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Abstract

In this paper we obtain sufficient and neces-
sary conditions on the number of samples re-
quired for exact recovery of the pure-strategy
Nash equilibria (PSNE) set of a graphical
game from noisy observations of joint actions.
We consider sparse linear influence games —
a parametric class of graphical games with
linear payoffs, and represented by directed
graphs of n nodes (players) and in-degree of
at most k. We show that one can efficiently
recover the PSNE set of a linear influence
game with O

(
k2 log n

)
samples, under very

general observation models. On the other
hand, we show that Ω (k log n) samples are
necessary for any procedure to recover the
PSNE set from observations of joint actions.

1 Introduction and Related Work

Non-cooperative game theory is widely considered as
an appropriate mathematical framework for studying
strategic behavior in multi-agent scenarios. In Non-
cooperative game theory, the core solution concept
of Nash equilibrium describes the stable outcome of
the overall behavior of self-interested agents — for
instance people, companies, governments, groups or
autonomous systems — interacting strategically with
each other and in distributed settings.

Over the past few years, considerable progress has
been made in analyzing behavioral data using game-
theoretic tools, e.g. computing Nash equilibria [1, 2, 3],
most influential agents [4], price of anarchy [5] and
related concepts in the context of graphical games.
In political science for instance, Irfan and Ortiz [4]
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identified, from congressional voting records, the most
influential senators in the U.S. congress — a small
set of senators whose collective behavior forces every
other senator to a unique choice of vote. Irfan and
Ortiz [4] also observed that the most influential sena-
tors were strikingly similar to the gang-of-six senators,
formed during the national debt ceiling negotiations of
2011. Further, using graphical games, Honorio and Or-
tiz [6] showed that Obama’s influence on Republicans
increased in the last sessions before candidacy, while
McCain’s influence on Republicans decreased.

The problems in algorithmic game theory described
above, i.e., computing the Nash equilibria, comput-
ing the price of anarchy or finding the most influ-
ential agents, require a known graphical game which
is not available apriori in real-world settings. There-
fore, Honorio and Ortiz [6] proposed learning graphi-
cal games from behavioral data, using maximum likeli-
hood estimation (MLE) and sparsity-promoting meth-
ods. On the other hand, Garg and Jaakkola [7] provide
a discriminative approach to learn a class of graphical
games called potential games. Honorio and Ortiz [6]
and Irfan and Ortiz [4] have also demonstrated the use-
fulness of learning sparse graphical games from behav-
ioral data in real-world settings, through their analysis
of the voting records of the U.S. congress as well as the
U.S. supreme court.

In this paper, we obtain necessary and sufficient condi-
tions for recovering the PSNE set of a graphical game
in polynomial time. We also generalize the observa-
tion model from Ghoshal and Honorio [8], to arbitrary
distributions that satisfy certain mild conditions. Our
polynomial time method for recovering the PSNE set,
which was proposed by Honorio and Ortiz [6], is based
on using logistic regression for learning the neighbor-
hood of each player in the graphical game, indepen-
dently. Honorio and Ortiz [6] showed that the method
of independent logistic regression is likelihood consis-
tent; i.e., in the infinite sample limit, the likelihood
estimate converges to the best achievable likelihood.
In this paper we obtain the stronger guarantee of re-
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covering the true PSNE set exactly.

Finally, we would like to draw the attention of the
reader to the fact that `1-regularized logistic regres-
sion has been analyzed by Ravikumar et. al. [9] in
the context of learning sparse Ising models. Apart
from technical differences and differences in proof tech-
niques, our analysis of `1-penalized logistic regres-
sion for learning sparse graphical games differs from
Ravikumar et. al. [9] conceptually — in the sense
that we are not interested in recovering the edges of
the true game graph, but only the PSNE set. There-
fore, we are able to avoid some stronger conditions
required by Ravikumar et. al. [9], such as mutual
incoherence.

2 Preliminaries

In this section we provide some background informa-
tion on graphical games introduced by Kearns et. al.
[10].

2.1 Graphical Games

A normal-form game G in classical game theory is de-
fined by the triple G = (V,X ,U) of players, actions and
payoffs. V is the set of players, and is given by the set
V = {1, . . . , n}, if there are n players. X is the set of
actions or pure-strategies and is given by the Cartesian
product X def

= ×i∈V Xi, where Xi is the set of pure-
strategies of the i-th player. Finally, U def

= {ui}ni=1, is
the set of payoffs, where ui : Xi ×j∈V \i Xj → R spec-
ifies the payoff for the i-th player given its action and
the joint actions of the all the remaining players.

An important solution concept in the theory of non-
cooperative games is that of Nash equilibrium. For a
non-cooperative game, a joint action x∗ ∈ X is a pure-
strategy Nash equilibrium (PSNE) if, for each player
i, x∗i ∈ argmaxxi∈Xi ui(xi,x

∗
−i), where x∗−i = {x∗j |j 6=

i}. In other words, x∗ constitutes the mutual best-
response for all players and no player has any incentive
to unilaterally deviate from their optimal action x∗i
given the joint actions of the remaining players x∗−i.
The set of all pure-strategy Nash equilibrium (PSNE)
for a game G is defined as follows:

NE(G) =

{
x∗
∣∣(∀i ∈ V ) x∗i ∈ argmax

xi∈Xi
ui(xi,x

∗
−i)

}
.

(1)

Graphical games, introduced by Kearns et al. [10],
are game-theoretic analogues of graphical models. A
graphical game G is defined by the directed graph, G =
(V,E), of vertices and directed edges (arcs), where ver-
tices correspond to players and arcs encode “influence”

among players, i.e., the payoff of the i-th player only
depends on the actions of its (incoming) neighbors.

