
Async/Await, Fetch, Cross-Origin Resource Sharing
CS 390 – Web Application Development

J. Setpal

September 19, 2022

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 1 / 19



Table of Contents

1 Why it’s Worth Your Time

2 Async/Await

3 Fetch

4 Cross-Origin Resource Sharing

5 Homework Stuff

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 2 / 19



Table of Contents

1 Why it’s Worth Your Time

2 Async/Await

3 Fetch

4 Cross-Origin Resource Sharing

5 Homework Stuff

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 3 / 19



WIWYT – Asnyc/Await

• On Tuesday, Arnav discussed asynchrony through callbacks and
promises.

• Callbacks ”suck” (read: tedious, unweildy).

• Promises are cool!

• Async/Await allows us to develop well-structured and maintainable
asynchronous code without worrying about callbacks’ quirks.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 4 / 19



WIWYT – Asnyc/Await

• On Tuesday, Arnav discussed asynchrony through callbacks and
promises.

• Callbacks ”suck” (read: tedious, unweildy).

• Promises are cool!

• Async/Await allows us to develop well-structured and maintainable
asynchronous code without worrying about callbacks’ quirks.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 4 / 19



WIWYT – Asnyc/Await

• On Tuesday, Arnav discussed asynchrony through callbacks and
promises.

• Callbacks ”suck” (read: tedious, unweildy).

• Promises are cool!

• Async/Await allows us to develop well-structured and maintainable
asynchronous code without worrying about callbacks’ quirks.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 4 / 19



WIWYT – Asnyc/Await

• On Tuesday, Arnav discussed asynchrony through callbacks and
promises.

• Callbacks ”suck” (read: tedious, unweildy).

• Promises are cool!

• Async/Await allows us to develop well-structured and maintainable
asynchronous code without worrying about callbacks’ quirks.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 4 / 19



WIWYT – Fetch

• Fetch is a versatile method for making network requests.

• It enables client-server interaction via AJAX (Asynchronous
JavaScript And XML) queries.

• Bonus: It’s a wonderful implementation of promises!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 5 / 19



WIWYT – Fetch

• Fetch is a versatile method for making network requests.

• It enables client-server interaction via AJAX (Asynchronous
JavaScript And XML) queries.

• Bonus: It’s a wonderful implementation of promises!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 5 / 19



WIWYT – Cross-Origin Resource Sharing

• Cross-Origin Resource Sharing is a policy enabling different remotes
to share resources.

• By default, resource sharing is blocked as a security measure.

• Understanding CORS policy allows us to navigate it cleverly, so as to
use legitimate resources without undermining existing security
measures.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 6 / 19



WIWYT – Cross-Origin Resource Sharing

• Cross-Origin Resource Sharing is a policy enabling different remotes
to share resources.

• By default, resource sharing is blocked as a security measure.

• Understanding CORS policy allows us to navigate it cleverly, so as to
use legitimate resources without undermining existing security
measures.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 6 / 19



WIWYT – Cross-Origin Resource Sharing

• Cross-Origin Resource Sharing is a policy enabling different remotes
to share resources.

• By default, resource sharing is blocked as a security measure.

• Understanding CORS policy allows us to navigate it cleverly, so as to
use legitimate resources without undermining existing security
measures.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 6 / 19



Table of Contents

1 Why it’s Worth Your Time

2 Async/Await

3 Fetch

4 Cross-Origin Resource Sharing

5 Homework Stuff

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 7 / 19



Async – General Idea, Syntax

Async: Functions defined with the async keyword wrap the returned
value of the function in a promise.

async function foo() {

// ... code that takes a long time to run

return true;

}

We interact with an async function exactly like a promise variable. For
our above example:

foo().then(

function(result) // .. handle a resolution

function(error) // .. handle a rejection

);

However, we can simplify this even further!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 8 / 19



Async – General Idea, Syntax

Async: Functions defined with the async keyword wrap the returned
value of the function in a promise.

async function foo() {

// ... code that takes a long time to run

return true;

}

We interact with an async function exactly like a promise variable. For
our above example:

foo().then(

function(result) // .. handle a resolution

function(error) // .. handle a rejection

);

However, we can simplify this even further!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 8 / 19



Async – General Idea, Syntax

Async: Functions defined with the async keyword wrap the returned
value of the function in a promise.

async function foo() {

// ... code that takes a long time to run

return true;

}

We interact with an async function exactly like a promise variable. For
our above example:

foo().then(

function(result) // .. handle a resolution

function(error) // .. handle a rejection

);

However, we can simplify this even further!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 8 / 19



Await – General Idea, Syntax

Await: Works only within an async function. Halts execution until the
promise is settled.

async function foo() {

// ... code to define a promise

let value = await promise;

// ... code to handle the output value

}

The main advantage being, we can call it like so:

foo(); // and everything runs perfectly!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 9 / 19



Await – General Idea, Syntax

Await: Works only within an async function. Halts execution until the
promise is settled.

async function foo() {

// ... code to define a promise

let value = await promise;

// ... code to handle the output value

}

The main advantage being, we can call it like so:

foo(); // and everything runs perfectly!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 9 / 19



Table of Contents

1 Why it’s Worth Your Time

2 Async/Await

3 Fetch

4 Cross-Origin Resource Sharing

5 Homework Stuff

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 10 / 19



Fetch – General Idea, Syntax

Fetch: A versatile method used to interface with data on HTTP(s)
remotes. It returns promises, so we can use await to directly catch the
end-result.

let response = await fetch(‘https :// cs390.dev/’);

:confetti: We just pulled data from a GET request on the course website!

