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Abstract—We analyze the necessary number of samples for
sparse vector recovery in a noisy linear prediction setup. This
model includes problems such as linear regression and classifi-
cation. We focus on structured graph models. In particular, we
prove that sufficient number of samples for the weighted graph
model proposed by Hegde and others [2] is also necessary. We
use the Fano’s inequality [11] on well constructed ensembles as
our main tool in establishing information theoretic lower bounds.

Index Terms—Compressive sensing, Linear Prediction, Classi-
fication, Fano’s Inequality, Mutual Information, Kullback Leibler
divergence.

I. INTRODUCTION

Sparse vectors are widely used tools in fields related to
high dimensional data analytics such as machine learning,
compressed sensing and statistics. This makes estimation of
sparse vectors an important field of research. In a compressive
sensing setting, the problem is to closely approximate a
d−dimensional signal by an s−sparse vector without losing
much information. For regression, this is usually done by
observing the inner product of the signal with a design matrix.
It is a well known fact that if the design matrix satisfies the
Restricted Isometry Property (RIP) then estimation can be
done efficiently with a sample complexity of O(s log d

s ). Many
algorithms such as CoSamp [5], Subspace Pursuit (SP) [4] and
Iterative Hard Thresholding (IHT) [3] provide high probability
performance guarantees. Baraniuk and others [1] came up with
a model based sparse recovery framework. Under this frame-
work, the sufficient number of samples for correct recovery
is logarithmic with respect to the cardinality of the sparsity
model.

A major issue with the model based framework is that it
does not provide any recovery algorithm on its own. In fact, it
is some times very hard to come up with an efficient recovery
algorithm. Addressing this issue, Hegde and others [2] came
up with a weighted graph model for graph structured sparsity
and provided a nearly linear time recovery algorithm. They
also analyzed the sufficient number of samples for efficient
recovery. In this paper, we will provide the necessary condition
on the sample complexity for sparse recovery on a weighted
graph model. We will also note that our information theoretic
lower bound can be applied not only to linear regression but
also to other linear prediction tasks such as classification.

The paper is organized as follows. We describe our setup
in Section II. Then we briefly describe the weighted graph
model in Section III. We state our results in Section IV. In
Section V, we apply our technique to some specific examples.
At last, we provide some concluding remarks in Section VI.
A detailed version of the same paper containing all the proofs
is available at [15].

II. LINEAR PREDICTION MODEL

In this section, we introduce the observation model for
linear prediction and later specify how to use it for specific
problems such as linear regression and classification. Formally,
the problem is to estimate an s−sparse vector β̄ from noisy
observations of the form,

z = f(Xβ̄ + e) , (1)

where z ∈ Rn is the observed output, X ∈ Rn×d is the design
matrix , e ∈ Rn is a noise vector and f : Rn → Rn is a fixed
function. Our task is to recover β̄ ∈ Rd from the observations
z.

A. Linear Regression

Linear regression is a special case of the above by choosing
f(x) = x. Then we simply have,

z = Xβ̄ + e . (2)

Prior work analyzes the sample complexity of sparse recovery
for the linear regression setup. In particular, if the design
matrix X satisfies the Restricted Isometry Property (RIP) then
algorithms such as CoSamp [5], Subspace Pursuit (SP) [4]
and Iterative Hard Thresholding (IHT) [3] can recover β̄ quite
efficiently and in a stable way with a sample complexity of
O(s log d

s ). Furthermore, it is known that Gaussian random
matrices (or sub-Gaussian in general) satisfy RIP [6]. If we
choose our design matrix to be a Gaussian matrix and we
have a good sparsity model that incorporates extra information
on the sparsity structure then we can reduce the sample
complexity to O(logms) where ms is number of possible
supports in the sparsity model, i.e., the cardinality of the
sparsity model [1]. In the same line of work, Hegde and
others [2] proposed a weighted graph based sparsity model
to efficiently learn β̄.



