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Abstract—In this paper we study the problem of exact recovery
of the pure-strategy Nash equilibria (PSNE) set of a graphical
game from noisy observations of joint actions of the players
alone. We consider sparse linear influence games — a parametric
class of graphical games with linear payoffs, and represented by
directed graphs of n nodes (players) and in-degree of at most k.
We present an `1-regularized logistic regression based algorithm
for recovering the PSNE set exactly, that is both computationally
efficient — i.e. runs in polynomial time — and statistically
efficient — i.e. has logarithmic sample complexity. Specifically,
we show that the sufficient number of samples required for exact
PSNE recovery scales as O (poly(k) logn). We also validate our
theoretical results using synthetic experiments.

I. INTRODUCTION AND RELATED WORK

Non-cooperative game theory is widely regarded as an
appropriate mathematical framework for studying strategic
behavior in multi-agent scenarios. The core solution concept of
Nash equilibrium describes the stable outcome of the overall
behavior of self-interested agents — for instance people,
companies, governments, groups or autonomous systems —
interacting strategically with each other and in distributed
settings.

Over the past few years, considerable progress has been
made in analyzing behavioral data using game-theoretic tools,
e.g. computing Nash equilibria [1], [2], [3], most influential
agents [4], price of anarchy [5] and related concepts in the con-
text of graphical games. In political science for instance, Irfan
and Ortiz [4] identified, from congressional voting records, the
most influential senators in the U.S. congress — a small set of
senators whose collective behavior forces every other senator
to a unique choice of vote. Irfan and Ortiz [4] also observed
that the most influential senators were strikingly similar to the
gang-of-six senators, formed during the national debt ceiling
negotiations of 2011. Further, using graphical games, Honorio
and Ortiz [6] showed that Obama’s influence on Republicans
increased in the last sessions before candidacy, while McCain’s
influence on Republicans decreased.

The problems in algorithmic game theory described above,
i.e. computing the Nash equilibria, computing the price of
anarchy or finding the most influential agents, require a
known graphical game which is not available apriori in real-
world settings. Therefore, Honorio and Ortiz [6] proposed

learning graphical games from behavioral data, using max-
imum likelihood estimation (MLE) and sparsity-promoting
methods. Honorio and Ortiz [6] and Irfan and Ortiz [4] have
also demonstrated the usefulness of learning sparse graphical
games from behavioral data in real-world settings, through
their analysis of the voting records of the U.S. congress as
well as the U.S. supreme court.

In this paper, we analyze a particular method proposed by
Honorio and Ortiz [6] for learning sparse linear influence
games, namely, using logistic regression for learning the neigh-
borhood of each player in the graphical game, independently.
Honorio and Ortiz [6] showed that the method of independent
logistic regression is likelihood consistent; i.e. in the infinite
sample limit, the likelihood estimate converges to the true
achievable likelihood. In this paper we obtain the stronger
guarantee of recovering the true PSNE set exactly. Needless to
say, our stronger guarantee comes with additional conditions
that the true game must satisfy in order to allow for exact
PSNE recovery. The most crucial among our conditions is the
assumption that the minimum payoff across all players and all
joint actions in the true PSNE set is strictly positive. We show,
through simulation experiments, that our assumptions indeed
bears out for large classes of graphical games, where we are
able to exactly recover the PSNE set.

Finally, we would like to draw the attention of the reader
to the fact that `1-regularized logistic regression has been
analyzed by Ravikumar et. al. [7] in the context of learning
sparse Ising models. Apart from technical differences and
differences in proof techniques, our analysis of `1-penalized
logistic regression for learning sparse graphical games differs
from Ravikumar et. al. [7] conceptually — in the sense that
we are not interested in recovering the edges of the true
game graph, but only the PSNE set. Therefore, we are able to
avoid some stronger and non-intuitive conditions required by
Ravikumar et. al. [7], such as mutual incoherence.

The rest of the paper is organized as follows. In section II we
provide a brief overview of graphical games and, specifically,
linear influence games. We then formalize the problem of
learning linear influence games in section III. In section IV,
we present our main method and associated theoretical results.
Then, in section V we provide experimental validation of our
theoretical guarantees. Finally, in section VI we conclude by



discussing avenues for future work.

II. PRELIMINARIES

In this section we review key concepts behind graphical
games introduced by Kearns et. al. [8] and linear influence
games (LIGs) introduced by Irfan and Ortiz [4] and Honorio
and Ortiz [6].

A. Graphical Games

A normal-form game G in classical game theory is defined
by the triple G = (V,A,U) of players, actions and payoffs. V
is the set of players, and is given by the set V = {1, . . . , n},
if there are n players. A is the set of actions or pure-strategies
and is given by the Cartesian product A .

= ×i∈VAi, where
Ai is the set of pure-strategies of the i-th player. Finally, U .

=
{ui}ni=1, is the set of payoffs, where ui : Ai ×j∈V \i Aj → R
specifies the payoff for the i-th player given its action and the
joint actions of the all the remaining players.

