Deduplicating Training Data Makes Language Models Better<sup>1</sup> CS 592-LLM – Adv Topics in Reasoning with Large Language Models

Presented by J. Setpal

November 2, 2023'

<sup>1</sup>Lee, Katherine, et al. (ACL 2022)

J. Setpal

Deduplicating Training Data to Improve LMs

November 2, 2023

1 Task Overview

Ø Methodology

8 Results



Image: Image:

< ∃ >

990

### 1 Task Overview

2 Methodology

B Results

4 Discussion

990

ヨト・イヨト

< □ > < 同 >

#### Large Language Models are characterized by large # parameters.

Large Language Models are characterized by large #parameters.

This leaves them vulnerable to memorization.

Large Language Models are characterized by large # parameters.

This leaves them vulnerable to *memorization*. A key factor in promoting *generalization* has been the introduction of **large datasets**.

Large Language Models are characterized by large # parameters.

This leaves them vulnerable to *memorization*. A key factor in promoting *generalization* has been the introduction of **large datasets**.

As a consequence, manual review and curation is *expensive*, and larger datasets suffer in quality.

It is a consequence of lack of due diligence.

Sometimes, validation sets contain training samples.

Sometimes, validation sets contain training samples.

This *promotes* memorization because:

1. Repeat samples are upweighted during training.

Sometimes, validation sets contain training samples.

This *promotes* memorization because:

- 1. Repeat samples are upweighted during training.
- 2. Validation scores are highest when duplicated data is memorized.

Sometimes, validation sets contain training samples.

This *promotes* memorization because:

- 1. Repeat samples are upweighted during training.
- 2. Validation scores are highest when duplicated data is memorized.
- 3. Regularizers promote high scores with fewer parameters.

Sometimes, validation sets contain training samples.

This *promotes* memorization because:

- 1. Repeat samples are upweighted during training.
- 2. Validation scores are highest when duplicated data is memorized.
- 3. Regularizers promote high scores with fewer parameters.

This paper improves generalization performance by **deduplicating data samples**.

1. > 1% of tokens emitted <u>unprompted</u> from a biased model are part of a **memorized sequence**.

1. > 1% of tokens emitted unprompted from a biased model are part of a **memorized sequence**. Deduplication reduced this to  $\approx 0.1\%$ .

- 1. > 1% of tokens emitted unprompted from a biased model are part of a **memorized sequence**. Deduplication reduced this to  $\approx 0.1\%$ .
- 2. A *61-word sequence* was found to repeat **61**, **036** times in training and **61** times in validation in the C4 dataset.

- 1. > 1% of tokens emitted unprompted from a biased model are part of a **memorized sequence**. Deduplication reduced this to  $\approx 0.1\%$ .
- 2. A *61-word sequence* was found to repeat **61**, **036** times in training and **61** times in validation in the C4 dataset.
- 3. Training models on deduplicated datasets improves training efficiency. Deduplicated datasets are upto 19% smaller!

- 1. > 1% of tokens emitted unprompted from a biased model are part of a **memorized sequence**. Deduplication reduced this to  $\approx 0.1\%$ .
- 2. A *61-word sequence* was found to repeat **61**, **036** times in training and **61** times in validation in the C4 dataset.
- 3. Training models on deduplicated datasets improves training efficiency. Deduplicated datasets are upto 19% smaller!
- 4. Deduplication does not hurt *perplexity*; in cases it reduces perplexity by upto 10%.

- 1. > 1% of tokens emitted unprompted from a biased model are part of a **memorized sequence**. Deduplication reduced this to  $\approx 0.1\%$ .
- 2. A *61-word sequence* was found to repeat **61**, **036** times in training and **61** times in validation in the C4 dataset.
- 3. Training models on deduplicated datasets improves training efficiency. Deduplicated datasets are upto 19% smaller!
- 4. Deduplication does not hurt *perplexity*; in cases it reduces perplexity by upto 10%. Deduplication also improves rate of convergence.

**Wikipedia (Wiki-40B)** consists of 2.9*M* pages of cleaned wikipedia text at avg. 768*BPE*. Besides *redirects*, no data deduplication was carried out.