B. Classification

We can model binary classification problems by choosing
f(x) = sign(x) or in other words, we can have,

z = sign(Xβ̄ + e) . (3)

Similar to the linear regression setup, there is also prior
work [9], [12], [10], on analyzing the sample complexity of
sparse recovery for binary classification problem (also known
as 1-bit compressed sensing).

Since arguments for establishing information theoretic lower
bounds are not algorithm specific, we can extend our basic ar-
gument to the both settings mentioned above. For comparison,
we will use the results by Hegde and others [2] in a linear
regression setup.

III. WEIGHTED GRAPH MODEL (WGM)

In this section, we introduce the Weighted Graph Model
(WGM) and formally state the sample complexity results
from [2]. The Weighted Graph Model is defined on an
underlying graph G = (V,E) whose vertices are on the
coefficients of the unknown s−sparse vector β̄ ∈ Rd i.e.
V = [d] = {1, 2, . . . , d}. Moreover, the graph is weighted and
thus we introduce a weight function w : E → N. Borrowing
some notations from [2], for a forest F ⊆ G we denote∑

e∈F we as w(F ). B denotes the weight budget, s denotes the
sparsity (number of non-zero coefficients) of β̄ and g denotes
the number of connected components in F . The weight-degree
ρ(v) of a node v ∈ V is the largest number of adjacent nodes
connected by edges with the same weight, i.e.,

ρ(v) = max
b∈N

|{(v′, v) ∈ E | w(v′, v) = b}| . (4)

We define the weight-degree of G, ρ(G) to be the maximum
weight-degree of any v ∈ V . Next, we define the Weighted
Graph Model on coefficients of β̄ as follows:

Definition 1 (Definition 1 in [2]): The (G, s, g,B)−WGM
is the set of supports defined as

M = {S ⊆ [d] | |S| = s and ∃ F ⊆ G with VF = S,

γ(F ) = g, w(F ) ≤ B} ,

where γ(F ) is number of connected components in a forest
F . Authors in [2] provide the following sample complexity
result for linear regression under their model:

Theorem 1 (Theorem 3 in [2]): Let β̄ ∈ Rd be in the
(G, s, g,B)−WGM . Then

n = O(s(log ρ(G) + log
B

s
) + g log

d

g
) (5)

i.i.d. Gaussian observations suffice to estimate β̄. More pre-
cisely, let e ∈ Rn be an arbitrary noise vector from equation
(2) and X be an i.i.d. Gaussian matrix. Then we can efficiently
find an estimate β̂ such that

∥β̄ − β̂∥ ≤ C∥e∥ , (6)

where C is a constant independent of all variables above.

Notice that in the noiseless case (e = 0), we recover
the exact β̄. We will prove that information-theoretically, the
bound on the sample complexity is tight and thus the algorithm
of [2] is statistically optimal.

IV. MAIN RESULTS

In this section, we will state our results for both the noiseless
and the noisy case. We establish an information theoretic lower
bound on linear prediction problem defined on WGM. We
use Fano’s inequality [11] to prove our result by carefully
constructing an ensemble, i.e., a WGM. Any algorithm which
infers β̄ from this particular WGM would require a minimum
number of samples. Note that the use of restricted ensembles
is customary for information-theoretic lower bounds [13] [14].
It follows that in the case of linear regression, the upper bound
on the sample complexity by Hegde and others [2] is indeed
tight.

A. Noiseless Case

Here, we provide a necessary condition on the sample
complexity for exact recovery in the noiseless case. More
formally,

Theorem 2: There exists a particular (G, s, g,B)−WGM ,
and a particular set of weights for the entries in the support
of β̄ such that if we draw a β̄ ∈ Rd uniformly at random and
we have a data set S of n ∈ o((s− g)(log ρ(G) + log B

s−g ) +

g log d
g+(s−g) log g

s−g+s log 2) i.i.d. observations as defined
in equation (1) with e = 0 then P (β̄ ̸= β̂) ≥ 1

2 irrespective
of the procedure we use to infer β̂ on (G, s, g,B) −WGM
from S.

Proof sketch: We use Fano’s inequality [11] on a
carefully chosen restricted ensemble to prove our theorem. A
detailed proof can be found in [15].

