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Classification problems
• There are two parts to any classification task

1)  Estimation: how to select the best classifier out of a 
particular set (for instance, linear classifiers)

2)  Model selection: how to select the best set of classifiers 
(for instance, decision stumps, linear classifiers, 1-nearest 
neighbor)

• Both of these selections have to be made based on training 
data

• In order to grasp the concepts in this lecture better, we 
will introduce a very simple classifier: decision stump



Decision stump
• Consider a dataset of 6 samples, each with a single 

continuous attribute/feature (x = x1) and class label (y)

• We would like to find a threshold β, and then classify all 
samples with attribute value x1 above β as +1, and attribute 
value x1 below β as -1 (or viceversa)

x1 y

0 +1

4 -1

-2 +1

1 +1

-3 -1

2 -1



Decision stump
• Lets sort with respect to x

• Lets use the classifier:

• How to find the threshold β ? Try all midpoints of x1

x1 y

0 +1

4 -1

-2 +1

1 +1

-3 -1

2 -1

x1 y

-3 -1

-2 +1

0 +1

1 +1

2 -1

4 -1

sort

f (x) = sign(x1 −β) =
+1,   if x1 > β

−1,   if x1 ≤ β

⎧
⎨
⎩



Decision stump
• Lets use the classifier:

• Count the number of mistakes for all thresholds β

x1 y f(x)

β=-2.5 β=-1 β=0.5 β=1.5 β=3

-3 -1 -1 -1 -1 -1 -1

-2 +1 +1 -1 -1 -1 -1

0 +1 +1 +1 -1 -1 -1

1 +1 +1 +1 +1 -1 -1

2 -1 +1 +1 +1 +1 -1

4 -1 +1 +1 +1 +1 +1

# mistakes 2 3 4 5 4

f (x) = sign(x1 −β) =
+1,   if x1 > β

−1,   if x1 ≤ β

⎧
⎨
⎩



Decision stump
• Lets use the classifier:

• Count the number of mistakes for all thresholds β

x1 y f(x)

β=-2.5 β=-1 β=0.5 β=1.5 β=3

-3 -1 +1 +1 +1 +1 +1

-2 +1 -1 +1 +1 +1 +1

0 +1 -1 -1 +1 +1 +1

1 +1 -1 -1 -1 +1 +1

2 -1 -1 -1 -1 -1 +1

4 -1 -1 -1 -1 -1 -1

# mistakes 4 3 2 1 2

f (x) = sign(β − x1) =
+1,   if x1 < β

−1,   if x1 ≥ β

⎧
⎨
⎩



Decision stump
• Thus our best decision stump classifier:

• Remember that we consider all classifiers of the form:

for any real value β
• Although these are simple classifiers, the set of decision 

stump classifiers is uncountable (there are as “many” as real 
values)

f (x) = sign(1.5− x1) =
+1,   if x1 <1.5
−1,   if x1 ≥1.5
⎧
⎨
⎩

f (x) = sign(x1 −β) =
+1,   if x1 > β

−1,   if x1 ≤ β

⎧
⎨
⎩

f (x) = sign(β − x1) =
+1,   if x1 < β

−1,   if x1 ≥ β

⎧
⎨
⎩



VC dimension
• The Vapnik-Chervonenkis (VC) dimension allows us to 

understand the complexity of a model class (a set of 
classifiers) without having to “count” how many classifiers 
there are, for instance:
-  the set of decision stump classifiers

-  the set of linear classifiers

-  the set of 1-nearest neighbor classifiers

• Instead we count the number of ways in which a dataset 
can be classified.