**Wikipedia (Wiki-40B)** consists of 2.9*M* pages of cleaned wikipedia text at avg. 768*BPE*. Besides *redirects*, no data deduplication was carried out.

**One-Billion word Benchmark (LM1B)** contains 30*M* single-sentence samples of news commentary. It has a **13.2**% train-test overlap.

**Wikipedia (Wiki-40B)** consists of 2.9*M* pages of cleaned wikipedia text at avg. 768*BPE*. Besides *redirects*, no data deduplication was carried out.

**One-Billion word Benchmark (LM1B)** contains 30*M* single-sentence samples of news commentary. It has a **13.2**% train-test overlap.

#### Note

The authors limit the scope of their research to english-only subsets.

# **Colossal Cleaned Common Crawl (C4)** contains 360*M* documents at an avg. 486*BPE*.

1. Each is paragraph is hashed, and hash collisions are excluded.

- 1. Each is paragraph is hashed, and hash collisions are excluded.
- 2. Placeholder text, code and prohibited words are removed.

8 / 26

- 1. Each is paragraph is hashed, and hash collisions are excluded.
- 2. Placeholder text, code and prohibited words are removed.

**Real News** is a <u>subset of Common Crawl</u>, containing 31*M* documents at an avg. 793*BPE*.

- 1. Each is paragraph is hashed, and hash collisions are excluded.
- 2. Placeholder text, code and prohibited words are removed.

**Real News** is a <u>subset of Common Crawl</u>, containing 31*M* documents at an avg. 793*BPE*. It's deduplicated by passing the first 100 tokens against a **bloom filter**. Documents containing <u>hash collisions are excluded</u>.

- 1. Each is paragraph is hashed, and hash collisions are excluded.
- 2. Placeholder text, code and prohibited words are removed.

**Real News** is a <u>subset of Common Crawl</u>, containing 31*M* documents at an avg. 793*BPE*. It's deduplicated by passing the first 100 tokens against a **bloom filter**. Documents containing <u>hash collisions are excluded</u>.

However, these deduplication strategies are simply not good enough.

1 Task Overview

### Ø Methodology

B Results

4 Discussion

990

▶ < ∃ ▶

< □ > < 同 >

### Exact Substring Deduplication

Consider  $D := \{x_i\}_{i=1}^N$  where  $x_i$  are dataset samples such that  $x_i := [x_i^h]_{h=1}^{|S|}$  is the series of tokens comprising the sample.

**Idea:** It's rare for a sequence of words to be recreated verbatim without originating from a shared source.

**Idea:** It's rare for a sequence of words to be recreated verbatim without originating from a shared source.

Therefore it is important to also deduplicate substring matches.

**Idea:** It's rare for a sequence of words to be recreated verbatim without originating from a shared source.

Therefore it is important to also deduplicate substring matches.

When samples  $\{x_i, x_j\}$  exist such that  $[x_i^h]_{h=a}^k = [x_j^h]_{h=b}^l$ ; k - a = l - b, there is an exact substring match and must be deduplicated.

**Idea:** It's rare for a sequence of words to be recreated verbatim without originating from a shared source.

Therefore it is important to also deduplicate substring matches.

When samples  $\{x_i, x_j\}$  exist such that  $[x_i^h]_{h=a}^k = [x_j^h]_{h=b}^l$ ; k - a = l - b, there is an exact substring match and must be deduplicated.

Substring length threshold  $d^*_{k-a, l-b} \ge 50$  is a hyperparameter.

**Idea:** It's rare for a sequence of words to be recreated verbatim without originating from a shared source.

Therefore it is important to also deduplicate substring matches.

When samples  $\{x_i, x_j\}$  exist such that  $[x_i^h]_{h=a}^k = [x_j^h]_{h=b}^l$ ; k - a = l - b, there is an exact substring match and must be deduplicated.

Substring length threshold  $d^*_{k-a, l-b} \ge 50$  is a hyperparameter.

When all criterion are met, one substring is excluded, deduplicating the dataset. This approach is called  $\rm EXACTSUBSTR$ .

Despite being conceptually simple, EXACTSUBSTR's naive implementation runs in quadratic time.

∃ >

To improve this, we concate samples  $\{x_i\}_{i=1}^N$  into a single sequence S.

