CS490DSC Data Science Capstone Model Selection

Jean Honorio Purdue University

Classification problems

- There are two parts to any classification task
 - 1) Estimation: how to select the best classifier out of a particular set (for instance, linear classifiers)
- 2) <u>Model selection</u>: how to select the best set of classifiers (for instance, decision stumps, linear classifiers, I-nearest neighbor)
- Both of these selections have to be made based on training data
- In order to grasp the concepts in this lecture better, we will introduce a very simple classifier: decision stump

• Consider a dataset of 6 samples, each with a single continuous attribute/feature $(x = x_1)$ and class label (y)

×ı	у
0	+1
4	-1
-2	+
I	+
-3	-1
2	-1

• We would like to find a threshold β , and then classify all samples with attribute value x_1 above β as +1, and attribute value x_1 below β as -1 (or viceversa)

• Lets sort with respect to x

• Lets use the classifier:

$$f(x) = \operatorname{sign}(x_1 - \beta) = \begin{cases} +1, & \text{if } x_1 > \beta \\ -1, & \text{if } x_1 \le \beta \end{cases}$$

• How to find the threshold β ? Try all midpoints of x_1

• Lets use the classifier:

$$f(x) = \operatorname{sign}(x_1 - \beta) = \begin{cases} +1, & \text{if } x_1 > \beta \\ -1, & \text{if } x_1 \le \beta \end{cases}$$

 \bullet Count the number of mistakes for all thresholds β

×ı	у	f(x)						
		β=-2.5	β=-I	β=0.5	β=1.5	β=3		
-3	- 1	- 1	-	-	-	- 1		
-2	+1	+1	- 1	- 1	- 1	-		
0	+1	+1	+	- 1	- 1	-		
I	+1	+1	+	+1	-	-		
2	- 1	+1	+	+1	+1	-		
4	-	+1	+	+1	+	+		
# mis	takes	2	3	4	5	4		

• Lets use the classifier:

$$f(x) = \operatorname{sign}(\beta - x_1) = \begin{cases} +1, & \text{if } x_1 < \beta \\ -1, & \text{if } x_1 \ge \beta \end{cases}$$

 \bullet Count the number of mistakes for all thresholds β

×ı	у	f(x)						
		β=-2.5	β=-I	β=0.5	β=1.5	β=3		
-3	- 1	+1	+1	+1	+1	+1		
-2	+1	- 1	+	+	+	+1		
0	+1	- 1	-	+	+1	+1		
I	+1	- 1	-	- 1	+1	+1		
2	- 1	- 1	-	- 1	-1	+1		
4	-	-	-	-	-	-		
# mis	takes	4	3	2	Ι	2		

• Thus our best <u>decision stump</u> classifier:

$$f(x) = \operatorname{sign}(1.5 - x_1) = \begin{cases} +1, & \text{if } x_1 < 1.5 \\ -1, & \text{if } x_1 \ge 1.5 \end{cases}$$

• Remember that we consider all classifiers of the form:

$$f(x) = \operatorname{sign}(x_1 - \beta) = \begin{cases} +1, & \text{if } x_1 > \beta \\ -1, & \text{if } x_1 \le \beta \end{cases}$$
$$f(x) = \operatorname{sign}(\beta - x_1) = \begin{cases} +1, & \text{if } x_1 < \beta \\ -1, & \text{if } x_1 \ge \beta \end{cases}$$

for any real value β

 Although these are simple classifiers, the <u>set of decision</u> <u>stump classifiers</u> is uncountable (there are as "many" as real values)

VC dimension

- The Vapnik-Chervonenkis (VC) dimension allows us to understand the complexity of a model class (a set of classifiers) without having to "count" how many classifiers there are, for instance:
 - the set of decision stump classifiers
 - the set of linear classifiers
 - the set of I-nearest neighbor classifiers
- Instead we count the number of ways in which a dataset can be classified.