A key solution concept in non-cooperative game theory is
the Nash equilibrium. For a non-cooperative game, a joint
action x∗ ∈ A is a pure-strategy Nash equilibrium (PSNE)
if, for each player i, x∗i ∈ argmaxxi∈Ai ui(xi,x

∗
−i), where

x∗−i = {x∗j |j 6= i}. In other words, x∗ constitutes the mutual
best-response for all players and no player has any incentive
to unilaterally deviate from their optimal action x∗i given the
joint actions of the remaining players x∗−i. The set of all pure-
strategy Nash equilibrium (PSNE) for a game G is defined as
follows:

NE(G) =

{
x∗
∣∣(∀i ∈ V ) x∗i ∈ argmax

xi∈Ai
ui(xi,x

∗
−i)

}
. (1)

Graphical games, introduced by Kearns et. al. [8], extend
the formalism of Graphical models to games. That is, a graph-
ical game G is defined by the directed graph, G = (V,E), of
vertices and directed edges (arcs), where vertices correspond
to players and arcs encode “influence” among players i.e. the
payoff of the i-th player only depends on the actions of its
(incoming) neighbors.

B. Linear Influence Games

Linear influence games (LIGs), introduced by Irfan and
Ortiz [4] and Honorio and Ortiz [6], are graphical games
with binary actions, or pure strategies, and parametric (linear)
payoff functions. We assume, without loss of generality, that
the joint action space A = {−1,+1}n. A linear influence
game between n players, G(n) = (W,b), is characterized
by (i) a matrix of weights W ∈ Rn×n, where the entry
Wij indicates the amount of influence (signed) that the j-th
player has on the i-th player and (ii) a bias vector b ∈ Rn,
where bi captures the prior preference of the i-th player for a
particular action xi ∈ {−1,+1}. The payoff of the i-th player
given the actions of the remaining players is then given as
ui(xi,x−i) = xi(w

T
−ix−i − bi), and the PSNE set is defined

as follows:

NE(G(n)) =
{
x|(∀i) xi(wT

−ix−i − bi) ≥ 0
}
, (2)

where w−i denotes the i-th row of W without the i-th entry,
i.e. w−i = {wij |j 6= i}. Note that we have diag(W) = 0.
For linear influence games G(n), we can define the neighbor-
hood and signed neighborhood of the i-th vertex as N (i) =
{j| |wi,j | > 0} and N±(i) = {sign(wij)|j ∈ N (i)} respec-
tively. It is important to note that we don’t include the outgoing
arcs in our definition of the neighborhood of a vertex. Thus,
for linear influence games, the weight matrix W and the bias
vector b, completely specify the game and the PSNE set in-
duced by the game. Finally, let G(n, k) denote sparse games
over n players where the in-degree of any vertex is at most k,
i.e. for all i, |Ni| ≤ k.

III. PROBLEM FORMULATION

Having introduced the necessary definitions, we now intro-
duce the problem of learning sparse linear influence games
from observations of joint actions only. We assume that there
exists a game G∗(n, k) = (W∗,b∗) from which a “noisy”
data set D = {x(l)}ml=1 of m observations is generated, where
each observation x(l) is sampled independently and identically
from the following distribution:

p(x) =
q1 [x ∈ NE∗]
|NE∗|

+
(1− q)1 [x /∈ NE∗]

2n − |NE∗|
. (3)

In the above distribution, q is the probability of observing a
data point from the set of Nash equilibria and can be thought of
as the “signal” level in the data set, while 1−q can be thought
of as the “noise” level in the data set. We use NE∗ instead of
NE(G∗(n, k)) to simplify notation. We further assume that
the game is non-trivial1 i.e. |NE∗| ∈ {1, . . . 2n − 1} and
that q ∈ (|NE

∗|/2n, 1). The latter assumption ensures that the
signal level in the data set is more than the noise level 2. We
define the equality of two games G∗(n, k) = (W∗,b∗) and
Ĝ(n, k) = (Ŵ, b̂) as follows:

G∗(n, k) = Ĝ(n, k) iff

(∀i) N ∗±(i) = N̂±(i) ∧ sign(b∗i ) = sign(̂bi) ∧ NE∗ = N̂ E .

A natural question to ask then is that, given only the data set D
and no other information, is it possible to recover the weight
matrix Ŵ and the bias vector b̂ such that Ĝ(n, k) = G∗(n, k)?
Honorio and Ortiz [6] showed that it is in general impossible
to learn the true game G∗(n, k) from observations of joint
actions only because multiple weight matrices W and bias
vectors b can induce the same PSNE set and therefore have
the same likelihood under the observation model (3) — an
issue known as non-identifiablity in the statistics literature. It
is, however, possible to learn the equivalence class of games
that induce the same PSNE set. We define the equivalence of
two games G∗(n, k) and Ĝ(n, k) simply as :

G∗(n, k) ≡ Ĝ(n, k) iff NE∗ = N̂ E .

Therefore, our goal in this paper is efficient and consistent
recovery of the pure-strategy Nash equilibria set (PSNE) from

1This comes from Definition 4 in [6].
2See Proposition 5 and Definition 7 in [6] for a justification of this.



observations of joint actions only; i.e. given a data set D,
drawn from some game G∗(n, k) according to (3), we infer a
game Ĝ(n, k) from D such that Ĝ(n, k) ≡ G∗(n, k).