To improve this, we concate samples  $\{x_i\}_{i=1}^N$  into a single sequence S. We further construct a **Suffix Array** A of S.

To improve this, we concate samples  $\{x_i\}_{i=1}^N$  into a single sequence S. We further construct a **Suffix Array** A of S.

A **Suffix Array** is the sorted list of suffixes in a sequence *s*. Here, s = S.

11 / 26

To improve this, we concate samples  $\{x_i\}_{i=1}^N$  into a single sequence S. We further construct a **Suffix Array** A of S.

A **Suffix Array** is the sorted list of suffixes in a sequence *s*. Here, s = S. For instance, if s = "banana":

$$\begin{split} \mathcal{A} &= \text{sorted}(\{\text{``banana''}, \text{``anana''}, \text{``nana''}, \text{``ana''}, \text{``ana''}, \text{``ana''}, \text{``anana''}, \text{``banana''}, \text{``nana''}, \text{``nana''}] \end{split}$$

To improve this, we concate samples  $\{x_i\}_{i=1}^N$  into a single sequence S. We further construct a **Suffix Array** A of S.

A **Suffix Array** is the sorted list of suffixes in a sequence *s*. Here, s = S. For instance, if s = "banana":

$$\begin{split} \mathcal{A} &= \text{sorted}(\{\text{``banana''}, \text{``anana''}, \text{``nana''}, \text{``ana''}, \text{``ana''}, \text{``ana''}, \\ &= [\text{``a''}, \text{``anana''}, \text{``banana''}, \text{``nana''}] \end{split}$$

 $\mathcal{A}(\mathcal{S})$  can be constructed in linear time  $O(|\mathcal{S}|)$ , and is therefore efficient.

We can use  $\mathcal{A}(\mathcal{S})$  to identify duplicate substrings within the dataset.

990

We can use  $\mathcal{A}(\mathcal{S})$  to identify duplicate substrings within the dataset.

If sub-sequence s is repeated within S at positions  $\{i, j\}$ ,  $\mathcal{A}_{S_i} = \mathcal{A}_{S_{j\pm 1}}$ . This is because  $\mathcal{A}$  is a **sorted array**.

12 / 26

We can use  $\mathcal{A}(\mathcal{S})$  to identify duplicate substrings within the dataset.

If sub-sequence s is repeated within S at positions  $\{i, j\}$ ,  $\mathcal{A}_{S_i} = \mathcal{A}_{S_{j\pm 1}}$ . This is because  $\mathcal{A}$  is a **sorted array**.

Identifying suffixes therefore involves the parallelizable task of searching through  $\mathcal{A}.$ 

### Consider the following cases:

| Dataset  | Example                                                                                                                                                                                                                                                                                                       | Near-Duplicate Example                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wiki-40B | \n_START_ARTICLE_\nHum Award for Most Impact-<br>ful Character \n_START_SECTION \nWinners and nomi-<br>nees\n_START_PARAGRAPH \nIn the list below, winners are<br>listed first in the colored row, followed by the other nominees,<br>[]                                                                      | \n_START_ARTICLE_\nHum Award for Best Actor in a<br>Negative Role \n_START_SECTION_\nWinners and nomi-<br>nees\n_START_PARAGRAPH_\nln the list below, winners are<br>listed first in the colored row, followed by the other nominees. []                                                                            |
| LM1B     | I left for California in 1979 and tracked Cleveland 's changes on trips back to visit my sisters .                                                                                                                                                                                                            | I left for California in 1979, and tracked Cleveland's changes on trips back to visit my sisters.                                                                                                                                                                                                                   |
| C4       | Affordable and convenient holiday flights take off from your<br>departure country, "Canada", From May 2019 to October 2019,<br>Condor flights to your dream destination will be roughly 6 a<br>week! Book your Halifax (YHZ) - Basel (BSL) flight now, and<br>look forward to your "Switzerland" destination! | Affordable and convenient holiday flights take off from your depar-<br>ture country, "USA", From April 2019 to October 2019, Condor<br>flights to your draum destination will be roughly 7 a week! Book<br>your Maui Kahului (OGG) - Dubrovnik (DBV) flight now, and look<br>forward to your "Croatia" destination! |