B. Noisy Case

A similar result can be stated for the noisy case. However,
in this case, recovery is not exact but is sufficiently close in l2-
norm with respect to noise in the signal. Another thing to note
is that in [2] inferred β̂ can come from a slightly bigger WGM
model but here we actually infer β̂ from the same WGM.

Theorem 3: There exists a particular (G, s, g,B)−WGM ,
and a particular set of weights for the entries in the support
of β̄ such that if we draw a β̄ ∈ Rd uniformly at random
and we have a data set S of n ∈ o((s − g)(log ρ(G) +
log B

s−g )+g log d
g+(s−g) log g

s−g+s log 2) i.i.d. observations

as defined in equation (1) with ei
iid∼ N (0, σ),∀i ∈ {1 . . . n}

then P(∥β̄ − β̂∥ ≥ C∥e∥) ≥ 1
10 for 0 < C ≤ C0 irrespective

of the procedure we use to infer β̂ on (G, s, g,B) −WGM
from S.

Remark 1: Note that when s ≫ g and B ≥ s − g then
Ω((s− g)(log ρ(G) + log B

s−g ) + g log d
g + (s− g) log g

s−g +

s log 2) is roughly Ω(s(log ρ(G) + log B
s ) + g log d

g ).
Proof: We will prove this result in three steps. First, we

will carefully construct an underlying graph G for the WGM.
Second, we will bound mutual information between β̄ and S
by bounding the Kullback-Leibler (KL) divergence. Third, we



will bound the size of properly defined restricted ensemble to
complete our proof.

a) Constructing an underlying graph G for the WGM:
We construct an underlying graph for the WGM using the
following steps:

• Divide d nodes equally into g groups with each group
having d

g nodes.
• For each group j, we denote a node by N j

i where j is
the group index and i is the node index. Each group j,
contains nodes from N j

1 to N j
d
g

.

• We allow for circular indexing, i.e., a node N j
i where

i > d
g is same as node N j

i− d
g

.

• For each p = 1, . . . , B
s−g , node N j

i has an edge with
nodes N j

i+(p−1)
ρ(G)

2 +1
to N j

i+p
ρ(G)

2

with weight p.
• Cross edges between nodes in two different groups are

allowed as long as they have edge weights greater than
B

s−g and they do not affect ρ(G).
Figure 1 shows an example of a graph constructed using the
above steps. Furthermore, parameters for our WGM satisfy
the following requirements:
R1. d

g ≥ ρ(G)B
s−g + 1,

R2. ρ(G)B
2(s−g) ≥

s
g − 1,

R3. B ≥ s− g .
These are quite mild requirements (see [15]) on the parameters
and are easy to fulfill. Figure 2 shows one graph which follows
our construction and also fulfills R1, R2 and R3. We define
our restricted ensemble F on G as:

F =

{
β | βi = 0, if i /∈ S, βi ∈

{
C0σ

√
d√

2(1− ϵ)
,

C0σ
√
d√

2(1− ϵ)
+

C0σ
√
d√

(1− ϵ)

}
, if i ∈ S, S ∈ M

}
,

(7)

for some 0 < ϵ < 1 and M is as in Definition 1.
Our true β̄ is picked uniformly at random from the above
restricted ensemble. We will prove that on this restricted en-
semble, our Theorem 3 holds. We will make use of following
lemmas for our proof:

Lemma 1: Given the restricted ensemble F ,

∥β̄ − β̂∥ ≤ C0σ
√
d√

(1− ϵ)
⇐⇒ β̄ = β̂ .

We are dealing with high dimensional cases, hence moving
forward we will assume that n < d. We state another lemma:

Lemma 2: For some 0 < ϵ < 1,

P
(
∥e∥2 ≤ σ2 n

1− ϵ

)
≥ 1− exp

(
− ϵ2n

4

)
.