We can read and perform manipulations on the data using methods within
the response data structure:

if (response.ok) {

let val = await response.json();

// ... code to use json output

} else {

// ... code to handle error

}

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 11 / 19



Fetch – General Idea, Syntax

Fetch: A versatile method used to interface with data on HTTP(s)
remotes. It returns promises, so we can use await to directly catch the
end-result.

let response = await fetch(‘https :// cs390.dev/’);

:confetti: We just pulled data from a GET request on the course website!

We can read and perform manipulations on the data using methods within
the response data structure:

if (response.ok) {

let val = await response.json();

// ... code to use json output

} else {

// ... code to handle error

}

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 11 / 19



Some More Syntax

fetch is incredibly dynamic with a HUGE API. Here’s a few important
methods:

• response.json() – parse the response as JSON object.

• response.text() – parse the response as plaintext.

• response.blob() – parse the response as raw binary data.

let requestOptions = {

.. // add method , headers , body

};

Full Documentation:
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 12 / 19

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API


Some More Syntax

fetch is incredibly dynamic with a HUGE API. Here’s a few important
methods:

• response.json() – parse the response as JSON object.

• response.text() – parse the response as plaintext.

• response.blob() – parse the response as raw binary data.

let requestOptions = {

.. // add method , headers , body

};

Full Documentation:
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 12 / 19

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API


Let’s Play with Fetch

If you can view this screen, I am making a mistake.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 13 / 19



Table of Contents

1 Why it’s Worth Your Time

2 Async/Await

3 Fetch

4 Cross-Origin Resource Sharing

5 Homework Stuff

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 14 / 19



CORS – General Idea

Cross-Origin Resource Sharing.
Long, fancy name :/
Let’s break it down:

• Cross-Origin: Pertaining to varying remote sources.

• Resource: Since we’re dealing with JavaScript, resources here are
script files.

• Sharing: From prior context, we’re sharing scripts.

Putting it all together, the policy that governs this inter-source script
sharing is the CORS policy!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 15 / 19



CORS – General Idea

Cross-Origin Resource Sharing.
Long, fancy name :/
Let’s break it down:

• Cross-Origin: Pertaining to varying remote sources.

• Resource: Since we’re dealing with JavaScript, resources here are
script files.

• Sharing: From prior context, we’re sharing scripts.

Putting it all together, the policy that governs this inter-source script
sharing is the CORS policy!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 15 / 19



CORS – General Idea

Cross-Origin Resource Sharing.
Long, fancy name :/
Let’s break it down:

• Cross-Origin: Pertaining to varying remote sources.

• Resource: Since we’re dealing with JavaScript, resources here are
script files.

• Sharing: From prior context, we’re sharing scripts.

Putting it all together, the policy that governs this inter-source script
sharing is the CORS policy!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 15 / 19



CORS – General Idea

Cross-Origin Resource Sharing.
Long, fancy name :/
Let’s break it down:

• Cross-Origin: Pertaining to varying remote sources.

• Resource: Since we’re dealing with JavaScript, resources here are
script files.

• Sharing: From prior context, we’re sharing scripts.

Putting it all together, the policy that governs this inter-source script
sharing is the CORS policy!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 15 / 19



CORS – General Idea

Cross-Origin Resource Sharing.
Long, fancy name :/
Let’s break it down:

• Cross-Origin: Pertaining to varying remote sources.

• Resource: Since we’re dealing with JavaScript, resources here are
script files.

• Sharing: From prior context, we’re sharing scripts.

Putting it all together, the policy that governs this inter-source script
sharing is the CORS policy!

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 15 / 19



The CORS Workflow

So: why is it important?

Client

Domain C

Domain B

Approved

Rejected

CORS

Domain A f[3mgekmvlk;

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 16 / 19



The CORS Workflow

So: why is it important?

Client

Domain C

Domain B

Approved

Rejected

CORS

Domain A f[3mgekmvlk;

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 16 / 19



Table of Contents

1 Why it’s Worth Your Time

2 Async/Await

3 Fetch

4 Cross-Origin Resource Sharing

5 Homework Stuff

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 17 / 19



Homework 4?

Homework 3 was due last Friday. So, homeworks will now be announced
Wednesday!

Quiz 8 should be out now, due Sep 20, 11:59pm.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 18 / 19



Thank you!

Have an awesome rest of your day!

Slides: https://www.cs390.dev/slides/async-await.pdf

If anything’s incorrect or unclear, please ping: jsetpal@purdue.edu
I’ll patch it ASAP.

CS 390 – WAP Asyc/Await, Fetch, CORS September 19, 2022 19 / 19

https://www.cs390.dev/slides/async-await.pdf
mailto:jsetpal@purdue.edu

	Why it's Worth Your Time
	Async/Await
	Fetch
	Cross-Origin Resource Sharing
	Homework Stuff