990

#### Consider the following cases:

| Dataset  | Example                                                                                                                                                                                                                                                                                                       | Near-Duplicate Example                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wiki-40B | \n_START_ARTICLE_\nHum Award for Most Impact-<br>ful Character \n_START_SECTION_\nWinners and nomi-<br>nees\n_START_PARAGRAPH_\nIn the list below, winners are<br>listed first in the colored row, followed by the other nominees,<br>[]                                                                      | \n_START_ARTICLE_\nHum Award for Best Actor in a<br>Negative Role \n_START_SECTION_\nWinners and nomi-<br>nees\n_START_PARAGRAPH_\nln the list below, winners are<br>listed first in the colored row, followed by the other nominees. []                                                                            |
| LM1B     | Heft for California in 1979 and tracked Cleveland 's changes on trips back to visit my sisters.                                                                                                                                                                                                               | I left for California in 1979, and tracked Cleveland's changes on trips back to visit my sisters.                                                                                                                                                                                                                   |
| C4       | Affordable and convenient holiday flights take off from your<br>departure country, "Canada", From May 2019 to October 2019,<br>Condor flights to your dream destination will be roughly 6 a<br>week! Book your Halifax (YHZ) - Basel (BSL) flight now, and<br>look forward to your "Switzerland" destination! | Alfordable and convenient holiday flights take off from your depar-<br>ture country, "USA". From April 2019 to October 2019, Condor<br>flights to your dream destination will be roughly 7 a week! Book<br>your Maui Kahului (OGG) - Dubrovnik (DBV) flight now, and look<br>forward to your "Croatia" destination! |

Despite significant overlap, duplication is not identified by EXACTSUBSTR.

#### Consider the following cases:

| Dataset  | Example                                                                                                                                                                                                                                                                                                       | Near-Duplicate Example                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wiki-40B | \n_START_ARTICLE_\nHum Award for Most Impact-<br>ful Character \n_START_SECTION \nWinners and nomi-<br>nees\n_START_PARAGRAPH \nIn the list below, winners are<br>listed first in the colored row, followed by the other nominees,<br>[]                                                                      | \n_START_ARTICLE_\nHum Award for Best Actor in a<br>Negative Role \n_START_SECTION_\nWinners and nomi-<br>nees\n_START_PARAGRAPH_\nln the list below, winners are<br>listed first in the colored row, followed by the other nominees. []                                                                            |
| LM1B     | I left for California in 1979 and tracked Cleveland 's changes on trips back to visit my sisters .                                                                                                                                                                                                            | I left for California in 1979, and tracked Cleveland 's changes on trips back to visit my sisters.                                                                                                                                                                                                                  |
| C4       | Alfordable and convenient holiday flights take off from your<br>departure country, "Canada", From May 2019 to October 2019,<br>Condor flights to your dream destination will be roughly 6 a<br>week! Book your Halifax (YHZ) - Basel (BSL) flight now, and<br>look forward to your "Switzerland" destination! | Alfordable and convenient holiday flights take off from your depar-<br>ture country, "USA", From April 2019 to October 2019, Condor<br>flights to your dream destination will be roughly 7 a week! Book<br>your Maui Kahului (OGG) - Dubrovnik (DBV) flight now, and look<br>forward to your "Croatia" destination! |

Despite significant overlap, duplication is not identified by EXACTSUBSTR.

The authors introduce the  $\ensuremath{\operatorname{NEARDUP}}$  algorithm to resolve this.

Let's talk about it!

J. Setpal

13 / 26

**Idea:** Approximate the *Jaccard Similarity Coefficient* and an *Edit Similarity Score* between two documents  $\{x_i, x_j\}$ .

**Idea:** Approximate the Jaccard Similarity Coefficient and an Edit Similarity Score between two documents  $\{x_i, x_j\}$ . Approximate duplications exist for high Jaccard Coefficients and high Edit Similarities.

<sup>2</sup>doi:10.1109/SEQUEN.1997.666900

**Idea:** Approximate the Jaccard Similarity Coefficient and an Edit Similarity Score between two documents  $\{x_i, x_j\}$ . Approximate duplications exist for high Jaccard Coefficients and high Edit Similarities.

This derives from MINHASH<sup>2</sup>.  $J(A, B) \in [0, 1]$ .

<sup>&</sup>lt;sup>2</sup>doi:10.1109/SEQUEN.1997.666900

**Idea:** Approximate the Jaccard Similarity Coefficient and an Edit Similarity Score between two documents  $\{x_i, x_j\}$ . Approximate duplications exist for high Jaccard Coefficients and high Edit Similarities.

This derives from MINHASH<sup>2</sup>.  $J(A, B) \in [0, 1]$ . Each document is represented by a hash h; in this case the set of *n*-grams. Only the *k*-smallest *n*-grams are used to compute the Jaccard:

$$J(d_{x_i}, d_{x_j}) = rac{d_{x_i} \cap d_{x_j}}{d_{x_i} \cup d_{x_j}}$$

Here, h = tabulation hashing, n = 5 and k =.

<sup>&</sup>lt;sup>2</sup>doi:10.1109/SEQUEN.1997.666900

# The $\rm NEARDUP$ Algorithm #2

Tabulation Hashing is a bucketized hashing algorithm.

Э

The probability score of a match is obtained using the following procedure:

1. The set of hashes obtained per gram is the *document signature*.

- 1. The set of hashes obtained per gram is the *document signature*.
- 2. Each element is hashed using k other hashing functions.

- 1. The set of hashes obtained per gram is the *document signature*.
- 2. Each element is hashed using k other hashing functions.
- 3. The minimum hashed element for each k function is stored.

- 1. The set of hashes obtained per gram is the *document signature*.
- 2. Each element is hashed using k other hashing functions.
- 3. The minimum hashed element for each k function is stored.
- 4. They are partitioned into r buckets, with b hashes per bucket.

- 1. The set of hashes obtained per gram is the *document signature*.
- 2. Each element is hashed using k other hashing functions.
- 3. The minimum hashed element for each k function is stored.
- 4. They are partitioned into r buckets, with b hashes per bucket.
- 5. If  $\{x_i, x_j\}$  share hashes in  $\geq 1$  bucket, it is considered a match.

The probability score of a match is obtained using the following procedure:

- 1. The set of hashes obtained per gram is the *document signature*.
- 2. Each element is hashed using k other hashing functions.
- 3. The minimum hashed element for each k function is stored.
- 4. They are partitioned into r buckets, with b hashes per bucket.
- 5. If  $\{x_i, x_j\}$  share hashes in  $\geq 1$  bucket, it is considered a match.

Finally, we obtain the following probability score:

$$P(d_{x_i}, d_{x_j}|J(d_{x_i}, d_{x_j})) = 1 - (1 - J(d_{x_i}, d_{x_j})^b)^r$$

Here, b = 20, r = 450 and k = br = 9000

For document pairs  $\{x_i, x_j\}$  considered potential matches, the *full Jaccard Index* is computed.

$$\text{EDITSIM}(x_i, x_j) = 1 - \frac{\text{EDITDISTANCE}(x_i, x_j)}{\max(|x_i|, |x_j|)}$$

$$\text{EditSim}(x_i, x_j) = 1 - \frac{\text{EditDistance}(x_i, x_j)}{\max(|x_i|, |x_j|)}$$

Finally, a graph is created to <u>cluster similar documents</u>.

16 / 26

$$\text{EditSim}(x_i, x_j) = 1 - \frac{\text{EditDistance}(x_i, x_j)}{\max(|x_i|, |x_j|)}$$

Finally, a graph is created to <u>cluster similar documents</u>. If documents are considered a match, edges are constructed between the pair.

16 / 26

$$\text{EDITSIM}(x_i, x_j) = 1 - \frac{\text{EDITDISTANCE}(x_i, x_j)}{\max(|x_i|, |x_j|)}$$

Finally, a graph is created to <u>cluster similar documents</u>. If documents are considered a match, edges are constructed between the pair. The connected components form clusters.

$$\text{EDITSIM}(x_i, x_j) = 1 - \frac{\text{EDITDISTANCE}(x_i, x_j)}{\max(|x_i|, |x_j|)}$$

Finally, a graph is created to <u>cluster similar documents</u>. If documents are considered a match, edges are constructed between the pair. The connected components form clusters.

Deduplication is performed on these clusters, and a filtered dataset is obtained.

