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Abstract—In this paper, we propose a random projection
approach to estimate variance in kernel ridge regression. Our
approach leads to a consistent estimator of the true variance,
while being computationally more efficient. Our variance esti-
mator is optimal for a large family of kernels, including cubic
splines and Gaussian kernels. Simulation analysis is conducted
to support our theory.

I. INTRODUCTION

As a flexible nonparametric tool, kernel ridge regression
(KRR) has gained popularity in many application fields, such
as machine learning, and visualization; see e.g., [11]. Besides
the estimation of the predictive mean, an exploration of the
predictive variance is also important for statistical inference.
Predictive variances can be used for inference, for example, to
build confidence intervals; or to select the most informative data
points in active learning. There are two sources of uncertainty in
the predictive variance: the noise in the data and the uncertainty
in the estimation of the target function. However, calculating
the second uncertainty is challenging in KRR on a large data
set, since the computational burden increases dramatically with
respect to the size of the training set. For example, for n data
points, the time and space complexity of kernel ridge regression
(KRR) are of O(n3) and O(n2) respectively. The above can
potentially limit the applicability of KRR to big data scenarios.

An efficient way to break the computational bottleneck is
low-rank approximation of kernel matrices. Existing meth-
ods include dimension reduction ([16], [3], [2]), Nyström
approximation ([12], [1], [10]), and random projections of
large kernel matrices ([15]). Indeed, low-rank approximation
strategies effectively reduce the size of large matrices such that
the reduced matrices can be conveniently stored and processed.

In this paper, we propose a randomly sketched predictive
variance to reduce the computational complexity. Theoretically,
we show that given a lower bound of the projection dimension,
our approach leads to a consistent estimator of the true variance.
Furthermore, our variance estimator is optimal for a large
family of kernel matrices with polynomially and exponentially
decaying eigenvalues. This includes, for instance, cubic splines
and Gaussian kernels.

To illustrate the applicability of our theorical contribution,
we describe an application of our variance estimator in active
learning. In many scenarios, the task of manually labeling

(unlabeled) data points is expensive and time-consuming.
Therefore it is very important to minimize the number of
training examples needed to estimate a particular type of
regression function. Suppose we have a set of training examples
and labels (responses), and we are permitted to actively choose
future unlabeled examples based on the data that we have
previously seen. Active learning aims at solving this problem
and has been used with various learners such as neural networks
[9], [5], mixture models [6], support vector machines [13]
and kernel ridge regression. In active learning, the predictive
variance can be viewed as an uncertainty score to iteratively
select the most informative unlabeled data points. That is,
the largest predictive variance corresponds to the highest
uncertainty in y for unlabeled points, which indicates that
we may need more information regarding those points.

II. PRELIMINARIES

In this section, we introduce kernel ridge regression,
its mean prediction and the conditional covariance. Let
X = (X1, · · · , Xn)

> be the training examples, and y =
(y1, · · · , yn) be the corresponding training labels, where
Xi ∈ X with distribution PX and yi ∈ R for all i = 1, . . . , n.
Consider the following nonparametric regression model

yi = f∗(Xi) + εi, for i = 1, · · · , n (1)

where εi’s are independent random variables with mean 0 and
variance σ2. Hereafter, we assume that H is a reproducing
kernel Hilbert space (RKHS) associated with a reproducing
kernel function K(·, ·) defined from X × X to R. Let 〈·, ·〉H
denote the inner product of H associated with K(·, ·), then the
reproducing kernel property states that

〈f,K(x, ·)〉H = f(x), for all f ∈ H.

The corresponding norm is defined as ‖f‖H :=
√
〈f, f〉H for

any f ∈ H.
The classic kernel ridge regression (KRR) estimate is

obtained via minimizing a penalized likelihood function:

f̂n ≡ argminf∈H

{
1

n

n∑
i=1

(yi − f(Xi))
2 + λ‖f‖2H

}
(2)



Let K be the n-dimensional kernel matrix with entries Kij =
1
nK(Xi, Xj) for 1 ≤ i, j ≤ n. By the representer theorem, f̂n
has the form

f(·) =
n∑
i=1

ωiK(·, Xi)

for a real vector ω = (ω1, . . . , ωn)
>, equation (2) reduces to

solving the following optimization problem:

ω† = argminω∈Rn
{
ω>K2ω − 2

n
y>Kω + λω>Kω

}
. (3)

Thus, the KRR estimator is expressed as f̂n(·) =∑n
i=1 ω

†
iK(·, Xi), where ω† = 1

n (K + λI)−1y.
For a new testing data point x, let k(x) =

(K(x,X1),K(x,X2), · · · ,K(x,Xn))
>. It is easy to

calculate its mean prediction and variance given X and y as
follows:

ŷ(x) =
1

n
k(x)>(K + λI)−1y

V1(x) = Var(ŷ(x)|X, x) = σ2

n2
k(x)>(K + λI)−2k(x).

Analyzing the conditional variance for the testing data is
very important in active learning, since it can act as a guide
to select the efficient information we need. However, the time
and space taken for solving (K + λI)−1 is of order O(n3).
This cost is expensive especially when the kernel matrix is
dense and the sample size is large.

III. RANDOMLY PROJECTED VARIANCE

In this section, we introduce our randomly projected condi-
tional covariance and our main assumptions. Note that by the
Binomial Inverse Theorem, we have

(K + λI)−1 =
1

λ
(I −K(λK +K2)−1K). (4)

To reduce the computational cost, now we propose to replace
(K + λI)−1 by using a randomly projected version as follows

1

λ
(I −KS>(λSKS> + SK2S>)−1SK), (5)

where S ∈ Rm×n is a random matrix where each row is inde-
pendently distributed and sub-Gaussian. Then the conditional
variance with the randomly projected matrix can be written as

V2(x) = Var(ŷ(x)|X, x, S)

=
σ2

n2λ2
k(x)>(I−KS>(λSKS>+SK2S>)−1SK)2k(x)

(6)
The definition of V2 is also our contribution. The variance

V2 is different from the variance that could be derived from
the results in [15], which is:

V3(x) =
σ2

n2
k(x)>KS>(λSKS>+SK2S>)−1SK2S>

(λSKS>+SK2S>)−1SKk(x)

Unfortunately, understanding the concentration of V3 seems
highly nontrivial. However, our new proposed randomly

sketched variance V2 in eq.(6) has nice concentration properties
in Theorem IV.1.

Note that calculating (λSKS>+SK2S>)−1 only takes the
order of O(mn2), which enhances the computational efficiency
greatly. In Section 4, we will provide a lower bound for m that
guarantees stability of the variance after random projection.

Here we introduce some notations to study the dimension
of the random matrix. Define the efficiency dimension as

sλ = argmin{j : µ̂j ≤ λ} − 1, (7)

where µ̂j is the j-th highest eigenvalue of the kernel matrix
K. More formally, let K = UDU>, where U ∈ Rn×n is an
orthonormal matrix, i.e., UU> is an n × n identity matrix,
and D ∈ Rn×n is a diagonal matrix with diagonal elements
µ̂1 ≥ µ̂2 ≥ · · · ≥ µ̂n > 0.

In this paper, we consider random matrices with independent
sub-Gaussian rows. For the random matrix S, the ith row
Si ∈ Rn is sub-Gaussian if for all u ∈ Rn, 〈Si, u〉 are sub-
Gaussian random variables, i.e.,

P{|〈Si, u〉| > t} ≤ e · exp{−t2}.

Matrices fulfilling the above condition include all matrices with
independent sub-Gaussian entries as a particular instance. The
class of sub-Gaussian variates includes for instance Gaussian
variables, any bounded random variable (e.g. Bernoulli, multino-
mial, uniform), any random variable with strongly log-concave
density, and any finite mixture of sub-Gaussian variables. In
the following of the paper, we scale the random matrix by

√
m

for analyzing convenience.
Next, we state our main assumption and some useful results

related to the randomly projected kernel matrix.