From Lemma 1, Lemma 2 and using the fact that d > n and
C ≤ C0, the corollary below follows:

Corollary 1:

P
(
∥β̄ − β̂∥ ≥ C∥e∥ | β̄ ̸= β̂

)
≥ 1− exp

(
− ϵ2n

4

)
.

b) Bound on the mutual information: We will assume
that the elements of design matrix X have been chosen at
random and independently from N (0, 1). The linear prediction
problem from Section II can be described by the following
Markov’s chain:

β̄ → y = Xβ̄ + e → z = f(y) → β̂ . (8)

Lets say S contains n i.i.d. observations of z and S ′ contains
n i.i.d. observations of y. Then using the data processing
inequality [11] we can say that,

I(β̄,S) ≤ I(β̄,S ′) . (9)

Hence, for our purpose it suffices to have an upper bound on
I(β̄,S ′). Now we can bound the mutual information by the
following [8]:

I(β̄,S ′) ≤ 1

|F|2
∑
β∈F

∑
β′∈F

KL(PS′|β∥PS′|β′) , (10)

where KL is the Kullback-Leibler divergence. Note that S ′

consists of n i.i.d. observations of y. Hence,

I(β̄,S ′) ≤ n

|F|2
∑
β∈F

∑
β′∈F

KL(Pyi|β∥Pyi|β′) (11)

Furthermore, from equation (8) and noting that the elements
of X come independently from N (0, 1),

yi = Xiβ + ei

yi|β ∼ N (0, ∥β∥2 + σ2)

yi|β′ ∼ N (0, ∥β′∥2 + σ2) .

We can bound the Kullback-Leibler divergence between Pyi|β
and Pyi|β′ as follows:

KL(Pyi|β∥Pyi|β′) =
1

2

(
∥β∥2 + σ2

∥β′∥2 + σ2
− 1

− log
∥β∥2 + σ2

∥β′∥2 + σ2

)
≤ 1

2

( ∥β∥2 + σ2

∥β′∥2 + σ2
− 1− 1 +

∥β′∥2 + σ2

∥β∥2 + σ2

)

≤ 1

2

 ( C0σ
√
d√

2(1−ϵ)
+ C0σ

√
d√

(1−ϵ)
)2s+ σ2

( C0σ
√
d√

2(1−ϵ)
)2s+ σ2

+
( C0σ

√
d√

2(1−ϵ)
+ C0σ

√
d√

(1−ϵ)
)2s+ σ2

( C0σ
√
d√

2(1−ϵ)
)2s+ σ2

− 2


≤ 1

2

(
2
( C0σ

√
d√

2(1−ϵ)
+ C0σ

√
d√

1−ϵ
)2s+ σ2

( C0σ
√
d√

2(1−ϵ)
)2s+ σ2

− 2
)

≤ 1

2

(
2
(
√
2 + 1)2( C0σ

√
d√

2(1−ϵ)
)2s+ σ2

( C0σ
√
d√

2(1−ϵ)
)2s+ σ2

− 2
)

≤ (
√
2 + 1)2 − 1

≤ 5 .



Fig. 1. An example of constructing an underlying graph for ρ(G) = 2 and B
s−g

= 2

Fig. 2. An example of an underlying graph G for (G, s, g, B)−WGM with parameters d = 15, s = 10, g = 5, B = 5, ρ(G) = 2

The first inequality holds because 1 − 1
x ≤ log x,∀x > 0,

the second inequality holds by taking the largest value of
numerators and the smallest value of denominators. The other
inequalities follow from simple algebraic manipulation. Sub-
stituting KL(Pyi|β∥Pyi|β′) in equation (11) we get,

I(β̄,S ′) ≤ 5n . (12)

c) Bound on |F|: Now we will count elements in F
to complete our proof. We present the following counting
argument to establish a lower bound on all the possible
supports for our restricted ensemble:

1) We choose one node from each of the g groups in un-
derlying graph G to be root of a connected component.
Each group has d

g possible candidates for the root and
hence we can choose them in (dg )

g possible ways.
2) Since we are interested only in establishing a lower

bound on F , we will only consider the cases where each
connected component has s

g nodes. Moreover, given a
root node N j

i in group j, we will choose the remaining
s
g − 1 nodes connected with the root only from the
nodes N j

i+1 to nodes N j

i+
Bρ(G)
2(s−g)