IV. METHOD AND RESULTS

Our main method for learning the structure of a sparse
LIG, G∗(n, k), is based on using `1-regularized logistic re-
gression, to learn the parameters (w−i, bi) for each player
i independently. We denote by vi(W,b) = (w−i,−bi) the
parameter vector for the i-th player, which characterizes its
payoff; and by zi(x) = (xix−i, xi) the “feature” vector. In
the rest of the paper we use vi and zi instead of vi(W,b)
and zi(x) respectively, to simplify notation. Then, we learn
the parameters for the i-th player as follows:

v̂i = argmin
vi

`(vi,D) + λ ‖vi‖1 (4)

`(vi,D) =
1

m

m∑
l=1

log(1 + exp(−vTi z
(l)
i )). (5)

We then set ŵ−i = [v̂i]1:(n−1) and b̂i = −[v̂i]n, where the
notation [.]i:j denotes indices i to j of the vector. We show
that, under suitable assumptions on the true game G∗(n, k) =

(W∗,b∗), the parameters Ŵ and b̂ obtained using (5) induce
the same PSNE set as the true game, i.e. NE(W∗,b∗) =

NE(Ŵ, b̂). Before presenting our main results, however, we
state and discuss the assumptions on the true game under
which it is possible to recover the true PSNE set of the game
using our proposed method.

A. Assumptions

The success of our method hinges on certain assumptions on
the structure of the underlying game. These assumptions are
in addition to the assumptions imposed on the parameter q and
the number of Nash equilibria of the game |NE∗|, as required
by definition of a LIG. Since the assumptions are related to
the Hessian of the loss function (5), we take a moment to
introduce the expressions of the gradient and the Hessian here.
The gradient and Hessian of the loss function for any vector
v and the data set D is given as follows:

∇`(v,D) =
1

m

m∑
l=1

{
−z(l)

1 + exp(vT z(l))

}
(6)

∇2`(v,D) =
1

m

m∑
l=1

η(vT z(l))z(l)z(l)T , (7)

where η(x) = 1/(ex/2+e−x/2)2. Finally, Hm
i denotes the sample

Hessian matrix with respect to the i-th player and the true
parameter v∗i , and H∗i denotes it’s expected value, i.e. H∗i

.
=

ED [Hm
i ] = ED

[
∇2`(v∗i ,D)

]
. In subsequent sections we drop

the notational dependence of H∗i and zi on i to simplify
notation. However, it should be noted that the assumptions
are with respect to each player and must hold individually for
each player i. Now we are ready to state and describe the
implications of our assumptions.

The following assumption ensures that the expected loss is
strongly convex and smooth.

Assumption 1. Let S be the support of the vector v, i.e.
S
.
= {i| |vi| > 0}. Then, there exists constants Cmin > 0 and

Dmax ≤ |S| such that:

λmin(H∗SS) ≥ Cmin and λmax(Ex

[
zSz

T
S

]
) ≤ Dmax,

for all i, where λmin(.) and λmax(.) denote the minimum and
maximum eigenvalues respectively and H∗SS = {H∗i,j |i, j ∈
S}.

To better understand the implications of the above assump-
tions first note that the distribution over joint actions in (3),
after some algebraic manipulations, can be written as follows:

p(x) =

(
q − |NE∗|/2n
1− |NE∗|/2n

)
1 [x ∈ NE∗]
|NE∗|

+(
1− q

1− |NE∗|/2n

)
1

2n
. (8)

Thus, we have that the distribution over joint actions is a
mixture of two uniform distributions, one over the number
of Nash equilibria and the other being the Rademacher distri-
bution over n variables. We denote the latter distribution by
Rn, i.e. x ∼ Rn =⇒ x ∈ {−1,+1}n ∧ p(x) = 1/2n for all
x. Therefore the expected Hessian matrix H∗ decomposes as
a convex combination of two other Hessian matrices:

H∗ = νHNE
∗

+ (1− ν)HR, (9)

where we have defined:

HNE∗
.
=

1

|NE∗|
∑

x∈NE∗
η(v∗T z)zzT ,

HR .
= Ez∼Rn

[
η(v∗T z)zzT

]
,

ν
.
=

(
q − |NE∗|/2n
1− |NE∗|/2n

)
.

Now, by concavity of λmin(.) and the Jensen’s inequality we
have that

Cmin ≥ νλmin(HNE
∗

SS ) + (1− ν)λmin(HR
SS)

≥ νλmin(HNE
∗

SS ) + (1− ν)η(‖v∗‖1)

≥ (1− ν)η(‖v∗‖1) > 0,

where the last line follows from the fact that HNE
∗

SS is positive
semi-definite. In fact, λmin(HNE

∗

SS ) = 0, if |NE∗| < n. Thus,
we have that our assumption of q ∈ (NE

∗
/2n, 1) automatically

implies that λmin(H∗i ) ≥ Cmin > 0. We can also verify that
the maximum eigenvalue is bounded as follows:

Dmax ≤ νλmax

(
1

|NE∗|
∑

x∈NE∗
zSz

T
S

)
+

(1− ν)λmax(Ez∼Rn
[
zSz

T
S

]
)

≤ ν |S|+ (1− ν).