2.2 Linear Influence Games

Irfan and Ortiz [4] and Honorio and Ortiz [6], intro-
duced a specific form of graphical games, called Linear
Influential Games, characterized by binary actions, or
pure strategies, and linear payoff functions. We as-
sume, without loss of generality, that the joint ac-
tion space X = {−1,+1}n. A linear influence game
between n players, G(n) = (W,b), is characterized
by (i) a matrix of weights W ∈ Rn×n, where the
entry wij indicates the amount of influence (signed)
that the j-th player has on the i-th player and (ii)
a bias vector b ∈ Rn, where bi captures the prior
preference of the i-th player for a particular action
xi ∈ {−1,+1}. The payoff of the i-th player is a lin-
ear function of the actions of the remaining players:
ui(xi,x−i) = xi(w

T
−ix−i − bi), and the PSNE set is

defined as follows:

NE(G(n)) =
{
x|(∀i) xi(wT

−ix−i − bi) ≥ 0
}
, (2)

where w−i denotes the i-th row of W without the i-
th entry, i.e. w−i = {wij |j 6= i}. Note that we have
diag(W) = 0. Thus, for linear influence games, the
weight matrix W and the bias vector b, completely
specify the game and the PSNE set induced by the
game. Finally, let G(n, k) denote a sparse game over
n players where the in-degree of any vertex is at most
k.

3 Problem Formulation

Now we turn our attention to the problem of learn-
ing graphical games from observations of joint actions
only. Let NE∗ def

= NE(G∗(n, k)). We assume that
there exists a game G∗(n, k) = (W∗,b∗) from which
a “noisy” data set D = {x(l)}ml=1 of m observations is
generated, where each observation x(l) is sampled in-
dependently and identically from some distribution P.
We will use two specific distributions Pg and Pl, which
we refer to as the global and local noise model, to pro-
vide further intuition behind our results. In the global
noise model, we assume that a joint action is observed
from the PSNE set with probability qg ∈ (|NE

∗|/2n, 1),
i.e.

Pg(x) =
qg1 [x ∈ NE∗]
|NE∗|

+
(1− qg)1 [x /∈ NE∗]

2n − |NE∗|
. (3)

In the above distribution, qg can be thought of as the
“signal” level in the data set, while 1 − qg can be
thought of as the “noise” level in the data set. In
the local noise model we assume that the joint ac-
tions are drawn from the PSNE set with the action of
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each player corrupted independently by some Bernoulli
noise. Then in the local noise model the distribution
over joint actions is given as follows:

Pl(x) =
1

|NE∗|
∑

y∈NE∗

n∏
i=1

q
1[xi=yi]
i (1− qi)1[xi 6=yi],

(4)

where qi > 0.5. While these noise models were in-
troduced in [6], we obtain our results with respect to
very general observation models, satisfying only some
mild conditions. A natural question to ask then is
that: “Given only the data set D and no other in-
formation, is it possible to recover the game graph?”
Honorio and Ortiz [6] showed that it is in general im-
possible to learn the true game G∗(n, k) from obser-
vations of joint actions only because multiple weight
matrices W and bias vectors b can induce the same
PSNE set and therefore have the same likelihood un-
der the global noise model (3) — an issue known as
non-identifiablity in the statistics literature. It is also
easy to see that the same holds true for the local noise
model. It is, however, possible to learn the equivalence
class of games that induce the same PSNE set. We de-
fine the equivalence of two games G∗(n, k) and Ĝ(n, k)
simply as :

G∗(n, k) ≡ Ĝ(n, k) iff NE(G∗(n, k)) = NE(Ĝ(n, k)).

Therefore, our goal in this paper is efficient and consis-
tent recovery of the pure-strategy Nash equilibria set
(PSNE) from observations of joint actions only; i.e.,
given a data set D, drawn from some game G∗(n, k) ac-
cording to the distribution P, we infer a game Ĝ(n, k)

from D such that Ĝ(n, k) ≡ G∗(n, k).

4 Method and Results

In order to efficiently learn games, we make a few as-
sumptions on the probability distribution from which
samples are drawn and also on the underlying game.

4.1 Assumptions

The following assumption ensures that the distribution
P assigns non-zero mass to all joint actions in X and
that the signal level in the data set is more than the
noise level.
Assumption 1. There exists constants p̃min, p̃max and
pmax such that the data distribution P satisfies the fol-
lowing:

0 <
p̃min

2n − |NE∗|
≤ P(x) ≤ p̃max

2n − |NE∗|
,∀x ∈ X \ NE∗,

p̃max

2n − |NE∗|
< P(x) ≤ pmax ≤ 1, ∀x ∈ NE∗.

To get some intuition for the above assumption, con-
sider the global noise model. In this case we have that
p̃min = p̃max = (1 − qg), pmax = qg/|NE∗|, and ∀x ∈
NE∗, P(x) = pmax. For the local noise model, con-
sider, for simplicity, the case when there are only two
joint actions in the PSNE set: NE∗ = {x1,x2}, such
that x1

1 = +1, x2
1 = −1 and x1

i = x2
i = +1 for all i 6= 1.

Then, p̃min = 0.5× (1− q2)× . . .× (1− qn)× (2n− 2),
p̃max = 0.5 × (1 − qj)(

∏
i/∈{j,1} qi) × (2n − 2), where

qj = min{q2, . . . , qn}, and pmax = 0.5× q2 × . . . qn.

Our next assumption concerns with the minimum pay-
off in the PSNE set.