(using circular indices

if needed). Construction of the graph G allows us to
do this. At least till the last ρ(G)B

2(s−g) nodes, we always
include node N j

i and we never include N j
r , r ≤ i − 1

in our selection. Furthermore, R1 guarantees that we
have enough nodes to avoid any possible repetitions
due to circular indices for the last ρ(G)B

2(s−g) nodes and R2
ensures that we have enough nodes to form a connected
component. This guarantees that all the supports are
unique. Hence, given a root node N j

i we have
( ρ(G)B

2(s−g)
s
g−1

)

choices which across all the groups comes out to be
(
( ρ(G)B

2(s−g)
s
g−1

)
)g.

3) Each entry in the support of β can take two values which
can either be C0σ

√
d√

2(1−ϵ)
or C0σ

√
d√

2(1−ϵ)
+ C0σ

√
d√

(1−ϵ)
.

It should be noted that any support chosen using the above
steps satisfies constraint on weight budget, i.e., w(F ) ≤ B as
the maximum edge weight in any connected component will
always be less than or equal to B

s−g . Combining all the above
steps together we get:

|F| ≥ 2s(
d

g
)g(

( ρ(G)B
2(s−g)
s
g − 1

)
)g

≥ 2s(
d

g
)g(

ρ(G)Bg

2(s− g)2
)(s−g) .

(13)

Using Fano’s inequality [11] and results from equation (12)
and equation (13), it is easy to prove the following lemma,

Lemma 3: If n ∈ o(log |F|) then P(β̂ ̸= β̄) ≥ 1
2 .

By using Bayes’ Theorem and combining Corollary 1 and
Lemma 3,

P
(
∥β̄ − β̂∥ ≥ C∥e∥

)
≥ P

(
∥β̄ − β̂∥ ≥ C∥e∥, β̄ ̸= β̂

)
= P

(
∥β̄ − β̂∥ ≥ C∥e∥ | β̄ ̸= β̂

)
P
(
β̄ ̸= β̂

)
≥

(
1− exp

(
− ϵ2n

4

))1
2
.

(14)

The last inequality (14) holds when n is o(log |F|). We also
know that n ≥ 1 and if we choose ϵ ≥

√
−4 log 0.8 ∼ 0.9448,



then we can write inequality (14) as,

P(∥β̄ − β̂∥ ≥ C∥e∥) ≥ 1

10
. (15)

V. SPECIFIC EXAMPLES

Here, we will provide counting arguments for some of the
well-known sparsity structures, such as tree sparsity and block
sparsity models. It should be noted that barring the count of
possible supports in the specific model our technique can be
used to prove lower bounds of the sample complexity for other
sparsity structures.

A. Tree-structured sparsity model

The tree-sparsity model [1], [7] is used in many applications
such as wavelet decomposition of piecewise smooth signals
and images. In this model, we assume that the coefficients
of the s−sparse signal form a k−ary tree and the support
of the sparse signal form a rooted and connected sub-tree
on s nodes in this k−ary tree. The arrangement is such
that if a node is part of this subtree then its parent is also
included in it. Here, we will discuss the case of a binary tree
which can be generalized to a k−ary tree. In particular, the
following proposition provides a lower bound on the number
of possible supports of an s−sparse signal following a binary
tree-structured sparsity model.

Proposition 1: In a binary tree-structured sparsity model F ,
log |F| ≥ cs for some c > 0.
The proof of the proposition 1 follows from the fact that
we have at least 2s different choices of β̄ in our restricted
ensemble. From the above and following the same proof
technique as before, it is easy to prove the following corollary
for the noisy case (a similar result holds for the noiseless case
as well).

Corollary 2: In a binary tree-structured sparsity model, if
n ∈ o(s) then P(∥β̄ − β̂∥ ≥ C∥e∥) ≥ 1

10 .
Essentially, Corollary 2 proves that the O(s) sample complex-
ity achieved in [2] is optimal for the tree-sparsity model.