The following assumption characterizes the minimum pay-
off in the Nash equilibria set.



Assumption 2. The minimum payoff in the PSNE set, ρmin,
is strictly positive, specifically:

xi(w
∗
−i
Tx−i − bi) ≥ ρmin > 5Cmin/Dmax (∀ x ∈ NE∗).

Note that as long as the minimum payoff is strictly posi-
tive, we can scale the parameters (W∗,b∗) by the constant
5Cmin/Dmax to satisfy the condition: ρmin > 5Cmin/Dmax, with-
out changing the PSNE set or the likelihood of the data. Indeed
the assumption that the minimum payoff is strictly positive is
is unavoidable for exact recovery of the PSNE set in a noisy
setting such as ours, because otherwise this is akin to exactly
recovering the parameters v for each player i. For example,
if x ∈ NE∗ is such that v∗Tx = 0, then it can be shown that
even if ‖v∗ − v̂‖∞ = ε, for any ε arbitrarily close to 0, then
v̂Tx < 0 and therefore NE(W∗,b∗) 6= NE(Ŵ, b̂). Next,
we present our main theoretical results for learning LIGs.

B. Theoretical Guarantees
Our main strategy for obtaining exact PSNE recovery guar-

antees is to first show, using results from random matrix theory,
that given the assumptions on the eigenvalues of the population
Hessian matrices, the assumptions hold in the finite sample
case with high probability. Then, we exploit the convexity
properties of the logistic loss function to show that the weight
vectors learned using penalized logistic regression is “close” to
the true weight vectors. By our assumption that the minimum
payoff in the PSNE set is strictly greater than zero, we show
that the weight vectors inferred from a finite sample of joint
actions induce the same PSNE set as the true weight vectors.

1) Minimum and Maximum Eigenvalues of Finite Sample
Hessian and Scatter Matrices: The following technical lemma
shows that the assumptions on the eigenvalues of the Hessian
matrices, hold with high probability in the finite sample case.

Lemma 1. If λmin(H∗SS) ≥ Cmin and λmax(Ex

[
zSz

T
S

]
) ≤

Dmax then we have that

λmin(Hm
SS) ≥ Cmin

2
and λmax

(
m∑
l=1

z
(l)
S z

(l)
S

T

)
≤ 2Dmax

with probability at least

1− |S| exp

(
−mCmin

2 |S|

)
and 1− |S| exp

(
−m(1− ν)

4 |S|

)
respectively.

Proof. Let

µmin
.
= λmin(H∗SS) and µmax

.
= λmax(Ex

[
zSz

T
S

]
).

First note that for all z ∈ {−1,+1}n:

λmax(η(v∗S
T zS)zSz

T
S ) ≤ |S|

4

.
= R

λmax(zSz
T
S ) ≤ |S| .= R′.

Using the Matrix Chernoff bounds from Tropp [9](Theorem
1.1), we have that

Pr {λmin(Hm
SS) ≤ (1− δ)µmin} ≤ |S|

[
e−δ

(1− δ)1−δ

]mµmin
R

.

Setting δ = 1/2 we get that

Pr {λmin(Hm
SS) ≤ µmin/2} ≤ |S|

[√
2

e

] 4mµmin
|S|

≤ |S| exp

(
−mCmin

2 |S|

)
.

Therefore, we have

Pr {λmin(Hm
SS) > Cmin/2} > 1− |S| exp

(
−mCmin

2 |S|

)
.

Next, we have that

µmax = λmax(Ex

[
zSz

T
S

]
)

≥ λmin(Ex

[
zSz

T
S

]
)

≥ νλmin

(
1

|NE∗|
∑

x∈NE∗
zSz

T
S

)
+ (1− ν)

≥ (1− ν).

Once again invoking Theorem 1.1 from [9] and setting δ = 1
we have that

Pr {λmax ≥ (1 + δ)µmax} ≤ |S|
[

eδ

(1 + δ)1+δ

](mµmax)/R′

Pr {λmax ≥ 2µmax} ≤ |S|
[e

4

](mµmax)/|S|

≤ |S| exp

(
−mµmax

4 |S|

)
≤ |S| exp

(
−m(1− ν)

4 |S|

)
Therefore, we have that

Pr {λmax < 2Dmax} > 1− |S| exp

(
−m(1− ν)

4 |S|

)
.

2) Recovering the Pure Strategy Nash Equilibria (PSNE)
Set: Before presenting our main result on the exact recovery
of the PSNE set from noisy observations of joint actions, we
first present a few technical lemmas that would be helpful
in proving the main result. The following lemma bounds the
gradient of the loss function (5) at the true vector v∗, for all
players.

Lemma 2. With probability at least 1 − δ for δ ∈ [0, 1], we
have that

‖∇`(v∗,D)‖∞ < νκ+

√
2

m
log

2n

δ
,

where κ = 1/(1+exp(ρmin)) and ρmin ≥ 0 is the minimum payoff
in the PSNE set.