1 Task Overview

2 Methodology

8 Results

Discussion

990

▶ < ∃ >

< 口 > < 同 >

Both deduplication techniques were run on the 4 mentioned datasets.

Both deduplication techniques were run on the 4 mentioned datasets. In case of *duplication between splits*, training duplications were removed.

Both deduplication techniques were run on the 4 mentioned datasets. In case of *duplication between splits*, training duplications were removed.

|          | % train tokens with<br>dup in train dup in valid |        | % valid with<br>dup in train |
|----------|--------------------------------------------------|--------|------------------------------|
| C4       | 7.18%                                            | 0.75%  | 1.38%                        |
| RealNews | 19.4%                                            | 2.61%  | 3.37%                        |
| LM1B     | 0.76%                                            | 0.016% | 0.019%                       |
| Wiki40B  | 2.76%                                            | 0.52%  | 0.67%                        |

Table: Deduplications made by  $\operatorname{ExaCTSUBSTR}$ 

## Amount of Text Deduplicated #2

|          | % train examples with dup in train dup in valid |       | % valid with<br>dup in train |
|----------|-------------------------------------------------|-------|------------------------------|
| C4       | 3.04%                                           | 1.59% | 4.60%                        |
| RealNews | 13.63%                                          | 1.25% | 14.35%                       |
| LM1B     | 4.86%                                           | 0.07% | 4.92%                        |
| Wiki40B  | 0.39%                                           | 0.26% | 0.72%                        |

Table: Deduplications made by  $\operatorname{NEARDUP}$ 

Э

### Amount of Text Deduplicated #2

|                  | % train examples with dup in train dup in valid |                | % valid with dup in train |  |
|------------------|-------------------------------------------------|----------------|---------------------------|--|
| C4               | 3.04%                                           | 1.59%          | 4.60%                     |  |
| RealNews<br>LM1B | 13.63%<br>4.86%                                 | 1.25%<br>0.07% | 14.35%<br>4.92%           |  |
| Wiki40B          | 0.39%                                           | 0.26%          | 4.92%<br>0.72%            |  |

Table: Deduplications made by NEARDUP

On average, EXACTSUBSTR removed more content than NEARDUP, with a notable exception being LM1B: it contains shorter token lengths than the EXACTSUBSTR threshold.

# Amount of Text Deduplicated #2

|                  | % train examples with dup in train dup in valid |                | % valid with dup in train |  |
|------------------|-------------------------------------------------|----------------|---------------------------|--|
| C4               | 3.04%                                           | 1.59%          | 4.60%                     |  |
| RealNews<br>LM1B | 13.63%<br>4.86%                                 | 1.25%<br>0.07% | 14.35%<br>4.92%           |  |
| Wiki40B          | 0.39%                                           | 0.26%          | 4.92%<br>0.72%            |  |

Table: Deduplications made by NEARDUP

On average, EXACTSUBSTR removed more content than NEARDUP, with a notable exception being LM1B: it contains shorter token lengths than the EXACTSUBSTR threshold.

Both EXACTSUBSTR and NEARDUP remove similar content: 77% of training samples NEARDUP removed from **C4** contained a 50-length match in EXACTSUBSTR.

Both methods successfully identify deduplication, promoting parameters biased towards memorization.

Both methods successfully identify deduplication, promoting parameters biased towards memorization. We observe the following comparisons:

| Model            | Dataset  | Orig  | Dups  | Unique |
|------------------|----------|-------|-------|--------|
| Transformer-XL   | LM1B     | 21.77 | 10.11 | 23.58  |
| GROVER-Base      | RealNews | 15.44 | 13.77 | 15.73  |
| <b>GROVER-XL</b> | RealNews | 9.15  | 7.68  | 9.45   |

Both methods successfully identify deduplication, promoting parameters biased towards memorization. We observe the following comparisons:

| Model D       | Dataset   Orig                                | Dups | Unique                 |
|---------------|-----------------------------------------------|------|------------------------|
| GROVER-Base R | .M1B 21.77<br>RealNews 15.44<br>RealNews 9.15 |      | 23.58<br>15.73<br>9.45 |

In addition, existing models models also suffer from this:

1. 1.38% of 25k-GROVER-Mega outputs contained verbatim RealNews matches.