Assumption A1. Let S be a sub-Gaussian random matrix
with independent rows. Let λ → 0 and λ � 1/n. Set the
projection dimension m ≥ dsλ, where d is an absolute constant.
For K = UDU>, let U = (U1, U2) with U1 ∈ Rn×sλ , and

U2 ∈ Rn×(n−sλ). Let D =

(
D1 0
0 D2

)
with D1 ∈ Rsλ×sλ

and D2 ∈ R(n−sλ)×(n−sλ). We assume that S satisfies the
following conditions:

(i) 1/2 ≤ λmin(SU1) ≤ λmax(SU1) ≤ 3/2 with probability
greater than 1 − 2 exp{−cm}, where c is an absolute
constant independent of n.

(ii) ||SU2D
1/2
2 ||op ≤ c′λ1/2 with probability greater than 1−

2 exp{−c′′m}, where c′ and c
′′

are constants independent
of n.

In Assumption A1, the kernel matrix is partitioned into a
summation of the form K = U1D1U

>
1 + U2D2U

>
2 where U1

contains the first sλ columns of the orthonormal matrix U ,
which correspond to the first leading eigenvalues of the kernel
matrix; and U2 contains the rest of the n− sλ columns of the
U , which correspond to the smallest n − sλ eigenvalues. In
most cases, the smallest n−sλ eigenvalues are neglectable due
to a fast decaying rate of the eigenvalues. Assumption A1 (i)
ensures that the randomly projected eigenvectors corresponding



to the leading eigenvalues still preserve the distance between
each other approximately; Assumption A1 (ii) ensures that
the operator norm of the lowest “neglectable” part would
not change too much after the random projection. Random
matrices satisfying Assumption A1 include sub-Gaussian
random matrices (see detailed proof in [8]), as well as matrices
constructed by randomly sub-sampling and rescaling the rows
of a fixed orthonormal matrix. We refer the interested reader
to [15], [14] for more details.

Our work differs from [15] in several fundamental ways. [15]
focuses on the (mean) prediction error on a training set, and it
is unclear how this relates to a prediction error on a testing
set. In contrast to [15], we target the variance of the prediction
error, and focus on prediction on a test set. Additionally, note
that we define sλ by the tuning parameter λ as in eq. (7),
which is different from [15].

IV. MAIN RESULTS

Recall that for a new testing data x, the conditional variance
given training data X and y is V1(x). In this section, we will
show that for the new data x, our new proposed randomly
sketched conditional variance V2(x) can provide a stable
approximation for the original conditional covariance V1(x).

Theorem IV.1. Under Assumption A1, suppose λ → 0 as
n → ∞, λ � n−1, and the projection dimension m ≥ dsλ.
Then with probability at least 1− 2 exp(−cm), with respect
to the random choice of S, we have

sup
x∈X
|V1(x)− V2(x)| ≤

c′σ2

nλ
,

where c and c′ are absolute constants independent of n.

As shown in Theorem IV.1, the convergence rate involves λ
directly. Normally, we choose λ as the optimal one to achieve
minimax optimal estimation. Next, we provide some examples
to show how to choose the lower bound of the projection
dimension for the random matrix S and the corresponding
optimal λ.

Proof. Let k(x) = (g(X1), · · · , g(Xn))
> with g(Xi) =

K(x,Xi) = 〈K(x, ·),K(·, Xi)〉, then we have that g(·) =
K(x, ·) ∈ H. We denote g∗ = k(x) = (g(X1), · · · , g(Xn))

>,
and let σ = 1. Then V1(x) can be written as

V1(x) =
σ2

n2λ2
‖(I −K(λK +K2)−1K)g∗‖22,

by eq.(4), where ‖ · ‖2 is the Euclidean norm. Furthermore

V2(x) =
σ2

n2λ2
‖(I −KS>(λSKS> + SK2S>)−1SK)g∗‖22.

and therefore:

sup
x∈X
|V1(x)− V2(x)|

= sup
x∈X

σ2

n2λ2
[(I −K(λK +K2)−1K)g∗

+ (I −KS>(λSKS> + SK2S>)−1SK)g∗]>

· [(I −K(λK +K2)−1K)g∗

− (I −KS>(λSKS> + SK2S>)−1SK)g∗]

≤ σ2

nλ2
(T1 + T2)

2 (8)

where in the last step, we used Cauchy Schwarz inequality
and the triangle inequality. In the above, T1 and T2 are defined
as follows:

T1 =
1√
n
‖g∗ −K(λK +K2)−1Kg∗‖2

T2 =
1√
n
‖g∗ −KS>(λSKS> + SK2S>)−1SKg∗‖2

Next, we prove that

T 2
1 . λ, T 2

2 . λ. (9)

Before the proof of eq.(9), we first consider the optimization
problem

α̂ = argminα∈Rm
1

n
‖g∗ − nKS>α‖22 + nλ‖K1/2S>α‖22,

(10)
which has the solution α̂ = 1

n (λSKS
> + SK2S>)−1SKg∗.