Proof. Let um .
= ∇`(v∗,D) and umj denote the j-th index of

um. We have that

(∀ j ∈ Sc ∧ j 6= n)
∣∣E [umj ]∣∣

=

∣∣∣∣∣ ν

|NE∗|
∑

x∈NE∗

zj
1 + exp((v∗S)T zS)

+

(1− ν)Ez∼Rn

[
zj

1 + exp((v∗S)T zS)

]∣∣∣∣∣
=

∣∣∣∣∣ ν

|NE∗|
∑

x∈NE∗

zj
1 + exp((v∗S)T zS)

+

(1− ν)

{
EzS∼R|S|

[
1

1 + exp((v∗S)T zS)

]
Ezj∼R [zj ]

}∣∣∣∣∣
≤

∣∣∣∣∣ νκ

|NE∗|
∑

x∈NE∗
xixj

∣∣∣∣∣ = νκ

Similarly,

(∀ j ∈ S ∧ j 6= n)
∣∣E [umj ]∣∣

=

∣∣∣∣∣ ν

|NE∗|
∑

x∈NE∗

zj
1 + exp((v∗S)T zS)

+

(1− ν)Ez∼Rn

[
zj

1 + exp((v∗S)T zS)

]∣∣∣∣∣
≤

∣∣∣∣∣ ν

|NE∗|
∑

x∈NE∗

zj
1 + exp((v∗S)T zS)

+

(1− ν)Ezj∼R [zj ]

∣∣∣∣∣
≤ νκ.

Following the same procedure as above, it can be easily shown
that the above bounds hold for the case j = n as well. Also
note that

∣∣umj ∣∣ ≤ 1. Therefore, by using the Hoeffding’s in-
equality [10] and a union bound argument we have that:

Pr

{
n

max
j=1

∣∣umj − E
[
umj
]∣∣ < t

}
> 1− 2ne

−mt2/2

=⇒ Pr {‖um − E [um]‖∞ < t} > 1− 2ne
−mt2/2

=⇒ Pr {‖um‖∞ − ‖E [um]‖∞ < t} > 1− 2ne
−mt2/2

=⇒ Pr {‖um‖∞ < νκ+ t} > 1− 2ne
−mt2/2.

Setting 2n exp(−mt
2
/2) = δ, we prove our claim.

A consequence of Lemma 2 is that, even with an infinite
number of samples, the gradient of the loss function at the
true vector v∗ doesn’t vanish. Therefore, we cannot hope to
recover the parameters of the true game perfectly even with an
infinite number of samples. In the following technical lemma
we show that the optimal vector v̂ for the logistic regression
problem is close to the true vector v∗ in the support set S of
v∗. Next, in Lemma 4, we bound the difference between the
true vector v∗ and the optimal vector v̂ in the non-support set.

The lemmas together show that the optimal vector is close to
the true vector.

Lemma 3. If the regularization parameter λ satisfies the fol-
lowing condition:

λ ≤ 5C2
min

16 |S|Dmax
− νκ−

√
2

m
log

2n

δ
,

then

‖v∗S − v̂S‖2 ≤
5Cmin

4
√
|S|Dmax

,

with probability at least 1 − (δ + |S| exp((−mCmin)/2|S|) +
|S| exp((−m(1−ν))/4|S|)).

Proof. The proof of this lemma follows the general proof
structure of Lemma 3 in [7]. First, we reparameterize the `1-
regularized loss function

f(vS) = `(vS) + λ ‖vS‖1

as the loss function f̃ , which gives the loss at a point that is
∆S distance away from the true parameter v∗S as follows:

f̃(∆S) = `(v∗S + ∆S)− `(v∗S) + λ(‖v∗S + ∆S‖1 − ‖v
∗
S‖1),

where ∆S = vS − v∗S . Also note that the loss function f̃
is shifted such that the loss at the true parameter v∗S is 0,
i.e. f̃(0) = 0. Further, note that the function f̃ is convex
and is minimized at ∆̂S = v̂S − v∗S , since v̂S minimizes f .
Therefore, clearly f̃(∆̂S) ≤ 0. Thus, if we can show that the
function f̃ is strictly positive on the surface of a ball of radius
b, then the point ∆̂S lies inside the ball i.e. ‖v̂S − v∗S‖2 ≤ b.
Using the Taylor’s theorem we expand the first term of f̃ to
get the following:

f̃(∆S) = ∇`(v∗S)T∆S + ∆T
S∇2`(v∗S + θ∆S)∆S

+ λ(‖v∗S + ∆S‖1 − ‖v
∗
S‖1), (10)

for some θ ∈ [0, 1]. Next, we lower bound each of the terms
in (10). Using the Cauchy-Schwartz inequality, the first term
in (10) is bounded as follows:

∇`(v∗S)T∆S ≥ −‖∇`(v∗S)‖∞ ‖∆S‖1
≥ −‖∇`(v∗S)‖∞

√
|S| ‖∆S‖2

≥ −b
√
|S|

(
νκ+

√
2

m
log

2n

δ

)
, (11)

with probability at least 1 − δ for δ ∈ [0, 1]. It is also easy
to upper bound the last term in equation 10, using the reverse
triangle inequality as follows:

λ |‖v∗S + ∆S‖1 − ‖v
∗
S‖1| ≤ λ ‖∆S‖1 .