Both methods successfully identify deduplication, promoting parameters biased towards memorization. We observe the following comparisons:

| Model D       | Dataset   Orig                                | Dups | Unique                 |
|---------------|-----------------------------------------------|------|------------------------|
| GROVER-Base R | .M1B 21.77<br>RealNews 15.44<br>RealNews 9.15 |      | 23.58<br>15.73<br>9.45 |

In addition, existing models models also suffer from this:

- 1. 1.38% of 25k-GROVER-Mega outputs contained verbatim RealNews matches.
- 2. > 5% of tokens in the  $\approx 200k$  sequences output by GPT-Neo 1.3B contained verbatim Pile<sup>3</sup> matches.

<sup>3</sup>training dataset

### Impact on Prompting

The impact of the outputs produced also depends on whether or not a prompt is supplied to the language model.

Without prompting, Transformer-XL returned >1% of tokens belonging to memorized sub-sequences. With <code>ExactSubstr</code> and <code>NEARDup</code>, this reduced to  $\approx 0.01\%$ .

Without prompting, Transformer-XL returned >1% of tokens belonging to memorized sub-sequences. With <code>ExactSubstr</code> and <code>NEARDUP</code>, this reduced to  $\approx 0.01\%$ .

With prompting, impacts on model output are less meaningful.

Without prompting, Transformer-XL returned >1% of tokens belonging to memorized sub-sequences. With <code>ExactSubstr</code> and <code>NEARDup</code>, this reduced to  $\approx 0.01\%$ .

**With prompting**, impacts on model output are *less meaningful*. When the prompt includes duplicate samples in the test set, original Transformer-XL returns the groundtruth continuation 40% of the time.

Without prompting, Transformer-XL returned >1% of tokens belonging to memorized sub-sequences. With <code>ExactSubstr</code> and <code>NEARDup</code>, this reduced to  $\approx 0.01\%$ .

**With prompting**, impacts on model output are *less meaningful*. When the prompt includes duplicate samples in the test set, original Transformer-XL returns the groundtruth continuation 40% of the time.

Even with EXACTSUBSTR and NEARDUP, the groundtruth is *copied* more when prompts original from duplicate samples, rather than unique ones.

Without prompting, Transformer-XL returned >1% of tokens belonging to memorized sub-sequences. With <code>ExactSubstr</code> and <code>NEARDUP</code>, this reduced to  $\approx 0.01\%$ .

**With prompting**, impacts on model output are *less meaningful*. When the prompt includes duplicate samples in the test set, original Transformer-XL returns the groundtruth continuation 40% of the time.

Even with EXACTSUBSTR and NEARDUP, the groundtruth is *copied* more when prompts original from duplicate samples, rather than unique ones.

Further research is required to entirely eliminate memorization tendencies.

Sac

### Impact on Perplexity

The authors computer the perplexity of trained models on the validation sets.

∃ >

# Impact on Perplexity

The authors computer the perplexity of trained models on the validation sets.

All models were observed to have similar perplexity on **unique** C4 validation samples.

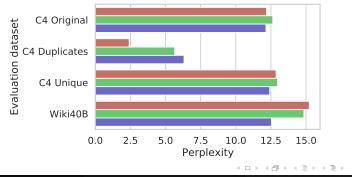
The authors computer the perplexity of trained models on the validation sets.

All models were observed to have similar perplexity on **unique** C4 validation samples. On validation samples *with duplicates*, both approaches have higher perplexity. EXACTSUBSTR has a higher perplexity than NEARDUP.

# Impact on Perplexity

The authors computer the perplexity of trained models on the validation sets.

All models were observed to have similar perplexity on **unique** C4 validation samples. On validation samples *with duplicates*, both approaches have higher perplexity. EXACTSUBSTR has a higher perplexity than NEARDUP.



22 / 26

1 Task Overview

2 Methodology

B Results



< 口 > < 同 >

▶ < ∃ >

- 1. What are some reasons where data duplication (ergo memorization) is actually useful?
- 2. Would sentence-vectorization based clustering be a good replacement for NEARDUP? Why or why not?

Q: Despite removing a large portion of duplicates, LLMs still suffer from memorization, but *only when prompted with duplicates*. Theorize approaches to solve this.

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/slides/dedup-td.pdf

Э