In this case T 2
2 = 1

n‖g
∗ − nKS>α̂‖22.

Therefore, to prove T 2
2 ≤ λ, we only need to find a vector α̃,

such that 1
n‖g

∗ − nKS>α̃‖22 + nλ‖K1/2S>α̃‖22 ≤ c1λ. This
will imply

1

n
‖g∗ − nKS>α̂‖22 + nλ‖K1/2S>α̂‖22

≤ 1

n
‖g∗ − nKS>α̃‖22 + nλ‖K1/2S>α̃‖22 ≤ c1λ. (11)

By definition of sλ, when 1 ≤ j ≤ sλ then µ̂j ≥ λ and
when sλ < j ≤ n then µ̂j ≤ λ. Let g∗ = (g∗1 , g

∗
2), where

g∗1 ∈ Rsλ , and g∗2 ∈ Rn−sλ . Let z = 1√
n
U>g∗ = (z1, z2)

correspondingly. Also, divide D into D1, D2, where D1, D2

are sλ×sλ and (n−sλ)×(n−sλ) dimension diagonal matrix,
respectively. Let S̃ = (S̃1, S̃2), with S̃1 ∈ Rs×sλ as the left
block and S̃2 ∈ Rs×(n−sλ) as the right block. We construct
a vector α̃ by setting α̃ = 1√

n
S̃1(S̃

>
1 S̃1)

−1D−11 z1 ∈ Rs. By
plugging α̃ into eq.(10), we have that

1

n
‖g∗ − nUDS̃>α̃‖22

=‖z1 −
√
nD1S̃

>
1 α̃‖22 + ‖z2 −D2S̃

>
2 S̃1(S̃

>
1 S̃1)

−1D−11 z1‖22
=G2

1 +G2
2.

Clearly, in our construction G2
1 = 0, and thus we focus on

analyzing G2. For any g(·) ∈ H, there exists a vector β ∈ Rn,
such that g(·) =

∑n
i=1K(·, Xi)βi + ξ(·), where ξ(·) ∈ H,

and such that ξ is orthogonal to the span of {K(·, Xi), i =



1, · · · , n}. Therefore, ξ(Xj) = 〈ξ,K(·, Xj)〉 = 0, and
g(Xj) =

∑n
i=1K(Xi, Xj)βi. Thus g∗ = nKβ, where K

is the empirical kernel matrix. Assume that ‖g‖H ≤ 1, then

nβ>Kβ ≤ 1 ⇒ nβ>KK−1Kβ> ≤ 1

⇒ 1

n
g∗K−1g∗ ≤ 1 ⇒ 1

n
g∗UD−1U>g∗ ≤ 1

Then, we have the ellipse constraint that ‖D−1/2z‖2 ≤ 1,
where z = 1√

n
U>g∗.

Since we have ‖D−1/21 z1‖2 ≤ 1, ‖D−1/22 z2‖2 ≤ 1, which
implies g∗TU2U

>
2 g
∗ ≤ nλ, we have that

G2 ≤‖z2‖2 + ||
√
D2||op||

√
D2S̃

>
2 ||op||S̃1||op||(S̃>1 S̃1)

−1||op

· ||D−1/21 ||op||D−1/21 z1||op ≤ c
√
λ

Therefore, we have ‖z −
√
nDS̃>α̃‖22 ≤ c′λ. For the penalty

term,

nα̃>SKS>α̃ ≤ z>1 D−11 z1 + ‖z>1 D
− 1

2
1 ‖2||D

− 1
2

1 ||op

· ‖S̃2

√
D2‖||

√
D2S̃

>||op||D
− 1

2
1 ||op||D

− 1
2

1 z1||op ≤ c′′,

where c′′ is a constant. Finally, by eq.(11), we can claim that

1

n
‖KS>(λSKS> + SK2S>)−1SKg∗ − g∗‖22 ≤ c1λ,

where c1 is some constant.
Similarly, to prove T 2

1 . λ, we can treat S as an identity
matrix. Consider the following optimization problem

