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Classification problems

® There are two parts to any classification task

|) Estimation: how to select the best classifier out of a
particular set (for instance, linear classifiers)

2) Model selection: how to select the best set of classifiers
(for instance, decision stumps, linear classifiers, |-nearest
neighbor)

* Both of these selections have to be made based on training
data

* In order to grasp the concepts in this lecture better, we
will introduce a very simple classifier: decision stump



Decision stump

* Consider a dataset of 6 samples, each with a single
continuous attribute/feature (x = x,) and class label (y)

X| Y
0 + |
4 - |
-2 + |
I + |
-3 - |
2 -

* We would like to find a threshold 3, and then classify all
samples with attribute value x, above B as +1, and attribute
value x, below P as -1 (or viceversa)



Decision stump

* Lets sort with respect to x

X| Y
0 + |
4 -
-2 +|
I + |
-3 -
2 -

* | ets use the classifier:

+1, ifx, > B
—1, itx =<p

f(x)=sign(x, - ) =-

* How to find the threshold B ? Try all midpoints of x,



Decision stump

* | ets use the classifier:

, +1, itx >f
f(x)=s1gn(x, = p) =+

=1, ifx, <p

* Count the number of mistakes for all thresholds 8

-3 I -1 -1 - - -
2 + + -1 - - ]
0 + + + - - -
| + + + + - -
2 | + + + +] -
4 - | + + + + | +|



Decision stump

* | ets use the classifier:

, +1, itx <pf
J(x) =sign(p - x;) =+

=1, 1ifx, =p

* Count the number of mistakes for all thresholds 8

-3 | + | + | + + +
-2 + - + | + + +
0 + - - + + +
| + - - - + +
2 | - - - - +
4 | - - - - -|

# mistakes 4 3 2 | pi



Decision stump

* Thus our best decision stump classifier:

f(x)=sign(l 5_x)_<'+1, if x, <1.5
T -1, ifx, =15

* Remember that we consider all classifiers of the form:
+1, ifx, >

J(x)=sign(x, _/3)=<\—1, ifx <p

+1, ifx, < B
=1, 1ifx,=p

f(x)=sign(B-x,) =+

for any real value 3

* Although these are simple classifiers, the set of decision
stump classifiers is uncountable (there are as “many” as real
values)




VC dimension

* The Vapnik-Chervonenkis (VC) dimension allows us to
understand the complexity of a model class (a set of
classifiers) without having to “count” how many classifiers
there are, for instance:

- the set of decision stump classifiers

- the set of linear classifiers

- the set of |-nearest neighbor classifiers

* Instead we count the number of ways in which a dataset
can be classified.



VC Dimension of decision stump

* | ets take the sorted dataset we used before

* Consider decision stump classifiers with all values of B that
would lead to different ways of classifying the samples

+1, ifx, > pf
—1, iftx, <p

+1, ifx, <pf
—1, iftx, =p

J(x) =sign(x, —/3)={ f(x)=sign(/3—xl)={

f(>) f(>)
B=-25 B=-1 PB=05 B=I5 B=0.5 B=15 B=3 B=co
3 -] I R | I I e T R T B
2 |+l | T R | 2 T T T T Y
0 | +1 | +I 1 T AR I 0 N T Y I Y I Y
T TR Y T T I I T Y Y
I T T Y T | 2 |- | | L]+
A T T Y Y | 4 |- | | |+
* We highlight (in blue) one way of classifying the 6 samples

* We have |2 different ways of classifying the 6 samples



VC dimension of decision stump

* In general, the set of decision stump classifiers lead to 2n
different ways of classifying n samples

- We classify the n samples as -|’s followed by +1’s

- We also classify the n samples as +1’s followed by -I’s



VC dimension of decision stump

* In general, the set of decision stump classifiers lead to 2n
different ways of classifying n samples

- We classify the n samples as -|’s followed by +1’s

- We also classify the n samples as +1’s followed by -I’s

* More complex classifiers would lead to more than 2n
different ways of classifying n samples

* The most complex classifiers would lead to 2" different
ways of classifying n samples

- There are 2" different vectors of size n with each entry being
either +| or -1



VC dimension of decision stump

* In general, the set of decision stump classifiers lead to 2n
different ways of classifying n samples

- We classify the n samples as -|’s followed by +1’s

- We also classify the n samples as +1’s followed by -I’s

* More complex classifiers would lead to more than 2n
different ways of classifying n samples

* The most complex classifiers would lead to 2" different
ways of classifying n samples

- There are 2" different vectors of size n with each entry being
either +| or -1

* More complex classifiers are not always better, as we will

see |later




VC dimension

* The Vapnik-Chervonenkis (VC) dimension is the maximum
number of samples n that can be classified in any possible
way (that is, 2" ways) by a model class (a set of classifiers)



VC dimension of decision stump

* The Vapnik-Chervonenkis (VC) dimension is the maximum
number of samples n that can be classified in any possible
way (that is, 2" ways) by a model class (a set of classifiers)