Assumption 2. The minimum payoff in the PSNE
set, ρmin, is strictly positive, specifically:

xi(w
∗
−i
Tx−i − bi) ≥ ρmin > 5Cmin/Dmax (∀ x ∈ NE∗),

where Cmin > 0 and Dmax are the minimum and max-
imum eigenvalue of the expected Hessian and scatter
matrices respectively.

Note that as long as the minimum payoff is strictly
positive, we can scale the parameters (W∗,b∗) by the
constant 5Cmin/Dmax to satisfy the condition: ρmin >
5Cmin/Dmax, without changing the PSNE set. Indeed
the assumption that the minimum payoff is strictly
positive is is unavoidable for exact recovery of the
PSNE set in a noisy setting such as ours, because oth-
erwise this is akin to exactly recovering the parameters
v for each player i. For example, if x ∈ NE∗ is such
that v∗Tx = 0, then it can be shown that even if
‖v∗ − v̂‖∞ = ε, for any ε arbitrarily close to 0, then
v̂Tx < 0 and therefore NE(W∗,b∗) 6= NE(Ŵ, b̂).

4.2 Method

Our main method for learning the structure of a sparse
LIG, G∗(n, k), is based on using `1-regularized logistic
regression, to learn the parameters (w−i, bi) for each
player i independently. We denote by vi(W,b) =
(w−i,−bi) the parameter vector for the i-th player,
which characterizes its payoff; by zi(x) = (xix−i, xi)
the “feature” vector. In the rest of the paper we use vi
and zi instead of vi(W,b) and zi(x) respectively, to
simplify notation. Then, we learn the parameters for
the i-th player as follows:

v̂i = argmin
vi

`(vi,D) + λ ‖vi‖1 (5)

`(vi,D) =
1

m

m∑
l=1

log(1 + exp(−vTi z
(l)
i )). (6)

We then set ŵ−i = [v̂i]1:(n−1) and b̂i = −[v̂i]n, where
the notation [.]i:j denotes indices i to j of the vector.
We take a moment to introduce the expressions of the
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gradient and the Hessian of the loss function (6), which
will be useful later. The gradient and Hessian of the
loss function for any vector v and the data set D is
given as follows:

∇`(v,D) =
1

m

m∑
l=1

{
−z(l)

1 + exp(vT z(l))

}
(7)

∇2`(v,D) =
1

m

m∑
l=1

η(vT z(l))z(l)z(l)T , (8)

where η(x) = 1/(ex/2+e−x/2)2. Finally, Hm
i denotes the

sample Hessian matrix with respect to the i-th player
and the true parameter v∗i , and H∗i denotes its ex-
pected value, i.e. H∗i

def
= ED [Hm

i ] = ED
[
∇2`(v∗i ,D)

]
.

In subsequent sections we drop the notational depen-
dence of H∗i and zi on i to simplify notation.

We show that, under the aforementioned assumptions
on the true game G∗(n, k) = (W∗,b∗), the parameters
Ŵ and b̂ obtained using (6) induce the same PSNE
set as the true game, i.e., NE(W∗,b∗) = NE(Ŵ, b̂).

4.3 Sufficient Conditions

In this section, we derive sufficient conditions on the
number of samples for efficiently recovering the PSNE
set of graphical games with linear payoffs. To start
with, we make the following observation regarding the
number of Nash equilibria of the game satisfying As-
sumption 2. The proof of the following proposition, as
well as other missing proofs can be found in Appendix
A.
Proposition 1. The number of Nash equilibria of a
non-trivial game (|NE∗| ∈ [1, 2n − 1]) satisfying As-
sumption 2 is at most 2n−1.

We will denote the fraction of joint actions that are
in the PSNE set by fNE∗

def
= |NE∗|/2n−1. By proposi-

tion 1, fNE∗ ∈ (0, 1]. Then, our main strategy for ob-
taining sufficient conditions for exact PSNE recovery
guarantees is to first show that under any data dis-
tribution P that satisfies Assumption 1, the expected
loss is smooth and strongly convex, i.e., the population
Hessian matrix is positive definite and the population
scatter matrix has eigenvalues bounded by a constant.
Then using tools from random matrix theory, we show
that the sample Hessian and scatter matrices are “well
behaved”, i.e., are positive definite and have bounded
eigenvalues respectively, with high probability. Then,
we exploit the convexity properties of the logistic loss
function to show that the weight vectors learned us-
ing penalized logistic regression are “close” to the true
weight vectors. By our assumption that the minimum
payoff in the PSNE set is strictly greater than zero,
we show that the weight vectors inferred from a finite

sample of joint actions induce the same PSNE set as
the true weight vectors.

The following lemma shows that the expected Hessian
matrices for each player is positive definite and the
maximum eigenvalues of the expected scatter matrices
are bounded from above by a constant.

Lemma 1. Let S be the support of the vector v, i.e.,
S

def
= {i| |vi| > 0}. There exists constant Cmin ≥

η(‖v∗‖1)2np̃min

2n−|NE∗| > 0 and Dmax ≤ 2npmax, such that
we have λmin(H∗SS) = Cmin and λmax(Ex

[
zSz

T
S

]
) =

Dmax.

Proof.

λmin(H∗SS) = λmin

(
Ex

[
η(v∗T z)zSz

T
S

])
= η(‖v∗‖1)λmin(Ex

[
zSz

T
S

]
).