B. Block sparsity model

In the block sparsity model, [1], an s−sparse signal, β ∈
RJ×N , can be represented as a matrix with J rows and N
columns. The support of β comes from K columns of this
matrix such that s = JK. More precisely,

Definition 2 (Definition 11 in [1]):

SK =
{
β = [β1 . . . βN ] ∈ RJ×N such that

βn = 0 for n /∈ L, L ⊆ {1, . . . , N}, |L| = K} .

The above can be modeled as a graph model. In particular,
we can construct a graph G over all the elements in β by
treating nodes in the column of the matrix as connected nodes
(see Fig. 3) and then our problem is to choose K connected
components from N .

It is easy to see that the number of possible supports in
this model, F , would be, |F| = 2KJ

(
N
K

)
≥ 2KJ(NK )K .

Fig. 3. Block sparsity structure as a graph model: nodes are variables, black
nodes are selected variables

Correspondingly the necessary number of samples for efficient
signal recovery comes out to be Ω(KJ+K log N

K ). An upper
bound of O(KJ+K log N

K ) was derived in [1] which matches
our lower bound.

VI. CONCLUDING REMARKS

We proved that the necessary number of samples required
to efficiently recover a sparse vector in the weighted graph
model is of the same order as the sufficient number of samples
provided by Hegde and others [2]. Moreover, our results
not only pertain to linear regression but also apply to linear
prediction problems in general.
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APPENDIX

PROOF OF LEMMA 1

Proof: First note that when β̄ = β̂ then its obvious that
Lemma 1 holds. Here, we will prove that two arbitrarily chosen
β1 and β2 such that β1, β2 ∈ F where β1 ̸= β2 then ∥β1 −
β2∥ ≥ C0σ

√
d√

1−ϵ
. F is as defined in equation (7).

a) β1 and β2 have the same support: Since we assume
that β1 ̸= β2, thus they must differ in at least one position on
their support. Lets say that one such position is i. Then,

∥β1 − β2∥ ≥ |β1i − β2i|

=
C0σ

√
d√

1− ϵ
.

b) β1 and β2 have different supports: When β1 and β2

have different supports then we can always find i and j such
that i ∈ S1, i /∈ S2 and j /∈ S1, j ∈ S2 where S1 and S2 are
supports of β1 and β2 respectively. Then,

∥β1 − β2∥ ≥
√
β2
1i + β2

2j

≥

√
(

C0σ
√
d√

2(1− ϵ)
)2 + (

C0σ
√
d√

2(1− ϵ)
)2

=
C0σ

√
d√

1− ϵ
.

Since this is true for any two arbitrarily chosen β1 and β2,
hence it holds for β̄ and β̂ as well. This proves the lemma.

PROOF OF LEMMA 2

Proof:

P
(
∥e∥2 ≥ σ2 n

1− ϵ

)
= P

(
exp

(λ
2
∥ e
σ
∥2
)
≥ exp

(λ
2

n

1− ϵ

))
≤

E
[
exp

(
λ
2 ∥

e
σ∥

2
)]

exp
(
λ
2

n
1−ϵ

)
= exp

(−λ

2

n

1− ϵ

)( 1

1− λ

)n
2

.

The first equality holds for any λ > 0, we take 0 < λ < 1 .
The second inequality comes from Markov’s inequality. The
last equality follows since ei

σ

iid∼ N (0, 1). Now, by taking
λ = ϵ,

P
(
∥e∥2 ≥ σ2 n

1− ϵ

)
≤ exp

(−n

2

( ϵ

1− ϵ
+ log(1− ϵ)

))
≤ exp

(
− ϵ2n

4

)
.

The last inequality holds because for 0 < ϵ < 1, ϵ
1−ϵ+log(1−

ϵ) ≥ ϵ2

2 . This proves our lemma,

P
(
∥e∥2 ≤ σ2 n

1− ϵ

)
≥ 1− exp

(
− ϵ2n

4

)
.