VC Dimension of decision stump
• Lets take the sorted dataset we used before

• Consider decision stump classifiers with all values of β that 
would lead to different ways of classifying the samples

• We highlight (in blue) one way of classifying the 6 samples

• We have 12 different ways of classifying the 6 samples

x1 f(x)
β=-2.5 β=-1 β=0.5 β=1.5 β=3 β=∞

-3 -1 -1 -1 -1 -1 -1

-2 +1 -1 -1 -1 -1 -1

0 +1 +1 -1 -1 -1 -1

1 +1 +1 +1 -1 -1 -1

2 +1 +1 +1 +1 -1 -1

4 +1 +1 +1 +1 +1 -1

f (x) = sign(x1 −β) =
+1,   if x1 > β

−1,   if x1 ≤ β

⎧
⎨
⎩

x1 f(x)
β=-2.5 β=-1 β=0.5 β=1.5 β=3 β=∞

-3 +1 +1 +1 +1 +1 +1

-2 -1 +1 +1 +1 +1 +1

0 -1 -1 +1 +1 +1 +1

1 -1 -1 -1 +1 +1 +1

2 -1 -1 -1 -1 +1 +1

4 -1 -1 -1 -1 -1 +1

f (x) = sign(β − x1) =
+1,   if x1 < β

−1,   if x1 ≥ β

⎧
⎨
⎩



VC dimension of decision stump
• In general, the set of decision stump classifiers lead to 2n 

different ways of classifying n samples
- We classify the n samples as -1’s followed by +1’s

- We also classify the n samples as +1’s followed by -1’s



VC dimension of decision stump
• In general, the set of decision stump classifiers lead to 2n 

different ways of classifying n samples
- We classify the n samples as -1’s followed by +1’s

- We also classify the n samples as +1’s followed by -1’s

• More complex classifiers would lead to more than 2n 
different ways of classifying n samples

• The most complex classifiers would lead to 2n different 
ways of classifying n samples
- There are 2n different vectors of size n with each entry being 

either +1 or -1



VC dimension of decision stump
• In general, the set of decision stump classifiers lead to 2n 

different ways of classifying n samples
- We classify the n samples as -1’s followed by +1’s

- We also classify the n samples as +1’s followed by -1’s

• More complex classifiers would lead to more than 2n 
different ways of classifying n samples

• The most complex classifiers would lead to 2n different 
ways of classifying n samples
- There are 2n different vectors of size n with each entry being 

either +1 or -1

• More complex classifiers are not always better, as we will 
see later



VC dimension
• The Vapnik-Chervonenkis (VC) dimension is the maximum 

number of samples n that can be classified in any possible 
way (that is, 2n ways) by a model class (a set of classifiers)



VC dimension of decision stump
• The Vapnik-Chervonenkis (VC) dimension is the maximum 

number of samples n that can be classified in any possible 
way (that is, 2n ways) by a model class (a set of classifiers)

• Recall that decision stump classifiers lead�
to 2n different ways of classifying n samples

• Find the maximum n for which 2n = 2n

• The VC dimension is VC = 2

n 2n 2n

1 2 2

2 4 4

3 6 8



VC dimension of decision stump
• The Vapnik-Chervonenkis (VC) dimension is the maximum 

number of samples n that can be classified in any possible 
way (that is, 2n ways) by a model class (a set of classifiers)

• Recall that decision stump classifiers lead�
to 2n different ways of classifying n samples

• Find the maximum n for which 2n = 2n

• The VC dimension is VC = 2

• For more intuition, see the 2n ways of classifying n samples

n 2n 2n

1 2 2

2 4 4

3 6 8

+1 -1

+1 +1 -1 -1

+1 -1 +1 -1

+1 +1 +1 +1 -1 -1 -1 -1

+1 +1 -1 -1 +1 +1 -1 -1

+1 -1 +1 -1 +1 -1 +1 -1

n=
1 

n=
2 

2 ways (23-2*3 = 2) of classifying (in red) 
are not -1’s followed by +1’s, 
neither +1’s followed by -1’s 

n=
3 



VC dimension
• The Vapnik-Chervonenkis (VC) dimension is the maximum 

number of samples n that can be classified in any possible 
way (that is, 2n ways) by a model class (a set of classifiers)

• The VC dimension of the set of decision stumps is

• The VC dimension of the set of linear classifiers in 
dimensions ( Rd ) without offset parameter, is

• The VC dimension of the set of linear classifiers in 
dimensions ( Rd ) with offset parameter, is