Let Z
def
= {zS |x ∈ X} and P

def
= Diag((P(x))x∈X ),

where zS denotes the feature vector for the i-th player
constrained to the support set S for some i. Note that
Z ∈ {−1, 1}2n×|S|; P ∈ R2n×2n and is positive defi-
nite by our assumption that the minimum probability

p̃min

2n−|NE∗| > 0. Further note that the columns of Z

are orthogonal and ZTZ = 2nI|S|, where I|S| is the
|S| × |S| identity matrix. Then we have that

λmin(Ex

[
zSz

T
S

]
) = min

{y∈R|S||‖y‖2=1}
yTZTPZy

= min
{y′∈R2n |y′=Zy/

√
2n∧y∈R|S|∧‖y‖2=1}

2n(y′)TPy′

≥ min
{y′∈R2n |‖y′‖2=1}

2n(y′)TPy′

= 2nλmin(P) =
2np̃min

2n − |NE∗|

Therefore, the minimum eigenvalue of H∗SS is lower
bounded as follows:

λmin(H∗SS) = Cmin ≥
η(‖v∗‖1)2npmin

2n − |NE∗|
> 0.

Similarly, the maximum eigenvalue of Ex

[
zSz

T
S

]
can

be bounded as λmax(Ex

[
zSz

T
S

]
) = λmax(ZTPZ) ≤

2npmax.

4.3.1 Minimum and Maximum Eigenvalues
of Finite Sample Hessian and Scatter
Matrices

The following technical lemma shows that the eigen-
values conditions of the expected Hessian and scatter
matrices, hold with high probability in the finite sam-
ple case.
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Lemma 2. If λmin(H∗SS) ≥ Cmin, λmax(Ex

[
zSz

T
S

]
) ≤

Dmax, then we have that

λmin(Hm
SS) ≥ Cmin

2
, λmax

(
m∑
l=1

z
(l)
S z

(l)
S

T

)
≤ 2Dmax

with probability at least

1− |S| exp

(
−mCmin

2 |S|

)
and 1− |S| exp

(
−mp̃min

4 |S|

)
respectively.

Proof. Let

µmin
def
= λmin(H∗SS) and µmax

def
= λmax(Ex

[
zSz

T
S

]
).

First note that for all z ∈ {−1,+1}n:

λmax(η(v∗S
T zS)zSz

T
S ) ≤ |S|

4

def
= R

λmax(zSz
T
S ) ≤ |S| def

= R′.

Using the Matrix Chernoff bounds from Tropp [11], we
have that

Pr {λmin(Hm
SS) ≤ (1− δ)µmin} ≤ |S|

(
e−δ

(1− δ)1−δ

)mµmin
R

.

Setting δ = 1/2 we get that

Pr {λmin(Hm
SS) ≤ µmin/2} ≤ |S|

[√
2

e

] 4mµmin
|S|

≤ |S| exp

(
−mCmin

2 |S|

)
.

Therefore, we have

Pr {λmin(Hm
SS) > Cmin/2} > 1− |S| exp

(
−mCmin

2 |S|

)
.

Next, we have that

µmax = λmax(Ex

[
zSz

T
S

]
)

≥ λmin(Ex

[
zSz

T
S

]
) ≥ 2np̃min

2n − |NE∗|

Once again invoking Theorem 1.1 from [11] and setting
δ = 1 we have that

Pr {λmax ≥ (1 + δ)µmax} ≤ |S|
[

eδ

(1 + δ)1+δ

](mµmax)/R′

Pr {λmax ≥ 2µmax} ≤ |S|
[
e
4

](mµmax)/|S|

≤ |S| exp
(
−mµmax

4|S|

)
≤ |S| exp

(
− m2n−2p̃min

|S|(2n−|NE∗|)

)
≤ |S| exp

(
−mp̃min

4|S|

)

Therefore, we have that

Pr {λmax < 2Dmax} > 1− |S| exp

(
−mp̃min

4 |S|

)
.

4.3.2 Recovering the Pure Strategy Nash
Equilibria (PSNE) Set

Before presenting our main result on the exact recov-
ery of the PSNE set from noisy observations of joint
actions, we first present a few technical lemmas that
would be helpful in proving the main result. The fol-
lowing lemma bounds the gradient of the loss function
(6) at the true vector v∗, for all players.

Lemma 3. With probability at least 1−δ for δ ∈ (0, 1),
we have that

‖∇`(v∗,D)‖∞ < ν +

√
2

m
log

2n

δ
,

where κ = 1/(1+exp(ρmin)), ρmin ≥ 0 is the minimum
payoff in the PSNE set, fNE∗ = |NE

∗|/2n−1, and

ν
def
= κ

∑
x∈NE∗

P(x) +
(p̃max − p̃min)

2− fNE∗
+
fNE∗ p̃min

2− fNE∗
(9)

Proof. Consider the i-th player. Let um def
= ∇`(v∗i ,D)

and umj denote the j-th index of um. For any subset
S ′ ⊂ X such that |S ′| = 2n−1 define the function g(S ′)
as follows:

g(S ′) def
=
∑
x∈S′
P(x)f(x)−

∑
x∈S′c

P(x)f(x),

where S ′c denotes the complement of the set S ′ and
f(x) = 1/1+exp(v∗i

T zi(x)). For x ∈ NE∗, f(x) ≤ κ,
while for x /∈ NE∗ we have 1/2 ≤ f(x) ≤ 1. Lastly, let
Sij = {x ∈ X |xixj = +1} and Si = {x ∈ X |xi = +1}.
From (7) we have that, for j 6= n,

∣∣E [umj ]∣∣ = |g(Sij)|,
while for j = n

∣∣E [umj ]∣∣ = |g(Si)|. Thus we get

‖um‖∞ ≤ max
S′⊂X||S′|=2n−1

g(S ′) (10)

Let S be the set that maximizes (10), A def
= S ∩NE∗

and B def
= Sc ∩NE∗. Continuing from above,

|g(S)| =
∣∣∣∑
x∈S\A

P(x)f(x) +
∑
x∈A
P(x)f(x)