ŵ = argminw∈Rn
1

n
‖g∗ − nKw‖22 + nλ‖K1/2w‖22,

which has the solution ŵ = 1
n (λK +K2)−1Kg∗. In this

case T 2
1 = 1

n‖g
∗ − nKŵ‖22. Therefore, we only need to find

a w̃, such that 1
n‖g

∗ − nKw̃‖22 + nλ‖K1/2w̃‖22 ≤ c2λ. This
will imply

1

n
‖g∗ − nKŵ‖22 + nλ‖K1/2ŵ‖22

≤ 1

n
‖g∗ − nKw̃‖22 + nλ‖K1/2w̃‖22 ≤ c2λ.

(12)

Here we construct w̃ = 1√
n
U1D

−1
1 z1,

1

n
‖g∗ − UDU>w̃‖22

=‖z1 −D1U
>
1 w̃‖22 + ‖z2 −D2U

>
2 U1(U

>
1 U1)

−1D−11 z1‖22
=‖z2‖22 ≤ c2λ.

For the penalty term, nw̃>Kw̃ = z>1 D
−1
1 z1 ≤ 1. Therefore,

combining with eq.(12), we have

1

n
‖K(λK +K2)−1Kg∗ − g∗‖22 ≤ c2λ.

Finally, by eq.(4.1) , we have

sup
x∈X
|V1(x)− V2(x)| ≤

σ2

nλ2
(T1 + T2)

2 .
σ2

nλ

Example 1: Consider kernels with polynomially decaying
eigenvalues µk � k−2α for α ≥ 1. Such kernels include the
α−order periodic Sobolev space, for α = 2, which corresponds
to the cubic spline. Since the optimal rate of λ to achieve
the minimax estimation error is of order n−

2α
2α+1 , we get

the corresponding optimal lower bound for the projection
dimension m & sλ � n

1
2α+1 . Furthermore, the difference

between original conditional variance and randomly sketched
conditional variance |V1(x)− V2(x)| can be bounded by the
order of O(n−

1
2α+1 ).

Example 2: Consider kernels with exponentially decaying
eigenvalues µk � e−αk

p

for p > 0, which include the Gaussian
kernel with p = 2. Since the optimal rate of λ to achieve
the minimax estimation rate is of order (log n)1/p/n, we get
the corresponding lower bound m ≥ sλ � (log(n))1/p, and
|V1(x)− V2(x)| . (log n)−1/p.

V. EXPERIMENTS

In this section, we verify the validity of our theoretical
contribution (Theorem IV.1) through synthetic experiments.

Data were generated based on eq.(1) with the predictor X
following a uniform distribution on [0, 1], f∗(x) = −1 + 2x2,
and εi ∼ N(0, σ2). We used Gaussian random projection
matrices.

For the polynomial kernel, Figure 1 (a) shows the gap
supx∈[0,1] |V1(x) − V2(x)| with the training sample size n
ranging from 50 to 1000, while fixing σ = 1, and the projection
dimension m = d1.5n1/(2α+1)e with α = 2. Note that with
the increase of the sample size n, the gap |V1 − V2| decreases
with the rate O(1/n) as predicted by Theorem IV.1. For Figure
1 (c), we fix the sample size as n = 1000, and σ = 1, while
varying the projection dimension m = d1.2nc/(2α+1)e with c
ranging from 0.4 to 1.9. Note that an increase of m leads to a
smaller gap supx |V1(x)− V2(x)|, but this improvement is no
longer obvious when m ≥ 1.2n1/(2α+1) (or equivalently when
c = 1), which is the optimal projection dimension demonstrated
in Example 1. In Figure 1 (e), we vary σ from 0.5 to 5, while
fixing sample size n = 1000 and projection dimension as
d1.5n1/(2α+1)e with α = 2; Note that supx |V1(x) − V2(x)|
increases almost linearly with respect to σ, which is consistent
with our theory.

For the Gaussian kernel, Figure 1 (b) shows gap
supx∈[0,1] |V1(x) − V2(x)| with the training sample size n
ranging from 50 to 1000, while fixing σ = 1 and the projection
dimension m = d2

√
log(n)e. Note that the gap |V1 − V2|

decreases with the rate O(1/n) as predicted by Theorem IV.1.
For Figure 1 (d), we fix the sample size as n = 1000, and σ = 1,
while varying the projection dimension m = d1.2(log(n))c/2e
with c ranging from 0.3 to 1.8. Note that an increase of m leads
to a smaller gap supx |V1(x)−V2(x)|, but this improvement is
no longer obvious when m ≥ 1.2(log(n))1/2 (or equivalently
when c = 1), which is the optimal projection dimension
demonstrated in Example 2. In Figure 1 (f), we fix n = 1000
and m = d2

√
log(n)e, but vary σ from 0.5 to 5. As in the

previous experiment, note that supx |V1(x)− V2(x)| increases



almost linearly with respect to σ, which is consistent with our
theory.

In Appendix VI-B, we show additional synthetic experiments
verifying our theoretical contribution. We further illustrate the
use of our projected variance estimator in active learning,
in synthetic data as well as two real-world datasets. In
this illustrative application, by using the randomly sketched
predictive variance, the computational complexity is reduced
from O(n3) to O(mn), where m is the projection dimension.
Given our theoretical finding, our variance estimator does not
sacrifice statistical accuracy.

Fig. 1. (a), (c), (e):supx |V1(x)− V2(x)| for the polynomial kernel; (b),
(d), (f):supx |V1(x) − V2(x)| for the Gaussian kernel. Error bars at 95%
confidence level for 200 repetitions of the experiments.

VI. CONCLUDING REMARKS

There are several ways of extending this research. While we
focused on kernel ridge regression, it would be interesting to
propose a statistically and computationally efficient variance
estimator for Gaussian processes as well. Additionally, currently
in Assumption A1, we only considered sub-Gaussian random
matrices, for theoretical convenience. However, the property in
Assumption A1 might also hold for subsampled Fourier and
Hadamard random matrices, but with a different relationship
between m and sλ. For sub-Gaussian random matrices, we
only need m > sλ. But for Hadamard random matrices, m >
sλ log n is needed for estimation of the (mean) prediction error
as in [15]. This might also likely happen in our predictive
variance. But note that our definition of sλ is different from

[15]. The analysis of different random matrices is appealing
for future work. However, our general results on sub-Gaussian
matrices should be seen as a necessary first step towards this
endeavor.
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APPENDIX

A. Illustrative Application: Randomly Sketched Active Learning
Algorithm

Active learning has been successfully applied to classification
as well as regression problems [4]. Most active learning
algorithms need to iteratively compute a score for each
unlabeled samples. Specifically, the kernel ridge regression
approach needs to evaluate the prediction variance for the
unlabeled samples. As the size of the training data increases,
the cost of computation increases cubically. An additional
aspect that increases the computational cost is the use of cross
validation to select the tuning parameters at each iteration,
followed by computing the score for each unlabeled subject.
Our randomly sketched active learning is aimed to reduce the
computational cost for both model fitting and score calculation.

The main computational cost for randomly sketched KRR
lies in computing the matrix multiplication of the sketch
matrix and the kernel matrix. Suppose the current training
set has n0 data points and the projection dimension of the



random matrix is m. The computational complexity of the
matrix multiplication is of the order of O(mn20). In the next
iteration, ns data points are added to the training set. Instead
of calculating the matrix multiplication for all n0 + ns data
points, we only need to calculate the entries corresponding to
the updated data points. We partition the new kernel matrix as

K =

[
K1 K12

K21 K2

]
where K1 ∈ Rn0×n0 is the kernel matrix of the current training
set, while K12 ∈ Rn0×ns , K21 ∈ Rns×n0 and K2 ∈ Rns×ns .
Correspondingly, we partition the new random projection matrix
as,