Which then implies the following lower bound:

λ(‖v∗S + ∆S‖1 − ‖v
∗
S‖1) ≥ −λ ‖∆S‖1

≥ −λ
√
|S| ‖∆S‖2

= −λ
√
|S|b. (12)



Now we turn our attention to computing a lower bound of the
second term of (10), which is a bit more involved.

∆T
S∇2`(v∗S + θ∆S)∆S ≥ min

‖∆S‖2=b
∆T
S∇2`(v∗S + θ∆S)∆S

= b2λmin(∇2`(v∗S + θ∆S)).

Now,

λmin(∇2`(v∗S + θ∆S))

≥ min
θ∈[0,1]

λmin

(
∇2`(v∗S + θ∆S)

)
= min
θ∈[0,1]

λmin

(
1

m

m∑
l=1

η((v∗S + θ∆S)T z
(l)
S )z

(l)
S (z

(l)
S )T

)
Again, using the Taylor’s theorem to expand the function η
we get

η((v∗S + θ∆S)T z
(l)
S )

= η((v∗S)T z
(l)
S ) + η′((v∗S + θ̄∆S)T z

(l)
S )(θ∆S)T z

(l)
S

, where θ̄ ∈ [0, θ]. Continuing from above and from Lemma 1
we have, with probability at least 1− |S| exp((−mCmin)/2|S|):

λmin

(
∇2`(v∗S + θ∆S)

)
≥ min
θ∈[0,1]

λmin

(
1

m

m∑
l=1

η((v∗S)T z
(l)
S )z

(l)
S (z

(l)
S )T

+
1

m

m∑
l=1

η′((v∗S + θ̄∆S)T z
(l)
S )((θ∆S)T z

(l)
S )z

(l)
S (z

(l)
S )T

)
≥ λmin(Hm

SS)− max
θ∈[0,1]

|||A(θ)|||2

≥ Cmin

2
− max
θ∈[0,1]

|||A(θ)|||2,

where we have defined

A(θ)
.
=

1

m

m∑
l=1

η′((v∗S + θ∆S)T z
(l)
S )(θ∆S)T z

(l)
S z

(l)
S (z

(l)
S )T .

Next, the spectral norm of A(θ) can be bounded as follows:

|||A(θ)|||2

≤ max
‖y‖2=1

{
1

m

m∑
l=1

∣∣∣η′((v∗S + θ∆S)T z
(l)
S )
∣∣∣ ∣∣∣((θ∆S)T z

(l)
S )
∣∣∣

× yT (z
(l)
S (z

(l)
S )T )y

}

< max
‖y‖2=1

{
1

10m

m∑
l=1

‖(θ∆S)‖1
∥∥∥z(l)

S

∥∥∥
∞

yT (z
(l)
S (z

(l)
S )T )y

}

≤ θ max
‖y‖2=1

{
1

10m

m∑
l=1

√
|S| ‖∆S‖2 y

T (z
(l)
S (z

(l)
S )T )y

}

= θb
√
|S|

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

10m

m∑
l=1

z
(l)
S (z

(l)
S )T

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤
(b
√
|S|Dmax)

5
≤ Cmin

4
,

where in the second line we used the fact that η′(.) < 1/10

and in the last line we assumed that (b
√
|S|Dmax)/5 ≤ Cmin/4

— an assumption that we verify momentarily. Having upper
bounded the spectral norm of A(θ), we have

λmin

(
∇2`(v∗S + θ∆S)

)
≥ Cmin

4
. (13)

Plugging back the bounds given by (11), (12) and (13) in (10)
and equating to zero we get

−b
√
|S|

(
νκ+

√
2

m
log

2n

δ

)
+
b2Cmin

4
− λ
√
|S|b = 0

=⇒ b =
4
√
|S|

Cmin

(
λ+ νκ+

√
2

m
log

2n

δ

)
.

Finally, coming back to our prior assumption we have

b =
4
√
|S|

Cmin

(
λ+ νκ+

√
2

m
log

2n

δ

)
≤ 5Cmin

4
√
|S|Dmax

.

The above assumption holds if the regularization parameter λ
is bounded as follows:

λ ≤ 5C2
min

16 |S|Dmax
−
√

2

m
log

2n

δ
− νκ.

Lemma 4. If the regularization parameter λ satisfies the fol-
lowing condition:

λ ≥ νκ+

√
2

m
log

2n

δ
,

then we have that

‖v̂ − v∗‖1 ≤
5Cmin

Dmax

with probability at least 1 − (δ + |S| exp((−mCmin)/2|S|) +
|S| exp((−m(1−ν))/4|S|)).

Proof. Define ∆
.
= v̂ − v∗. Also for any vector y let the

notation yS denote the vector y with the entries not in the
support, S, set to zero, i.e.

[yS ]
i

=

{
yi if i ∈ S,
0 otherwise.