−
∑

x∈Sc\B

P(x)f(x)−
∑
x∈B
P(x)f(x)

∣∣∣
≤ κ

∑
x∈NE∗

P(x) +
∣∣∣∑
x∈S\A

P(x)f(x)−
∑

x∈Sc\B

P(x)f(x)
∣∣∣
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Assume that the first term inside the absolute value
above dominates the second term, if not then we can
proceed by reversing the two terms.

|g(S)| ≤ κ
∑

x∈NE∗
P(x) +

2n−1p̃max − (2n−1 − |NE∗|)p̃min

2n − |NE∗|

= κ
∑

x∈NE∗
P(x) +

(p̃max − p̃min) + fNE∗ p̃min

2− fNE∗
= ν

Also note that
∣∣umj ∣∣ ≤ ν ≤ 1. Finally, from Hoeffding’s

inequality [12] and using a union bound argument over
all players, we have that:

Pr

{
n

max
j=1

∣∣umj − E
[
umj
]∣∣ < t

}
> 1− 2ne

−mt2/2

=⇒ Pr {‖um − E [um]‖∞ < t} > 1− 2ne
−mt2/2

=⇒ Pr {‖um‖∞ − ‖E [um]‖∞ < t} > 1− 2ne
−mt2/2

=⇒ Pr {‖um‖∞ < ν + t} > 1− 2ne
−mt2/2.

Setting 2n exp(−mt
2
/2) = δ, we prove our claim.

To get some intuition for the lemma above, consider
the constant ν as given in (9). First, note that κ ≤ 1/2.
Also, as the minimum payoff ρmin increases, κ decays
to 0 exponentially. Similarly, if the probability mea-
sure on the non-Nash equilibria set is close to uniform,
meaning p̃max − p̃min ≈ 0, then the second term in (9)
vanishes. Finally, if the fraction of actions that are in
the PSNE set (fNE∗) is small, then the third term in
(9) is small. Therefore, if the minimum payoff is high,
the noise distribution, i.e., the distribution of the non-
Nash equilibria joint actions, is close to uniform, and
the fraction of joint actions that are in the PSNE set
is small, then the expected gradient vanishes. In the
following technical lemma we show that the optimal
vector v̂ for the logistic regression problem is close to
the true vector v∗ in the support set S of v∗. Next,
in Lemma 5, we bound the difference between the true
vector v∗ and the optimal vector v̂ in the non-support
set. The lemmas together show that the optimal vec-
tor is close to the true vector.

Lemma 4. If the regularization parameter λ satisfies
the following condition:

λ ≤ 5C2
min

16 |S|Dmax
− ν −

√
2

m
log

2n

δ
,

then

‖v∗S − v̂S‖2 ≤
5Cmin

4
√
|S|Dmax

,

with probability at least 1−(δ+ |S| exp((−mCmin)/2|S|)+
|S| exp(−mp̃min/4|S|)).

Proof. The proof of this lemma follows the general
proof structure of Lemma 3 in [9]. First, we repa-
rameterize the `1-regularized loss function

f(vS) = `(vS) + λ ‖vS‖1
as the loss function f̃ , which gives the loss at a point
that is ∆S distance away from the true parameter v∗S
as : f̃(∆S) = `(v∗S + ∆S) − `(v∗S) + λ(‖v∗S + ∆S‖1 −
‖v∗S‖1), where ∆S = vS − v∗S . Also note that the loss
function f̃ is shifted such that the loss at the true pa-
rameter v∗S is 0, i.e., f̃(0) = 0. Further, note that the
function f̃ is convex and is minimized at ∆̂S = v̂S−v∗S ,
since v̂S minimizes f . Therefore, clearly f̃(∆̂S) ≤ 0.
Thus, if we can show that the function f̃ is strictly
positive on the surface of a ball of radius b, then the
point ∆̂S lies inside the ball i.e., ‖v̂S − v∗S‖2 ≤ b. Us-
ing the Taylor’s theorem we expand the first term of
f̃ to get the following:

f̃(∆S) = ∇`(v∗S)T∆S + ∆T
S∇2`(v∗S + θ∆S)∆S

+ λ(‖v∗S + ∆S‖1 − ‖v
∗
S‖1), (11)

for some θ ∈ [0, 1]. Next, we lower bound each of the
terms in (11). Using the Cauchy-Schwartz inequality,
the first term in (11) is bounded as follows:

∇`(v∗S)T∆S ≥ −‖∇`(v∗S)‖∞ ‖∆S‖1
≥ −‖∇`(v∗S)‖∞

√
|S| ‖∆S‖2

≥ −b
√
|S|

(
ν +

√
2

m
log

2n

δ

)
, (12)

with probability at least 1 − δ for δ ∈ [0, 1]. It is
also easy to upper bound the last term in equation 11,
using the reverse triangle inequality as follows:

λ |‖v∗S + ∆S‖1 − ‖v
∗
S‖1| ≤ λ ‖∆S‖1 .

Which then implies the following lower bound:

λ(‖v∗S + ∆S‖1 − ‖v
∗
S‖1) ≥ −λ ‖∆S‖1

≥ −λ
√
|S| ‖∆S‖2

= −λ
√
|S|b. (13)

Now we turn our attention to computing a lower bound
of the second term of (11), which is a bit more in-
volved.

∆T
S∇2`(v∗S + θ∆S)∆S ≥ min

‖∆S‖2=b
∆T
S∇2`(v∗S + θ∆S)∆S

= b2λmin(∇2`(v∗S + θ∆S)).

Now,

λmin(∇2`(v∗S + θ∆S))

≥ min
θ∈[0,1]

λmin

(
∇2`(v∗S + θ∆S)

)
= min
θ∈[0,1]

λmin

( 1

m

m∑
l=1

η((v∗S + θ∆S)T z
(l)
S )z

(l)
S (z

(l)
S )T

)
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Again, using the Taylor’s theorem to expand the func-
tion η we get

η((v∗S + θ∆S)T z
(l)
S )

= η((v∗S)T z
(l)
S ) + η′((v∗S + θ̄∆S)T z

(l)
S )(θ∆S)T z

(l)
S

, where θ̄ ∈ [0, θ]. Finally, from Lemma 2 we have,
with probability at least 1− |S| exp((−mCmin)/2|S|):

λmin

(
∇2`(v∗S + θ∆S)

)
≥ min
θ∈[0,1]

λmin

( 1

m

m∑
l=1

η((v∗S)T z
(l)
S )z

(l)
S (z

(l)
S )T

+
1

m

m∑
l=1

η′((v∗S + θ̄∆S)T z
(l)
S )((θ∆S)T z

(l)
S )z

(l)
S (z

(l)
S )T

)
≥ λmin(Hm

SS)− max
θ∈[0,1]

|||A(θ)|||2

≥ Cmin

2
− max
θ∈[0,1]

|||A(θ)|||2,

where we have defined

A(θ)
def
=

1

m

m∑
l=1

η′((v∗S + θ∆S)T z
(l)
S )×

(θ∆S)T z
(l)
S z

(l)
S (z

(l)
S )T .

Next, the spectral norm of A(θ) can be bounded as
follows:

|||A(θ)|||2

≤ max
‖y‖2=1

{
1

m

m∑
l=1

∣∣∣η′((v∗S + θ∆S)T z
(l)
S )
∣∣∣ ∣∣∣((θ∆S)T z

(l)
S )
∣∣∣

× yT (z
(l)
S (z

(l)
S )T )y

}

< max
‖y‖2=1

1

(10m)

m∑
l=1

‖(θ∆S)‖1
∥∥∥z(l)

S

∥∥∥
∞

yT (z
(l)
S (z

(l)
S )T )y

≤ θ max
‖y‖2=1

{
1

10m

m∑
l=1

√
|S| ‖∆S‖2 y

T (z
(l)
S (z

(l)
S )T )y

}

= θb
√
|S|

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

10m

m∑
l=1

z
(l)
S (z

(l)
S )T

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤
(b
√
|S|Dmax)

5
≤ Cmin

4
,

where in the second line we used the fact that η′(.) <
1/10 and in the last line we assumed that (b

√
|S|Dmax)

5 ≤
Cmin/4 — an assumption that we verify momentarily.
Having upper bounded the spectral norm of A(θ), we
have

λmin

(
∇2`(v∗S + θ∆S)

)
≥ Cmin

4
. (14)

Plugging back the bounds given by (12), (13) and (14)
in (11) and equating to zero we get

−b
√
|S|

(
ν +

√
2

m
log

2n

δ

)
+
b2Cmin

4
− λ
√
|S|b = 0

=⇒ b =
4
√
|S|

Cmin

(
λ+ ν +

√
2

m
log

2n

δ

)
.

Finally, coming back to our prior assumption we have

b =
4
√
|S|

Cmin

(
λ+ ν +

√
2

m
log

2n

δ

)
≤ 5Cmin

4
√
|S|Dmax

.

The above assumption holds if the regularization pa-
rameter λ is bounded as follows:

λ ≤ 5C2
min

16 |S|Dmax
−
√

2

m
log

2n

δ
− ν.

Lemma 5. If the regularization parameter λ satisfies
the following condition:

λ ≥ ν +

√
2

m
log

2n

δ
,

then we have that

‖v̂ − v∗‖1 ≤
5Cmin

Dmax

with probability at least 1−(δ+ |S| exp((−mCmin)/2|S|)+
|S| exp(−mp̃min/4|S|)).

Now we are ready to present our main result on recov-
ering the true PSNE set.
Theorem 1. If for all i, |Si| ≤ k, the minimum pay-
off ρmin ≥ 5Cmin/Dmax, and the regularization param-
eter and the number of samples satisfy the following
conditions:

ν +

√
2

m
log

6n2

δ
≤ λ ≤ 2K + ν −

√
2

m
log

6n2

δ
(15)

m ≥ max

{
2

K2
log

(
6n2

δ

)
,

2k

Cmin
log

(
3kn

δ

)
,

4k

p̃min
log

(
3kn

δ

)}
, (16)

where K def
= 5C2

min/32kDmax − ν, then with probability at
least 1 − δ, for δ ∈ (0, 1), we recover the true PSNE
set, i.e., NE(Ŵ, b̂) = NE(W∗,b∗).

Proof. From Cauchy-Schwartz inequality and Lemma
5 we have∣∣(v̂i − v∗i )

T zi
∣∣ ≤ ‖v̂i − v∗i ‖1 ‖zi‖∞ ≤

5Cmin

Dmax
.
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Therefore, we have that

(v∗i )
T zi −

5Cmin

Dmax
≤ v̂Ti zi ≤ (v∗i )

T zi +
5Cmin

Dmax
.

Now, if ∀ x ∈ NE∗, (v∗i )
T zi ≥ 5Cmin/Dmax, then v̂Ti zi ≥

0. Using an union bound argument over all players i,
we can show that the above holds with probability at
least

1− n(δ + k exp((−mCmin)/2k) + k exp((−mp̃min)/4k)
(17)

for all players. Therefore, we have that NE(Ŵ, b̂) =
NE∗ with high probability. Finally, setting δ = δ′/3n,
for some δ′ ∈ [0, 1], and ensuring that the last two
terms in (17) are at most δ′/3n each, we prove our
claim.

