DeepMind's AlphaTensor: Discovering Faster Matrix Multiplication Algorithms with Reinforcement Learning

J. Setpal

November 15, 2022

1/14

1 Task Background

Algorithms as Tensor Decomposition

3 Neural Architecture Design

臣

1 Task Background

2 Algorithms as Tensor Decomposition

3 Neural Architecture Design

E

What is Matrix Multiplication?

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 10 & 10 \end{bmatrix}$$

E

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 10 & 10 \end{bmatrix}$$

<u>Problem</u>: It's too complex! $O(n^3)$.

Э

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 10 & 10 \end{bmatrix}$$

<u>Problem</u>: It's too complex! $O(n^3)$.

Optimization Ideas:

- Human Search
- Continuous Optimization
- Combinatorial Search

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 10 & 10 \end{bmatrix}$$

<u>Problem</u>: It's too complex! $O(n^3)$.

Optimization Ideas:

- Human Search
- Continuous Optimization
- Combinatorial Search

Problem: Suboptimal!

Matrices, but generalized.

- Representing tensors as an operation.

- Representing tensors as an operation.
- MASSIVE Search Space: 10¹² potential actions.

- Representing tensors as an operation.
- MASSIVE Search Space: 10¹² potential actions.
- Impossible to obtain every state tree.

- Representing tensors as an operation.
- MASSIVE Search Space: 10¹² potential actions.
- Impossible to obtain every state tree.
- Hardwase basis for optimization.

- Representing tensors as an operation.
- MASSIVE Search Space: 10¹² potential actions.
- Impossible to obtain every state tree.
- Hardwase basis for optimization.

Task Background

Algorithms as Tensor Decomposition

3 Neural Architecture Design

문 > 문

Let's Restructure the Problem!

$m_1 = (a_1 + a_4)(b_1 + b_4)$
$m_2 = (a_3 + a_4) b_1$
$m_3 = a_1 (b_2 - b_4)$
$m_4 = a_4 (b_3 - b_1)$
$m_5 = (a_1 + a_2) b_4$
$m_6 = (a_3 - a_1)(b_1 + b_2)$
$m_7 = (a_2 - a_4)(b_3 + b_4)$
$c_1 = m_1 + m_4 - m_5 + m_7$
$c_2 = \frac{m_3 + m_5}{m_3 + m_5}$
$c_3 = \frac{m_2 + m_4}{m_2 + m_4}$
$c_4 = \frac{m_1 - m_2 + m_3 + m_6}{m_1 - m_2 + m_3 + m_6}$

U =	1 0 0 1	0 0 1 1	1 0 0	0 0 0 1	1 1 0 0	-1 0 1 0	0 1 0 -1	$\Big)$
V =	1 0 0 1	1 0 0	0 1 0 -1	-1 0 1 0	0 0 0 1	1 1 0 0	0 0 1	$\Big)$
W =	1 0 0 1	0 0 1 -1	0 1 0 1	1 0 1 0	-1 1 0 0	0 0 0 1	1 0 0 0	$\Big)$

November 15, 2022

Let's Restructure the Problem!

This can then be represented using:

$$\tau_n = \sum_{r=1}^R u^{(r)} \otimes v^{(r)} \otimes w^{(r)}$$

1 Task Background

2 Algorithms as Tensor Decomposition

3 Neural Architecture Design

E

Leveraging the Current tensor and the history, embedding, policy and value head.

Decomposing a 3D tensor is NP-hard (it's the challenge).

Decomposing a 3D tensor is NP-hard (it's the challenge).

However, the reverse is trivial!

Decomposing a 3D tensor is NP-hard (it's the challenge).

However, the reverse is trivial!

Randomly selected tensor pairs are used to compose a 3D-tensor. This generates synthetic data on which the AlphaTensor agent trains.

Change the basis is similar to a linear operation.

э

Change the basis is similar to a linear operation.

It's the same transofmation, but the algorithm interprets it as a new input.

Change the basis is similar to a linear operation.

It's the same transofmation, but the algorithm interprets it as a new input.

Easy way to augment existing data!

Putting it Together

Have an awesome rest of your day!

Slides: https://cs.purdue.edu/homes/jsetpal/alphatensor.pdf