- Lets take the sorted dataset we used before
- Consider decision stump classifiers with all values of β that would lead to different ways of classifying the samples

$$f(x) = \operatorname{sign}(x_1 - \beta) = \begin{cases} +1, & \text{if } x_1 > \beta \\ -1, & \text{if } x_1 \le \beta \end{cases}$$

$$f(x) = \operatorname{sign}(\beta - x_1) = \begin{cases} +1, & \text{if } x_1 < \beta \\ -1, & \text{if } x_1 \ge \beta \end{cases}$$

x	f(x)			x	f(x)								
	β=-2.5	β=-I	β=0.5	β=1.5	β=3	β=∞		β=-2.5	β=-I	β=0.5	β=1.5	β=3	β=∞
-3	-1	-	-	-1	-1	-1	-3	+1	+	+1	+	+	+1
-2	+1	-1	-1	-1	-1	-1	-2	-1	+	+1	+	+	+1
0	+1	+	-1	-1	-1	-1	0	-1	-1	+1	+1	+	+1
I	+1	+	+	-1	-1	-1	I	-1	-1	-1	+1	+	+1
2	+1	+	+	+1	-1	-1	2	-1	-1	-1	-1	+	+
4	+1	+	+1	+1	+	-1	4	-1	-	-1	-1	-1	+

- We highlight (in blue) one way of classifying the 6 samples
- We have 12 different ways of classifying the 6 samples

- In general, the <u>set of decision stump classifiers</u> lead to 2n different ways of classifying n samples
 - We classify the n samples as -1's followed by +1's
 - We also classify the n samples as +1's followed by -1's

- In general, the <u>set of decision stump classifiers</u> lead to 2n different ways of classifying n samples
 - We classify the n samples as -1's followed by +1's
 - We also classify the n samples as +1's followed by -1's
- More complex classifiers would lead to more than 2n different ways of classifying n samples
- The most complex classifiers would lead to 2ⁿ different ways of classifying n samples
 - There are 2ⁿ different vectors of size n with each entry being either +1 or -1

- In general, the <u>set of decision stump classifiers</u> lead to 2n different ways of classifying n samples
 - We classify the n samples as -1's followed by +1's
 - We also classify the n samples as +1's followed by -1's
- More complex classifiers would lead to more than 2n different ways of classifying n samples
- The most complex classifiers would lead to 2ⁿ different ways of classifying n samples
 - There are 2ⁿ different vectors of size n with each entry being either +1 or -1
- More complex classifiers are not always better, as we will see later

VC dimension

 The Vapnik-Chervonenkis (VC) dimension is the maximum number of samples n that can be classified in any possible way (that is, 2ⁿ ways) by a model class (a set of classifiers)

- The Vapnik-Chervonenkis (VC) dimension is the maximum number of samples n that can be classified in any possible way (that is, 2ⁿ ways) by a model class (a set of classifiers)
- Recall that <u>decision stump</u> classifiers lead to 2n different ways of classifying n samples
- Find the maximum n for which $2n = 2^n$
- The VC dimension is VC = 2

n	2n	2 ⁿ
I	2	2
2	4	4
3	6	8

- The Vapnik-Chervonenkis (VC) dimension is the maximum number of samples n that can be classified in any possible way (that is, 2ⁿ ways) by a model class (a set of classifiers)
- Recall that <u>decision stump</u> classifiers lead to 2n different ways of classifying n samples
- Find the maximum n for which $2n = 2^n$
- The VC dimension is VC = 2

n	2n	2 ⁿ
I	2	2
2	4	4
3	6	8

• For more intuition, see the 2ⁿ ways of classifying n samples

2 ways $(2^3-2^*3 = 2)$ of classifying (in red) are not -1's followed by +1's, neither +1's followed by -1's

VC dimension

- The Vapnik-Chervonenkis (VC) dimension is the maximum number of samples n that can be classified in any possible way (that is, 2ⁿ ways) by a model class (a set of classifiers)
- The VC dimension of the set of decision stumps is VC = 2
- The VC dimension of the set of linear classifiers in d dimensions (\mathbb{R}^d) without offset parameter, is VC = d
- The VC dimension of the set of linear classifiers in d dimensions (\mathbb{R}^d) with offset parameter, is VC = d + 1
- The VC dimension of the set of I-nearest neighbor classifiers is $VC = \infty$