To better understand the implications of the theorem
above, we instantiate it for the global and local noise
model.
Remark 1 (Sample complexity under global noise
model). Recall that Dmax ≤ min(k, 2npmax), and for
the global noise model given by (3) pmax = qg/|NE∗|. If
qg is constant, then Dmax = k. Then K = Ω (1/k2),
and the sample complexity of learning sparse linear
games grows as O

(
k4 log n

)
. However, if qg is small

enough, i.e., qg = O (|NE
∗|/2n), then Dmax is no longer

a function of k and K = Ω (1/k). Hence, the sample
complexity scales as O

(
k2 log n

)
for exact PSNE re-

covery.

Next, we consider the implications of Theorem 1 under
the local noise model given by (4). we consider the
regime where the parameter q scales with the number
of players n.
Remark 2 (Sample complexity under local noise). In
the local noise model if the number of Nash-equilibria
is constant, then pmax = O (exp(−n)), and once again
Dmax becomes independent of k, which results in a
sample complexity of O

(
k2 log n

)
.

Also, observe the dependence of the sample complex-
ity on the minimum noise level p̃min. The number of
samples required to recover the PSNE set increases as
p̃min decreases. From the aforementioned remarks we
see that if the noise level is too low, i.e., p̃min → 0,
then number of samples needed goes to infinity; This
seems counter-intuitive — with reduced noise level, a
learning problem should become easier and not harder.
To understand this seemingly counter-intuitive behav-
ior, first observe that the constant Dmax/Cmin can be
thought of as the “condition number” of the loss func-
tion given by (6). Then, the sample complexity as
given by Theorem 1 can be written asO

(
k2D2

max

C2
min

log n
)
.

Hence, we have that as the noise level gets too low, the
Hessian of the loss becomes ill-conditioned, since the
data set now comprises of many repetitions of the few
joint-actions that are in the PSNE set; thereby increas-
ing the dependency (Dmax) between actions of players
in the sample data set.

4.4 Necessary Conditions

In this section we derive necessary conditions on the
number of samples required to learn graphical games.
Our approach for doing so is information-theoretic:
we treat the inference procedure as a communication
channel and then use the Fano’s inequality to lower
bound the estimation error. Such techniques have been
widely used to obtain necessary conditions for model
selection in graphical models, see e.g. [13, 14], spar-
sity recovery in linear regression [15], and many other
problems.

Consider an ensemble Gn of n-player games with the
in-degree of each player being at most k. Nature picks
a true game G∗ ∈ G, and then generates a data set
D of m joint actions. A decoder is any function ψ :
Xm → Gn that maps a data set D to a game, ψ(D), in
Gn. The minimum estimation error over all decoders
ψ, for the ensemble Gn, is then given as follows:

perr
def
= min

ψ
max
G∗∈Gn

Pr {NE(ψ(D)) 6= NE(G∗)} , (18)

where the probability is computed over the data dis-
tribution. Our objective here is to compute the num-
ber of samples below which PSNE recovery fails with
probability greater than 1/2.

Theorem 2. The number of samples required to learn
graphical games over n players and in-degree of at most
k, is Ω (k log n).

Remark 3. From the above theorem and from Theo-
rem 1 we observe that the method of l1-regularized lo-
gistic regression for learning graphical games, operates
close to the fundamental limit of Ω (k log n).

Results from simulation experiments for both global
and local noise model can be found in Appendix B.

Concluding Remarks. An interesting direction for
future work would be to consider structured actions
— for instance permutations, directed spanning trees,
directed acyclic graphs among others — thereby ex-
tending the formalism of linear influence games to the
structured prediction setting. Other ideas that might
be worth pursuing are: considering mixed strategies,
correlated equilibria and epsilon Nash equilibria, and
incorporating latent or unobserved actions and vari-
ables in the model.
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Appendix A Detailed Proofs

Proof of Proposition 1. Let |NE∗| > 2n−1. Then by the pigeon hole principle there are at least two joint actions
x and x′ in NE∗ such that x = −x′. Since the payoff is strictly positive, it follows that the bias bi for each player
must be 0. If the bias for all players is 0, then for each x ∈ NE∗, −x ∈ NE∗. Therefore, |NE∗| = 2n. Since we
have assumed that the game is non-trivial, we get a contradiction.

Proof of Lemma 5. Define ∆
def
= v̂− v∗. Also for any vector y let the notation yS denote the vector y with the

entries not in the support, S, set to zero, i.e.

[yS ]
i

=

{
yi if i ∈ S,
0 otherwise.

Similarly, let the notation ySc denote the vector y with the entries not in Sc set to zero, where Sc is the
complement of S. Having introduced our notation and since, S is the support of the true vector v∗, we have by
definition that v∗ = v∗

S
. We then have, using the reverse triangle inequality,

‖v̂‖1 = ‖v∗ + ∆‖1 =
∥∥v∗

S
+ ∆S + ∆Sc

∥∥
1

=
∥∥v∗

S
− (−∆S)

∥∥
1

+ ‖∆Sc‖1
≥ ‖v∗‖1 − ‖∆S‖1 + ‖∆Sc‖1 . (19)

Also, from the optimality of v̂ for the `1-regularized problem we have that

`(v∗) + λ ‖v∗‖1 ≥ `(v̂) + λ ‖v̂‖1
=⇒ λ(‖v∗‖1 − ‖v̂‖1) ≥ `(v̂)− `(v∗). (20)