PROOF OF LEMMA 3

Proof: Using Fano’s inequality [11], we can say that,

P(β̂ ̸= β̄) ≥ 1− I(β̄,S) + log 2

log |F|

≥ 1− I(β̄,S ′) + log 2

log |F|

≥ 1− 5n+ log 2

log |F|
.

The first inequality follows from equation (9) and the second
inequality follows from the upper bound on the mutual in-
formation established in equation (12). Now, we want P(β̂ ̸=
β̄) ≤ 1

2 , then it follows that n must be,

n ≥ 1

10
log |F| − 1

5
log 2 . (16)

This proves the lemma.

PROOF OF THEOREM 2

Proof:
c) Constructing an underlying graph G: We assume that

our underlying graph G fulfills all the properties mentioned
while proving Theorem 3. On this underlying graph G, we
define our restricted ensemble F as:

F = {βi ∈ {1,−1}, if i ∈ S, else βi = 0, S ∈ M} ,

where M is as in Definition 1.
d) Bound on the mutual information: We will assume

that the elements of design matrix X have been chosen at
random and independently from N ( 1

s
√
2
, 1
s ). As in the proof

of Theorem 3, we can describe noiseless linear prediction
problem as the following Markov’s chain:

β̄ → y = Xβ̄ → z = f(y) → β̂ . (17)

Lets say S contains n i.i.d. observations of z and S ′ contains
n i.i.d. observations of y. Then using the data processing
inequality [11], we can say that,

I(β̄,S) ≤ I(β̄,S ′) . (18)

Hence, for our purpose it suffices to have an upper bound on
I(β̄,S ′). Now using results from [8],

I(β̄,S ′) ≤ 1

|F|2
∑
β∈F

∑
β′∈F

KL(PS′|β∥PS′|β′) .

where KL is the Kullback-Leibler divergence. Note that S ′

consists of n i.i.d. observations of y. Hence,

I(β̄,S ′) ≤ n

|F|2
∑
β∈F

∑
β′∈F

KL(Pyi|β∥Pyi|β′) . (19)



Furthermore from equation (17) and noting that the elements
of X come independently from N ( 1

s
√
2
, 1
s ),

yi = Xiβ

yi|β ∼ N (

∑d
k=1 βk

s
√
2

, 1)

yi|β′ ∼ N (

∑d
k=1 β

′
k

s
√
2

, 1) .

We can bound KL(Pyi|β∥Pyi|β′) by,

KL(Pyi|β∥Pyi|β′) =
1

2
(

∑d
k=1(βk − β′

k)

s
√
2

)2

≤ 1 .

Substituting KL(Pyi|β∥Pyi|β′) in equation (19) we get,

I(β̄,S ′) ≤ n . (20)

e) Bound on |F|: Using a similar counting logic used in
Theorem 3, we can get:

|F| ≥ 2s(
d

g
)g(

ρ(G)Bg

2(s− g)2
)(s−g) . (21)

We prove the theorem by substituting the mutual information
from equation (20) and |F| from equation (21) in the Fano’s
inequality [11].

DISCUSSION ON THE REQUIREMENTS FOR THE
UNDERLYING GRAPH G

We mentioned before that R1, R2 and R3 are quite mild
requirements on the parameters. In fact, it is easy to see that,

Proposition 2: Given any value of s, g and B ≥ s−g, there
are infinitely many choices for ρ(G) and d that satisfy R1 and
R2 and hence, there are infinitely many (G, s, g,B)-WGM
which follow our construction.

Proof: R3 is readily satisfied if each edge has at least unit
edge weight and we are not forced to choose isolated nodes
in support. Most of the graph-structured sparsity models fulfill
this requirement. R2 gives us a lower bound on the choice of
ρ(G),

ρ(G) ≥ 2(s− g)2

Bg
.

Similarly, given a value of ρ(G), R1 just provides a lower
bound on choice of d,

d ≥ gρ(G)B

s− g
+ g .

Clearly, there is an infinite number of combinations for ρ(G)
and d.