S =

[
S1 S12

S21 S2

]
where S1 ∈ Rm1×n0 is the sketch matrix from the current
step, while S12 ∈ Rm1×ns , S21 ∈ R(m2−m1)×n0 , S2 ∈
R(m2−m1)×ns , and m1 and m2 are the projections dimension
for the current and new sketch matrices correspondingly. Then
the matrix multiplication can be written as,

SK =

[
K1 K12

K21 K2

] [
S1 S12

S21 S2

]
=

[
S1K1 + S12K21 S1K12 + S12K22

S21K1 + S2K21 S21K12 + S2K2

] (13)

Since S1K1 has already been calculated in the previous step, we
only need to calculate the remaining terms. The computational
complexity is thus reduced from O(m(n0+ns)

2) to O(mn0ns).
The size n0 increases at each iteration, but the step size ns is
fixed. Thus, O(mn0ns) is at most O(mn0). The reduction of
computational complexity is significant for large training sets.

Algorithm 1 Active learning algorithm
Input:
Initial training data set S
Unlabeled data U
repeat

Step 1: Calculate the projected kernel matrix using eq.(13).

Step 2: Apply the randomly sketched kernel ridge regres-
sion to the training data S.
Step 3: Calculate the randomly sketched prediction
variance V2(x) for the samples in U as in eq.(3.4).
Step 4: Sample ns points based on the weight V2(x) and
obtain the labels associated to them.
Step 5: Add the sampled points to the training data set
S and remove them from unlabeled set U .

until The predefined convergence condition is satisfied
Output:
Final training set S.

The difference between Algorithm 1 and the classical active
learning algorithm is that we use V2(x) as weights to randomly
sample data points from the unlabeled training data instead of
deterministically selecting the data points with largest scores.

If there is a small cluster of data with large scores, the
deterministic method tends to add all of them into the training
set initially. Suppose these data points are clustered together
and outside of the majority of data points. Once they are
all selected in the first few iterations, they may become the
majority in the training set, and since the total size of labeled
data is very small in early iterations, this will add an extra bias
in the prediction. Thus we use the weighted random sampling
strategy to ensure a substantial probability to select data points
with large score while avoiding to select too many of them at
once.

B. Experiments

In this section, we evaluate the performance of our proposed
random projection approach. We run experiments on synthetic
data as well as on real-world data sets.

1) Confirming our theoretical contribution: Through syn-
thetic experiments, we first verify the validity of our theoretical
contribution (Theorem IV.1). Here 500 training samples were
generated based on eq.(1) with X ∼ 1/2N(0.5, 0.5) +
1/2N(5, 5). We use the Gaussian kernel function K(x, x′) =

exp− (x−x′)2

2σ2 , where σ = 1. Next, we generated 50 testing
samples following the same distribution. Here we generated a
random projection matrix with Gaussian distributed entries, and
the projection dimension is chosen as m = c

√
log(n), with

c = 8, 10, 12 respectively (m = 20, 25, 30 approximately). We
observe that, with the increase of m, the randomly projected
variance performs similar to the original conditional variance,
which confirmed the validity of our approach. Also, as for
the computational time, the time for calculating the original
variance for a new sample x takes 4.654s, but our proposed
new randomly projected variance only takes 0.251s, showing
the practical advantage of our method.

Fig. 2. Red dots represent the original variance for the new sample x, blue
dots represent the randomly projected variance.

2) Illustrative application on active learning: synthetic
experiments: Next, we illustrate the use of our variance
estimator in active learning with synthetic data. (Appendix
VI-A provides details of a simple algorithm that uses of our
variance estimator and attains O(mn) time.) For comparison,
we simulated 5000 data points as the training set and 1000 data
points as the testing set. The initial training set was selected



by randomly sampling 100 data points from the training set.
In the simulation settings, we use the Gaussian kernel,

Kgau(u, v) = e−
1

2h2
(u−v)2

with bandwidth h = 0.25. We report the mean squared
error(MSE) at each iteration.

Simulation Setting 1. We simulate the predictor X from
a uniform distribution on [0, 1] and f∗(x) = −1 + 2x2. The
response yi was generated as yi = f∗(xi) + εi (i = 1, . . . , n),
where εi are i.i.d. standard Gaussian noise.