Next, from convexity of `(.) and using the Cauchy-Schwartz inequality we have that

`(v̂)− `(v∗) ≥ ∇`(v∗)T (v̂ − v∗)

≥ −‖∇`(v∗)‖∞ ‖∆‖1

≥ −λ
2
‖∆‖1 , (21)

in the last line we used the fact that λ ≥ ‖∇`(v∗)‖∞. Thus, we have from (19), (20) and (21) that

1

2
‖∆‖1 ≥ ‖v̂‖1 − ‖v

∗‖1

=⇒ 1

2
‖∆‖1 ≥ ‖∆Sc‖1 − ‖∆S‖1

=⇒ 1

2
‖∆Sc‖1 +

1

2
‖∆S‖1 ≥ ‖∆Sc‖1 − ‖∆S‖1

=⇒ 3 ‖∆S‖1 ≥ ‖∆Sc‖1 . (22)

Finally, from (22) and Lemma 4 we have that

‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1
≤ 4 ‖∆S‖1 ≤ 4

√
|S| ‖∆S‖2

≤ 5Cmin

Dmax
.

Proof of Theorem 2. First, we construct a restricted ensemble of games G̃ ⊂ G as follows. Each game G ∈ G̃
contains k, randomly chosen, influential players. The game graph for G is then chosen to be a complete directed
bipartite graph from the set of k influential players to the set of n− k non-influential players. The edge weights
are all set to −1, the bias for the k influential players is set to +1, while the bias for the remaining n− k players
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is set to 0. Then it is clear that each game in G̃ induces a distinct size-one PSNE set. Specifically, for a game
G ∈ G̃, a joint action x ∈ NE(G) is such that xi = −1 if player i is influential in G, otherwise xi = +1. Also,
note that the minimum payoff in the PSNE set of each game in G̃ is strictly positive, and is precisely 1. Finally,
we assume that the data set is drawn according to the global noise model (3), with q = 1/n. Now let G ∈ G̃ be a
uniformly-distributed random variable corresponding to the game that was picked by nature. From the Fano’s
inequality, we have that:

perr ≥ 1− I(D;G) + log 2

H(G)
, (23)

where I(.) denotes mutual information and H(.) denotes entropy. Since, G is uniformly distributed, we have that
H(G) = log

∣∣G̃∣∣ = log
(
n
k

)
≥ k(log n− log k). Let PD|G=G1 be the conditional distribution of the data set given a

game G1 ∈ G̃. We bound the mutual information I(D;G) by a pairwise KL-based bound from [16] as follows:

I(D;G) ≤ 1∣∣G̃∣∣ ∑
G1∈G̃

∑
G2∈G̃

KL
(
PD|G=G1

∥∥PD|G=G2
)
. (24)

Now from the fact that data are sampled i.i.d , we get:

KL
(
PD|G=G1

∥∥PD|G=G2
)

= m
∑

x∈X PD|G=G1(x) log
PD|G=G1 (x)

PD|G=G2 (x)

= m
{
q log q(2n−1)

1−q + 1−q
2n−1 log 1−q

q(2n−1)

}
= m(2nq−1)

2n−1

(
log q − log

(
1−q

2n−1

))
≤ m log 2, (25)

where the last line comes from the fact that q = 1/n. Putting together (23), (24) and (25), and setting perr = 1/2,
we get

m ≤ k log n− k log k − 2 log 2

2 log 2
.

By observing that learning the ensemble G is at least as hard as learning a subset of the ensemble G̃, we prove
our main claim.

Appendix B Experiments

In order to verify that our results and assumptions indeed hold in practice, we performed various simulation
experiments. We generated random LIGs for n players and exactly k neighbors by first creating a matrix W
of all zeros and then setting k off-diagonal entries of each row, chosen uniformly at random, to −1. We set the
bias for all players to 0. We found that any odd value of k produces games with strictly positive payoff in the
PSNE set. Therefore, for each value of k in {1, 3, 5}, and n in {10, 12, 15, 20}, we generated 40 random LIGs.
For experiments involving the local noise model, we only used n ∈ {10, 12, 15}. The parameter δ was set to the
constant value of 0.01. For the global noise model, the parameters qg was set to 0.01, while for the local noise
model we used q1 = . . . = qn = 0.6. The regularization parameter λ was set according to Theorem 1 as some
constant multiple of

√
(2/m) log(2n/δ). Figure 1 shows the probability of successful recovery of the PSNE, for

various combinations of (n, k), where the probability was computed as the fraction of the 40 randomly sampled
LIGs for which the learned PSNE set matched the true PSNE set exactly. For each experiment, the number
of samples was computed as: b(C)(10c)(k2 log(6n2

/δ))c, where c is the control parameter and the constant C is
10000 for k = 1 and 1000 for k = 3 and 5. Thus, from Figure 1 we see that, the sample complexity of O

(
k2 log n

)
as given by Theorem 1 indeed holds in practice, i.e., there exists constants c and c′ such that if the number of
samples is less than ck2 log n, we fail to recover the PSNE set exactly with high probability, while if the number
of samples is greater than c′k2 log n then we are able to recover the PSNE set exactly, with high probability.
Further, the scaling remains consistent as the number of players n is changed from 10 to 20.
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Figure 1: The probability of exact recovery of the PSNE set computed across 40 randomly sampled LIGs,
using the global noise model (TOP) and local noise model (BOTTOM), as the number of samples is scaled as
b(C)(10c)(k2 log(6n2

/δ))c, where c is the control parameter and the constant C is 10000 for the k = 1 case and
1000 for the remaining two case. For the global noise model we set qg = 0.001, while for the local noise model
we used q1 = . . . = qn = 0.6.
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