Similarly, let the notation ySc denote the vector y with the
entries not in Sc set to zero, where Sc is the complement of
S. Having introduced our notation and since, S is the support
of the true vector v∗, we have by definition that v∗ = v∗

S
. We

then have, using the reverse triangle inequality,

‖v̂‖1 = ‖v∗ + ∆‖1 =
∥∥v∗

S
+ ∆S + ∆Sc

∥∥
1

=
∥∥v∗

S
− (−∆S)

∥∥
1

+ ‖∆Sc‖1
≥ ‖v∗‖1 − ‖∆S‖1 + ‖∆Sc‖1 . (14)

Also, from the optimality of v̂ for the `1-regularized problem
we have that

`(v∗) + λ ‖v∗‖1 ≥ `(v̂) + λ ‖v̂‖1
=⇒ λ(‖v∗‖1 − ‖v̂‖1) ≥ `(v̂)− `(v∗). (15)



Next, from convexity of `(.) and using the Cauchy-Schwartz
inequality we have that

`(v̂)− `(v∗) ≥ ∇`(v∗)T (v̂ − v∗)

≥ −‖∇`(v∗)‖∞ ‖∆‖1

≥ −λ
2
‖∆‖1 , (16)

where in the last line we used the fact that λ ≥ ‖∇`(v∗)‖∞.
Thus, we have from (14), (15) and (16) that

1

2
‖∆‖1 ≥ ‖v̂‖1 − ‖v

∗‖1

=⇒ 1

2
‖∆‖1 ≥ ‖∆Sc‖1 − ‖∆S‖1

=⇒ 1

2
‖∆Sc‖1 +

1

2
‖∆S‖1 ≥ ‖∆Sc‖1 − ‖∆S‖1

=⇒ 3 ‖∆S‖1 ≥ ‖∆Sc‖1 . (17)

Finally, from (17) and Lemma 3 we have that

‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1
≤ 4 ‖∆S‖1 ≤ 4

√
|S| ‖∆S‖2

≤ 5Cmin

Dmax
.

Now we are ready to present our main result on recovering
the true PSNE set.

Theorem 1. If for all i, |Si| ≤ k, the minimum payoff ρmin ≥
5Cmin/Dmax, and the regularization parameter and the number
of samples satisfy the following conditions:

νκ+

√
2

m
log

6n2

δ
≤ λ ≤ 2K + νκ−

√
2

m
log

6n2

δ
(18)

m ≥ max

{
2

K2
log

(
6n2

δ

)
,

2k

Cmin
log

(
3kn

δ

)
,

4k

1− ν
log

(
3kn

δ

)}
, (19)

where K .
= 5C2

min/32kDmax− νκ, then with probability at least
1 − δ, for δ ∈ [0, 1], we recover the true PSNE set, i.e.
NE(Ŵ, b̂) = NE(W∗,b∗).

Proof. From Cauchy-Schwartz inequality and Lemma 4 we
have ∣∣(v̂i − v∗i )

T zi
∣∣ ≤ ‖v̂i − v∗i ‖1 ‖zi‖∞ ≤

5Cmin

Dmax
.

Therefore, we have that

(v∗i )
T zi −

5Cmin

Dmax
≤ v̂Ti zi ≤ (v∗i )

T zi +
5Cmin

Dmax
.

Now, if ∀ x ∈ NE∗, (v∗i )
T zi ≥ 5Cmin/Dmax, then v̂Ti zi ≥ 0.

Using an union bound argument over all players i, we can
show that the above holds with probability at least

1− n(δ + k exp((−mCmin)/2k) + k exp((−m(1−ν))/4k)) (20)

for all players. Therefore, we have that NE(Ŵ, b̂) = NE∗
with high probability. Finally, setting δ = δ′/3n, for some δ′ ∈
[0, 1], and ensuring that the last two terms in (20) are at most
δ′/3n each, we prove our claim.

To better understand the implications of the theorem above,
we discuss some possible operating regimes for learning sparse
linear influence games in the following paragraphs.

Remark 1 (Sample complexity for fixed q). In the theorem
above, if q is constant, which in turn makes ν constant, then
K = Ω (1/k2), and the sample complexity of learning sparse
linear games grows as O

(
k4 log n

)
. However, if q is small

enough such that ν ≤ 1/k, then the constant Dmax is no longer
a function of k and hence K = Ω (1/k). Therefore, the sample
complexity scales as O

(
k2 log n

)
for exact PSNE recovery.

The sample complexity of O (poly(k) log n) for exact re-
covery of the PSNE set can be compared with the sample
complexity of O

(
kn3 log2 n

)
for the maximum likelihood

estimate (MLE) of the PSNE set as obtained by Honorio [11].
Note that while the MLE procedure is consistent, i.e. MLE of
the PSNE set is equal to the true PSNE set with probability
converging to 1 as the number of samples tend to infinity,
it is NP-hard 3. In contrast, the logistic regression method
is computationally efficient. Further, while the sample com-
plexity of our method seems to be better than the empirical
log-likelihood minimizer as given by Theorem 3 in [11], in
this paper we restrict ourselves to LIGs with strictly positive
payoff in the PSNE set — such games are invariably easier to
learn than general LIGs considered by [11].