Gaussian random projection matrix is used in this setting,
and we choose the sketch dimension m = dlog(n)e. As shown
in Figure 2, the randomly sketched active learning algorithm
has the smallest mean squared error after 30 iteration. Also,
the mean squared error of randomly sketched active learning
algorithm converges as fast as the active learning with the
original KRR and random sampling with original KRR.

Simulation Setting 2. We simulate the predictor X from
the following distribution

xi =

{
Unif[0, 1/2] if i = 1, . . . , k
1 + zi if i = k + 1, . . . , n

where zi ∼ N(0, 1/n) and k = d
√
ne. For this experiment,

we make f∗(x) = −1 + 2x2. The response yi was generated
as yi = f∗(xi)+ εi (i = 1, . . . , n), where εi are i.i.d. standard
Gaussian noise.
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Fig. 3. We compare active learning strategies with random sampling strategies
under the original KRR, and the randomly sketched KRR respectively. Y-
axes is the mean squared error. At each iteration, we add 30 data points and
show the predicted MSE of the four strategies in different colors:“rsKRR+V2”
denotes our randomly sketched active learning algorithm, “KRR+V1” denotes
active learning with original KRR, “KRR+rand” denotes uniform random
sampling with original KRR and “rsKRR+rand” denotes uniform random
sampling with randomly sketched KRR. (Error bars at 95% confidence level
for 30 repetitions of the experiments.)

Same as the Setting 1, we also use a Gaussian random matrix
with sketch dimension m = dlog(n)e. As shown in Figure 3,
the original active learning method shows faster convergence
rate and achieves lower MSE after 50 iterations compared to
the random sampling algorithm. For this unevenly distributed
data, it is unlikely to select the data outside the majority for
the random sampling strategy. However, the minority data with
large prediction variance tends to be selected by the active
learning algorithm. Thus the randomly sketched active learning
algorithm is comparable with active learning with the original
KRR after 30 iterations and converges to a similar MSE.

3) Illustrative application on active learning: real-word
experiments: Next, we illustrate the use of our variance
estimator in active learning with real-world data. (Appendix
VI-A provides details of a simple algorithm that uses of our
variance estimator and attains O(mn) time.)

Flight Delay Data. Here, we evaluate our randomly sketched
active learning algorithm on the US flight dataset [7] that
contains up to 2 million points. We use a subset of the data
with flight arrival and departure times for commercial flights
in 2008. The flight delay was used as our response variable
and we included 8 of the many variables from this dataset: the
age of the aircraft, distance that needs to be covered, airtime,
departure time, arrival time, day of the week, day of the month
and month.
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Fig. 4. We compare active learning strategies with random sampling strategies
using randomly sketched KRR. Y-axes is the root mean squared error. At
each iteration, we add 1000 data points and show the predicted rMSE of two
strategies in different colors: “rsKRR+V2” denotes our randomly sketched
active learning algorithm, “rsKRR+rand” denotes uniform random sampling
with randomly sketched KRR. (Error bars at 95% confidence level for 30
repetitions of the experiments.)

We randomly selected 60, 000 data points, using 50, 000 as
the training set and 10, 000 as the testing set. We first randomly
selected 1000 data points as labeled data. Then we sequentially
added 1000 data points from the unlabeled training data at each
iteration. We use the Gaussian random matrix with projection
dimension m = dlog(n)e. Here we only use the randomly
sketched KRR since the computational cost and required RAM
of the original KRR is too large. To compare the performance
of active learning and uniform sampling, we calculate the
RMSE(root mean squared error) 30 times using the prediction
on the testing set. In Figure 4, the active learning algorithm
achieves the RMSE of the full data faster than the uniform
random sampling method.

World Weather Data. In what follows, we examined our
method on another real world dataset. The world weather
dataset contains monthly measurements of temperature, precip-
itation, vapor, cloud cover, wet days and frost days from Jan
1990 to Dec 2002 on a 5× 5 degree grid that covers the entire
world. In our experiments, the response variable is temperature.
We use the Gaussian random matrix with projection dimension
m = dlog(n)e. We use 10, 000 samples for training and 10, 000
samples for testing. We start with an initial set of 200 labeled
points, and add 200 points at each iteration. As we can observe
in Figure 5, our method compares favorably.
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