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Background

Free and Open Source Software (FOSS) in a scientific setting allows
researchers to ‘stand on the shoulders of giants’.

The following figure1 presents a proposed gradient of open-source in ML:

This definition is impractical for machine learning projects.

1Solaiman [2023]
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Death to Jupyter Notebooks

Jupyter Notebooks are fantastic for experimentation, but unusable in a
production context.

What not to do: https://github.com/jinensetpal/archimede.git
Because:

a. There’s no real entrypoint.

b. Random pickled objects.

c. No version control.

Despite being computationally inexpensive, and having open source {code,
data, hyperparameters}, it’s not actually helpful.

A clear solution for this requires us to recontextualize how we approach
Machine Learning.
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Let’s Recontextualize ML Development

Idea: training ≈ compilation

Source Code LinuxCompilation

Source Code

Dataset

Model

Hyperparameters

Training

Key Difference: time(training) >> time(compilation)
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Reproducibility for Open Source Science

Machine Learning is a science.

Sometimes, the results of the experiments
are production-ready. Then, it’s also software.

Consequence: Traditional ‘open source’ is not enough.
Idea: Free and Open Source Science = Open Source + Reproducibility.
Bonus: We can reuse the ‘FOSS’ acronym!

Important Note

This still is a partial answer. The democratization of accelerated hardware
is still a significant challenge we fail to address.
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How can we achieve this?

Step 0: Accept2 that not everything can be open.

The maximal
approach won’t work.

This is primarily owing to data privacy, and extends to model parameters.3

However, we should expect:

a. Documentation.

b. Synthetic Dataset Samples.

c. Training and Inference Code.

d. Descriptive whitepaper.

e. Permissive Licensing4.

So; where do we go from here?

2begrudgingly

3https://unlearning-challenge.github.io/
4Widder et al. [2023]
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The Reproducibility Checklist

Finally, we need to ensure that research can be replicated by third parties.

For this, we use Dr. Pineau’s Reproducibility Checklist5. Critical ideas:

a. Models and algorithms require clear descriptions of assumptions,
settings and time-complexity analyses.

b. Datasets must include statistics, splits, and pre-processing procedure.

c. Code must specify requirements and code for training, inference as
well as any pre-trained models.

d. Experiments must include the range of hyperparameters, the best
configuration, the evaluation statistic and training hardware.

As a consequence, we can realistically evaluate the claims made by the
paper’s authors.

5Pineau et al. [2021]
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Thank you!

Have an awesome rest of your day!

Slides: https://www.cs.purdue.edu/homes/jsetpal/slides/fossml.pdf
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Appendix: Version Control it All

git is a brilliant tool that allows us to version control code; but what
about data?

Enter DVC6 (Data Version Control). It enables us to add, track, push,
pull and checkout data.

Consequence: Data is now tracked. It’s associated with a specific
commit, and can be diffed.

6Koc and Tansel [2011]
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Appendix: Systematic Experiment & Model Tracking

Next, we target the unpredictability of training.

We are not guaranteed a minima. Therefore, we track metrics and
hyperparameters, to find the best set for a given run.

MLFlow7 helps track and compare various experiments and parameters.

In addition, it allows tagging runs, registering models, and deploying a
target model-as-a-service using Docker.

This tool manages the experiment-model lifecycle.

7Zaharia et al. [2018]
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Appendix: Extensibility + the Overarching Principle

This is a sample framework intended to establish a baseline approach.

The goal is to extend this on a case-by-case basis; these concepts apply
generally.

To adapt the approach to your use-case:

a. Find differences from the established standard.

b. Identify the parameters required to recreate the experimental setup.

c. Set hard / soft requirements based on criticality to replication & user
privacy.
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