Honorio [11] also obtained lower bounds on the number
of samples required by any conceivable method, for exact
PSNE recovery, by scaling the parameter q with the number
of players. Therefore, in order to compare our results with
the information-theoretic limits of learning LIGs, we consider
the regime where the parameter q scales with the number of
players n.

Remark 2 (Sample complexity for q varying with number
of players). If we consider the regime where the signal level
scales as q = (|NE∗|+1)/2n. Then, Dmax = O (k/(2n−|NE∗|)),
and as a result K = Ω (2n/k2). Therefore, the sample complex-
ity, which is dominated by the second and third terms in (19),
is given asO (k log(kn)). In general if q = Θ (exp(−n)), then
the sample complexity for recovering the PSNE set exactly is
O (k log(kn)).

Once again we observe that even in the regime of q scaling
exponentially with n, the sample complexity of O (k log(kn))
is better than the information theoretic limit of O

(
kn log2 n

)
,

by a factor of O (n log n). This can be attributed to the fact
that we consider restricted ensembles of games with strictly
positive payoffs in the PSNE set, as opposed to general LIGs.

Further, from the aforementioned remarks we see that as
the signal level q decreases, the sufficient number of samples

3Irfan and Ortiz [4] showed that counting the number of Nash equilibria is
#P-complete. Therefore, computing the log-likelihood is NP-hard.
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Fig. 1. The probability of exact recovery of the PSNE set computed
across 40 randomly sampled LIGs as the number of samples is scaled
as b(C)(10c)(k2 log(6n2/δ))c, where c is the control parameter and the
constant C is 10000 for the k = 1 case and 1000 for the remaining two
case.

needed to recover the PSNE set reduces; and in the limit-
ing case of q decreasing exponentially with the number of
players, the sample complexity scales as O (k log(kn)). This
seems counter-intuitive — with increased signal level, a learn-
ing problem should become easier and not harder. To under-
stand this seemingly counter-intuitive behavior, first observe
that the constant Dmax/Cmin can be thought of as the “con-
dition number” of the loss function given by 5, Therefore,
the sample complexity as given by Theorem 1 can be written
as O

(
k2(Dmax/Cmin)2 log n

)
. From (9), we see that as the

signal level increases, the Hessian of the loss becomes more
ill-conditioned, since the data set now comprises of many
repetitions of the few joint-actions that are in the PSNE set;
thereby increasing the dependency (Dmax) between actions of
players in the sample data set.

V. EXPERIMENTS

In order to verify that our results and assumptions indeed
hold in practice, we performed various simulation experiments.
We generated random LIGs for n players and exactly k neigh-
bors by first creating a matrix W of all zeros and then setting k
off-diagonal entries of each row, chosen uniformly at random,
to −1. We set the bias for all players to 0. We found that any
odd value of k produces games with strictly positive payoff
in the PSNE set. Therefore, for each value of k in {1, 3, 5},
and n in {10, 12, 15, 20}, we generated 40 random LIGs. The
parameters q and δ were set to the constant value of 0.01 and
the regularization parameter λ was set according to Theorem 1
as some constant multiple of

√
(2/m) log(2n/δ). Figure 1 shows

the probability of successful recovery of the PSNE, for various
combinations of (n, k), where the probability was computed
as the fraction of the 40 randomly sampled LIGs for which
the learned PSNE set matched the true PSNE set exactly. For
each experiment, the number of samples was computed as:
b(C)(10c)(k2 log(6n2

/δ))c, where c is the control parameter
and the constant C is 10000 for k = 1 and 1000 for k = 3 and
5. Thus, from Figure 1 we see that, the sample complexity of
O
(
k2 log n

)
as given by Theorem 1 indeed holds in practice

— i.e. there exists constants c and c′ such that if the number of
samples is less than ck2 log n, we fail to recover the PSNE set
exactly with high probability, while if the number of samples
is greater than c′k2 log n then we are able to recover the PSNE
set exactly, with high probability. Further, the scaling remains

consistent as the number of players n is changed from 10 to
20.

VI. CONCLUSION

In this paper, we presented a computationally efficient and
statistically consistent method, based on `1-regularized logistic
regression, for learning linear influence games — a subclass of
parametric graphical games with linear payoffs. Under some
mild conditions on the true game, we showed that as long
as the number of samples scales as O (poly(k) log n), where
n is the number of players and k is the maximum number
of neighbors of any player; then we can recover the pure-
strategy Nash equilibria set of the true game in polynomial
time and with probability converging to 1 as the number of
samples tend to infinity. An interesting direction for future
work would be to consider structured actions — for instance
permutations, directed spanning trees, directed acyclic graphs
among others — thereby extending the formalism of linear
influence games to the structured prediction setting. A more
technical extension would be to consider a local noise model
where the observations are drawn from the PSNE set but with
each action independently corrupted by some noise. Other
ideas that might be worth pursuing are: considering mixed
strategies, correlated equilibria and epsilon Nash equilibria,
and incorporating latent or unobserved actions and variables
in the model.
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