• The VC dimension of the set of 1-nearest neighbor 
classifiers is

VC = 2

VC = d

VC = d +1

VC =∞

d

d



Mean versus expectation
• Consider a Bernoulli random variable        with

-            with probability

-            with probability

• The expected value of       is:

• Assume we have a dataset of      bits:
• We can compute the mean: 

p = 0.5X
pX =1
1− pX = 0

x1, x2,..., xn

p̂ = 1
n

xi
i=1

n

∑

E[X]=1×P(X =1)+ 0×P(X = 0)
        =1× p+ 0× (1− p)
        = p

X

n



import numpy as np
def example_bernoulli(n):
  z = np.random.randint(0,2,n)
  return 1.0/n * np.sum(z)

>>> example_bernoulli(10)
0.8
>>> example_bernoulli(100)
0.44
>>> example_bernoulli(10000)
0.5138

Returns n random integers >= 0 and < 2, 
each value with equal probability. 
In this case (0 or 1) then p = 0.5 in the 
Bernoulli distribution 

Computes average 

Mean versus expectation



Training error
• For computational purposes, we consider data to be 

constant, but data is a random variable!

• There is an unknown data distribution

• The training set has      samples: �
Samples           are independent, with probability 
distribution

• The training error is:

where      is a classifier and

• Given a classifier      and      samples, we can compute the 
training error

P

P

n x1, y1,…, xn, yn

R̂n ( f ) =
1
n

Loss(yi, f (xi ))
i=1

n

∑

Loss(y, ʹy ) =
1,   y ≠ ʹy
0,   o.w.
⎧
⎨
⎩

f

f
R̂n ( f )

n

xi, yi



Test error
• The test error is the expected value of the error

• The training error is an estimate (an average of a finite 
number of samples) of the expected value

• Intuitively speaking, the test error is the error when using 
an infinite number of samples

• The test error is:

• Given a classifier     , we cannot compute the test error �
because the data distribution       is unknown

RP ( f ) = Loss(y, f (x)) P(x, y) dxdy
x,y
∫

          = EP[ Loss(y, f (x)) ]

RP ( f )
P

f



Training and test error
• While we can only compute the training error            , we 

are truly interested on the test error             , because the 
test error is the true measure of how we will perform on 
unseen data

• Under-fitting: large training error             and test error

• Over-fitting: small training error             , large test error

RP ( f )
R̂n ( f )

R̂n ( f ) RP ( f )

R̂n ( f ) RP ( f )



Generalization
• We cannot compute             , but we can bound it!

• Consider a model class (a set of classifiers) with Vapnik-
Chervonenkis dimension:

• Vapnik 1979: Without any knowledge of the data 
distribution     , with probability at least           over the 
choice of the training set, for all classifiers       in the model 
class:

RP ( f ) ≤ R̂n ( f )+
VC(log(2n /VC)+1)+ log(4 /δ)

n

1−δ
f

VC

P

RP ( f )



Generalization
• We cannot compute             , but we can bound it!

• Consider a model class (a set of classifiers) with Vapnik-
Chervonenkis dimension:

• Vapnik 1979: Without any knowledge of the data 
distribution     , with probability at least           over the 
choice of the training set, for all classifiers       in the model 
class:

• For instance, for decision stumps:              , let             , �
With probability at least                   : 

RP ( f ) ≤ R̂n ( f )+
VC(log(2n /VC)+1)+ log(4 /δ)

n

1−δ
f

δ = 0.1

RP ( f ) ≤ R̂n ( f )+
2(logn+1)+ log(40)

n

1−δ = 0.9
VC = 2

VC

P

RP ( f )



Structural risk minimization
• Choose the model class (for instance, decision stumps 

versus linear classifiers) with best guarantee of 
generalization:

R̂n ( f )+
VC(log(2n /VC)+1)+ log(4 /δ)

n

Large for simple classifiers,
small for complex classifiers

Small for simple classifiers (small VC),
large for complex classifiers (large VC)

Large for small n,
small for large n