Mean versus expectation

• Consider a Bernoulli random variable X with p = 0.5

- X = 1 with probability p
- X = 0 with probability 1 p

• The expected value of X is:

$$E[X] = 1 \times P(X = 1) + 0 \times P(X = 0)$$

= 1 \times p + 0 \times (1 - p)
= p

- Assume we have a dataset of *n* bits: $x_1, x_2, ..., x_n$
- We can compute the mean:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Mean versus expectation

import numpy as np def example_bernoulli(n): z = np.random.randint(0,2,n) return 1.0/n * np.sum(z)	each v In this Bernou
>>> example_bernoulli(10)	Comp
<pre>>>> example_bernoulli(100) 0 44</pre>	
>>> example_bernoulli(10000) 0.5138	

Returns n random integers >= 0 and < 2, each value with equal probability. In this case (0 or 1) then p = 0.5 in the Bernoulli distribution

Computes average

Training error

- For computational purposes, we consider data to be constant, but data is a random variable!
- There is an unknown data distribution P
- The training set has n samples: $\underline{x}_1, y_1, \dots, \underline{x}_n, y_n$ Samples \underline{x}_i, y_i are independent, with probability distribution P
- The <u>training error</u> is:

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \text{Loss}(y_i, f(\underline{x}_i))$$

where f is a classifier and $Loss(y, y') = \begin{cases} 1, & y \neq y' \\ 0, & 0.W. \end{cases}$

• Given a classifier f and n samples, we can compute the training error $\hat{R}_n(f)$

Test error

- The test error is the expected value of the error
- The training error is an estimate (an average of a finite number of samples) of the expected value
- Intuitively speaking, the test error is the error when using an infinite number of samples
- The <u>test error</u> is:

$$\begin{aligned} R_P(f) &= \int_{\underline{x}, y} \text{Loss}(y, f(\underline{x})) \ P(\underline{x}, y) \ d\underline{x} \, dy \\ &= \text{E}_P[\ \text{Loss}(y, f(\underline{x})) \] \end{aligned}$$

• Given a classifier f, we cannot compute the test error $R_P(f)$ because the data distribution P is unknown

Training and test error

- While we can only compute the training error $\hat{R}_n(f)$, we are truly interested on the test error $R_p(f)$, because the test error is the true measure of how we will perform on unseen data
- Under-fitting: large training error $\hat{R}_n(f)$ and test error $R_p(f)$
- Over-fitting: small training error $\hat{R}_{_{\! n}}(f)$, large test error $R_{_{\! P}}(f)$

Generalization

- We cannot compute $R_P(f)$, but we can bound it!
- Consider a model class (a set of classifiers) with Vapnik-Chervonenkis dimension: VC
- Vapnik 1979: Without any knowledge of the data distribution P, with probability at least $1-\delta$ over the choice of the training set, for all classifiers f in the model class:

$$R_{P}(f) \leq \hat{R}_{n}(f) + \sqrt{\frac{VC(\log(2n/VC) + 1) + \log(4/\delta)}{n}}$$

Generalization

- We cannot compute $R_P(f)$, but we can bound it!
- Consider a model class (a set of classifiers) with Vapnik-Chervonenkis dimension: VC
- Vapnik 1979: Without any knowledge of the data distribution P, with probability at least $1-\delta$ over the choice of the training set, for all classifiers f in the model class:

$$R_P(f) \le \hat{R}_n(f) + \sqrt{\frac{VC(\log(2n/VC) + 1) + \log(4/\delta)}{n}}$$

• For instance, for decision stumps: VC = 2, let $\delta = 0.1$, With probability at least $1 - \delta = 0.9$:

$$R_{P}(f) \le \hat{R}_{n}(f) + \sqrt{\frac{2(\log n + 1) + \log(40)}{n}}$$

Structural risk minimization

 Choose the model class (for instance, decision stumps versus linear classifiers) with best guarantee of generalization:

