3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
Definition

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if \textbf{dom} f is a convex set and

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom} f$, $0 \leq \theta \leq 1$

- f is concave if $-f$ is convex
- f is strictly convex if \textbf{dom} f is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \text{dom} f$, $x \neq y$, $0 < \theta < 1$
Examples on R

convex:

- affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
- exponential: \(e^{ax} \), for any \(a \in \mathbb{R} \)
- powers: \(x^\alpha \) on \(\mathbb{R}_{++} \), for \(\alpha \geq 1 \) or \(\alpha \leq 0 \)
- powers of absolute value: \(|x|^p \) on \(\mathbb{R} \), for \(p \geq 1 \)
- negative entropy: \(x \log x \) on \(\mathbb{R}_{++} \)

concave:

- affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
- powers: \(x^\alpha \) on \(\mathbb{R}_{++} \), for \(0 \leq \alpha \leq 1 \)
- logarithm: \(\log x \) on \(\mathbb{R}_{++} \)
Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p}$ for $p \geq 1$; $||x||_\infty = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

- affine function

$$f(X) = \text{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

- spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\text{max}}(X) = (\lambda_{\text{max}}(X^T X))^{1/2}$$
Restriction of a convex function to a line

\[f : \mathbb{R}^n \to \mathbb{R} \text{ is convex if and only if the function } g : \mathbb{R} \to \mathbb{R}, \]
\[g(t) = f(x + tv), \quad \text{dom } g = \{ t \mid x + tv \in \text{dom } f \} \]

is convex (in \(t \)) for any \(x \in \text{dom } f, v \in \mathbb{R}^n \)

can check convexity of \(f \) by checking convexity of functions of one variable

example. \(f : \mathbb{S}^n \to \mathbb{R} \) with \(f(X) = \log \det X, \text{ dom } f = \mathbb{S}^n_{++} \)

Note that: \(X + tV = X^{1/2} (I + t X^{-1/2} V X^{-1/2}) X^{1/2} \) then \(\det(X + tV) = \det(X) \det(I + t X^{-1/2} V X^{-1/2}) \)
\[g(t) = \log \det(X + tV) = \log \det X + \log \det(I + t X^{-1/2} V X^{-1/2}) \]
\[= \log \det X + \sum_{i=1}^{n} \log(1 + t \lambda_i) \]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2} V X^{-1/2} = UDU' \) then \(I + t UDU' = U(I + t D)U' \)

\(g \) is concave in \(t \) (for any choice of \(X \succ 0, V \)); hence \(f \) is concave
Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \not\in \text{dom } f$$

often simplifies notation; for example, the condition

$$0 \leq \theta \leq 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions

- $\text{dom } f$ is convex
- for $x, y \in \text{dom } f$,

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$
First-order condition

f is **differentiable** if $\text{dom } f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right)$$

exists at each $x \in \text{dom } f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \text{for all } x, y \in \text{dom } f$$

first-order approximation of f is global underestimator
Second-order conditions

f is **twice differentiable** if $\text{dom } f$ is open and the Hessian $\nabla^2 f(x) \in \mathbb{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,$$

exists at each $x \in \text{dom } f$

2nd-order conditions: for twice differentiable f with convex domain

- f is convex if and only if

 $$\nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom } f$$

- if $\nabla^2 f(x) \succ 0$ for all $x \in \text{dom } f$, then f is strictly convex
Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = \|Ax - b\|^2_2$

$$\nabla f(x) = 2A^T(Ax - b), \quad \nabla^2 f(x) = 2A^TA$$

convex (for any A)

quadratic-over-linear: $f(x, y) = x^2/y$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix}^T \begin{bmatrix} y \\ -x \end{bmatrix} \succeq 0$$

convex for $y > 0$
log-sum-exp: \(f(x) = \log \sum_{k=1}^{n} \exp x_k \) is convex

\[
\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} z z^T \quad (z_k = \exp x_k)
\]

to show \(\nabla^2 f(x) \succeq 0 \), we must verify that \(v^T \nabla^2 f(x) v \geq 0 \) for all \(v \):

\[
v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2)(\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \geq 0
\]

since \((\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k) \) (from Cauchy-Schwarz inequality)

More clearly: \(a_k = v_k \sqrt{z_k}, b_k = \sqrt{z_k} \), then \(<a,b> \leq |a|_2 |b|_2 \)

generic mean: \(f(x) = (\prod_{k=1}^{n} x_k)^{1/n} \) on \(\mathbb{R}_{++}^n \) is concave

(similar proof as for log-sum-exp)
Epigraph and sublevel set

α-sublevel set of $f : \mathbb{R}^n \to \mathbb{R}$:

$$C_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}$$

sublevel sets of convex functions are convex (converse is false)

epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$\text{epi } f = \{(x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, \ f(x) \leq t \}$$

f is convex if and only if $\text{epi } f$ is a convex set

(Convex functions)
Jensen’s inequality

basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbb{E} z) \leq \mathbb{E} f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\text{prob}(z = x) = \theta, \quad \text{prob}(z = y) = 1 - \theta$$
Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

3. show that f is obtained from simple convex functions by operations that preserve convexity

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective
Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: $f(Ax + b)$ is convex if f is convex

examples

- log barrier for linear inequalities

 $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{ x \mid a_i^T x < b_i, i = 1, \ldots, m \}$

- (any) norm of affine function: $f(x) = \|Ax + b\|$

Convex functions 3–14
Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,\ldots,m}(a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}$$

is convex ($x_{[i]}$ is ith largest component of x)

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} \mid 1 \leq i_1 < i_2 < \cdots < i_r \leq n\}$$

An index of a vector entry goes from 1 to n
There are n choose r sets of r different indices
We can define $m = n$ choose r functions that sum r entries (See the first line of slide)
The example goes through all n choose r sets of indices $i_1\ldots i_r$
Pointwise supremum

if $f(x, y)$ is convex in x for each $y \in A$, then

$$g(x) = \sup_{y \in A} f(x, y)$$

is convex

examples

• support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex

• distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in S^n$,

$$\lambda_{\text{max}}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

(Example: definition of dual norm)
Composition with scalar functions

composition of $g : \mathbb{R}^n \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

f is convex if:
- g convex, h convex, nondecreasing
- g concave, h convex, nonincreasing

• proof (for $n = 1$, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

nondecreasing: $h' \geq 0$

examples

• $\exp g(x)$ is convex if g is convex
• $1/g(x)$ is convex if g is concave and positive
Vector composition

composition of $g : \mathbb{R}^n \to \mathbb{R}^k$ and $h : \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x)) \quad (\text{generalizes previous slide})$$

f is convex if g_i convex, h convex nondecreasing in each argument
g_i concave, h convex nonincreasing in each argument

proof (for $n = 1$, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex
Minimization

if \(f(x, y) \) is convex in \((x, y)\) and \(C \) is a convex set, then

\[
g(x) = \inf_{y \in C} f(x, y)
\]

is convex

examples

- \(f(x, y) = x^T Ax + 2x^T By + y^T Cy \) with

\[
\begin{bmatrix}
A & B \\
B^T & C
\end{bmatrix} \succeq 0, \quad C \succ 0
\]

minimizing over \(y \) gives

\[
g(x) = \inf_y f(x, y) = x^T (A - BC^{-1} B^T)x
\]

\(g \) is convex, hence Schur complement \(A - BC^{-1} B^T \succeq 0 \) (iff \([A B; B^T C] \succeq 0 \))

- distance to a set: \(\text{dist}(x, S) = \inf_{y \in S} \|x - y\| \) is convex if \(S \) is convex

(Example: Lagrange dual, we will see it next week)
Perspective

the **perspective** of a function \(f : \mathbb{R}^n \to \mathbb{R} \) is the function \(g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R} \),

\[
g(x, t) = tf(x/t), \quad \text{dom} \ g = \{(x, t) \mid x/t \in \text{dom} \ f, \ t > 0\}
\]

\(g \) is convex if \(f \) is convex

examples

- \(f(x) = x^T x \) is convex; hence \(g(x, t) = x^T x/t \) is convex for \(t > 0 \)
- negative logarithm \(f(x) = -\log x \) is convex; hence relative entropy \(g(x, t) = t \log t - t \log x \) is convex on \(\mathbb{R}^2_{++} \)
- if \(f \) is convex, then

\[
g(x) = (c^T x + d) f \left((Ax + b)/(c^T x + d) \right)
\]

is convex on \(\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom} \ f\} \)
The conjugate function

The conjugate of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

Properties:

f^* is convex (even if f is not):

- $y^T x - f(x)$ is convex in y
- conjugate is pointwise supremum

$f^{**} = f$, if f is convex and epi f is a closed set

for differentiable f, f^* is also called Fenchel conjugate or Legendre transform
examples

• negative logarithm \(f(x) = -\log x \)

\[
f^*(y) = \sup_{x>0} (xy + \log x)
\]

\[
= \begin{cases}
-1 - \log(-y) & y < 0 \\
\infty & \text{otherwise}
\end{cases}
\]

• strictly convex quadratic \(f(x) = (1/2)x^T Q x \) with \(Q \in \mathbb{S}_+^n \)

\[
f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)
\]

\[
= \frac{1}{2} y^T Q^{-1} y
\]
Quasiconvex functions

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is quasiconvex if $\text{dom } f$ is convex and the sublevel sets

$$S_\alpha = \{ x \in \text{dom } f | f(x) \leq \alpha \}$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave
Examples

- \(\sqrt{|x|} \) is quasiconvex on \(\mathbb{R} \)
- \(\text{ceil}(x) = \inf \{ z \in \mathbb{Z} \mid z \geq x \} \) is quasilinear
- \(\log x \) is quasilinear on \(\mathbb{R}_{++} \)
- \(f(x_1, x_2) = x_1 x_2 \) is quasiconcave on \(\mathbb{R}_{++}^2 \)
- linear-fractional function
 \[f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{ x \mid c^T x + d > 0 \} \]
 is quasilinear
- distance ratio
 \[f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{ x \mid \|x - a\|_2 \leq \|x - b\|_2 \} \]
 is quasiconvex
Properties

modified Jensen inequality: for quasiconvex f

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \leq f(x) \implies \nabla f(x)^T(y - x) \leq 0$$

values smaller than $f(x)$ level sets for different alpha

normal vector defines a supporting hyperplane to the sublevel set $\{y \mid f(y) \leq f(x)\}$ at x

sums of quasiconvex functions are not necessarily quasiconvex