* Recall that decision stump classifiers lead

to 2n different ways of classifying n samples | 2
* Find the maximum n for which 2n = 2" 2 4
* The VC dimension is VC =2 3 6




VC dimension of decision stump

* The Vapnik-Chervonenkis (VC) dimension is the maximum
number of samples n that can be classified in any possible
way (that is, 2" ways) by a model class (a set of classifiers)

* Recall that decision stump classifiers lead 2n

to 2n different ways of classifying n samples | 2 2
* Find the maximum n for which 2n = 2n 2 4 4
* The VC dimension is VC =2 3 6 8

* For more intuition, see the 2" ways of classifying n samples

~—
]

+ | -1 ool I O A Y O Y I Y
-
qp)
i |+ [+ -0 |-1{+p+0]-17-I
-
Cﬁl + |+ -1 | -] + | -1 [+ -1 |+ - |+ -]
c |+l -1 |+ -]

2 ways (23-2*3 = 2) of classifying (in red)
are not -1’s followed by +1’s,
neither +1’s followed by -1's



VC dimension

* The Vapnik-Chervonenkis (VC) dimension is the maximum
number of samples n that can be classified in any possible
way (that is, 2" ways) by a model class (a set of classifiers)

* The VC dimension of the set of decision stumps is VC =2

* The VC dimension of the set of linear classifiers in d
dimensions ( R?) without offset parameter, is VC = d

* The VC dimension of the set of linear classifiers in d
dimensions ( RY) with offset parameter, is VC =d +1

* The VC dimension of the set of |-nearest neighbor
classifiers is V(C = o
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Mean versus expectation

* Consider a Bernoulli random variable X with p=0.5
- X =1 with probability p

- X =0 with probability 1-p

* The expected value of X is:

E[X]=1xP(X =1)+0x P(X =0)
=lxp+0x(1-p)
=P
°* Assume we have a dataset of n bits: x,x,,....x,

®* We can compute the mean:

~ 1
p=;2xi

n
i=1
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iImport numpy as np
def example_bernoulli(n):
Z = np.random.randint(0,2,n

return 1.0/n * np.sum(z)\

>>> example_bernoulli(10)

0.8

>>> example_bernoulli(100)
0.44

>>> example_bernoulli(10000)
0.5138

N

Mean versus expectation

Returns n random integers >= 0 and < 2,
each value with equal probabillity.

In this case (0 or 1) then p = 0.5 in the
Bernoulli distribution

Computes average



Training error

* For computational purposes, we consider data to be
constant, but data is a random variable!

* There is an unknown data ¢

istribution P

* The training set has n sam

dles: X1, ¥,5..45X,,.Y,

Samples X;,Y; are independent, with probability

distribution P

®* The training error is:

R(5) =~ Y Loss(y.f(x)

where f is a classifier and

* Given a classifier f and n
training error R (f)

1, y=y

Loss(y,y") =+
0, o.w.

samples, we can compute the




Test error

* The test error is the expected value of the error

* The training error is an estimate (an average of a finite
number of samples) of the expected value

* Intuitively speaking, the test error is the error when using
an infinite number of samples

®* The test error is:

R,(f)= [ Loss(y,f(x)) P(x,y) dxdy

=_E o[ Loss(y, f(x)) ]

* Given a classifier f, we cannot compute the test error R,(f)
because the data distribution P is unknown




Training and test error

* While we can only compute the training error R (f), we
are truly interested on the test error R, (f) , because the
test error is the true measure of how we will perform on
unseen data

* Under-fitting: large training error IAQH (f) and testerror R (f)

* Over-fitting: small training error IAQn (f) , large test error R,(f)




Generalization

* We cannot compute R,(f), but we can bound it!

* Consider a model class (a set of classifiers) with Vapnik-
Chervonenkis dimension: VC

* Vapnik 1979: Without any knowledge of the data
distribution P, with probability at least 1—0 over the
choice of the training set, for all classifiers f in the model
class:

Rp<f>sf€n<f>+\/

VC(log(2n/VC)+1)+1og(4/0)

n




Generalization

* We cannot compute R,(f), but we can bound it!

* Consider a model class (a set of classifiers) with Vapnik-
Chervonenkis dimension: VC

* Vapnik 1979: Without any knowledge of the data
distribution P, with probability at least 1—0 over the
choice of the training set, for all classifiers f in the model
class:

Rp<f>sf€n<f>+\/

VC(log(2n/VC)+1)+1og(4/0)

n

* For instance, for decision stumps: VC =2,let 0=0.1,
With probability at least 1-0=0.9:

2(logn+1)+10g(40)

n

Rp(f)sf?n(f)+\/



Structural risk minimization

* Choose the model class (for instance, decision stumps
versus linear classifiers) with best guarantee of
generalization:

VC(log(2n/VC)+1)+1og(4/0)

fen<f>+\/

n
Large for simple classifiers, Small for simple classifiers (small VC),
small for complex classifiers large for complex classifiers (large VC)

Large for small n,
small for large n



