbb{R}^{3 n^{2}}
$$

So the objective is to find T_{2}, formally called the Reynolds Operator. Incidentally, we can find this using mean of the group:

$$
T_{2}=\frac{1}{|G|} \sum_{g \in G}^{G} g
$$

Reynolds Operator

A given transformation is G-invariant if,

$$
T_{1}\left(T_{2} x\right)=T_{1} x ; T_{2} \in G, x \in \mathbb{R}^{3 n^{2}}
$$

So the objective is to find T_{2}, formally called the Reynolds Operator. Incidentally, we can find this using mean of the group:

$$
T_{2}=\frac{1}{|G|} \sum_{g \in G}^{G} g
$$

Extracting the left eigenvectors of T_{2}, we obtain v_{n}. By definition of the eigenvectors:

$$
\begin{aligned}
& v_{i} T_{2}=\lambda_{i} v_{i} \\
& v_{i} T_{2}=v_{i}
\end{aligned}
$$

T_{2} is a projection operator

Defining the Output Latent Space

We can now define our weights such that,

$$
w^{T}=\sum_{i=1}^{k} \alpha_{i} v_{i}^{T}
$$

where T stands for transpose, $\& \alpha_{i}$ is arbitrary

Bringing it all Together

In order to set up our complete neural network, all we have to do is prepend the G-invariant layer we just built to our standard model.

Bringing it all Together

In order to set up our complete neural network, all we have to do is prepend the G-invariant layer we just built to our standard model.

This will ensure that we build a feature space that's invariant to rotation!

Executing Code

Let's classify!!

If you can view this screen, I am making a mistake.

Thank you!

Have an awesome rest of your day!
Slides: https://cs.purdue.edu/homes/jsetpal/g-invariance.pdf

