5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions

- examples
- generalized inequalities
Lagrangian

standard form problem (not necessarily convex)

minimize \(f_0(x) \)
subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m \)
\(h_i(x) = 0, \quad i = 1, \ldots, p \)

variable \(x \in \mathbb{R}^n \), domain \(\mathcal{D} \), optimal value \(p^* \)

Lagrangian: \(L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \rightarrow \mathbb{R} \), with \(\text{dom} \ L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p \),

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]

- weighted sum of objective and constraint functions
- \(\lambda_i \) is Lagrange multiplier associated with \(f_i(x) \leq 0 \)
- \(\nu_i \) is Lagrange multiplier associated with \(h_i(x) = 0 \)
Lagrange dual function

Lagrange dual function: \(g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R} \),

\[
g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)
\]

\(g \) is concave, can be \(-\infty\) for some \(\lambda, \nu \)

lower bound property: if \(\lambda \succeq 0 \), then \(g(\lambda, \nu) \leq p^* \)

proof: if \(\tilde{x} \) is feasible and \(\lambda \succeq 0 \), then

\[
f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)
\]

minimizing over all feasible \(\tilde{x} \) gives \(p^* \geq g(\lambda, \nu) \)
Least-norm solution of linear equations

\[
\begin{align*}
\text{minimize} & \quad x^T x \\
\text{subject to} & \quad Ax = b \\
& \quad Ax - b = 0
\end{align*}
\]

dual function

• Lagrangian is \(L(x, \nu) = x^T x + \nu^T (Ax - b) \)
• to minimize \(L \) over \(x \), set gradient equal to zero:

\[
\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \quad \implies \quad x = -(1/2) A^T \nu
\]

• plug in in \(L \) to obtain \(g \):

\[
g(\nu) = L((-1/2) A^T \nu, \nu) = \frac{1}{4} \nu^T A A^T \nu - b^T \nu
\]

a concave function of \(\nu \)

lower bound property: \(p^* \geq -(1/4) \nu^T A A^T \nu - b^T \nu \) for all \(\nu \)
Standard form LP

\[\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad x \geq 0
\end{align*} \]

dual function

- Lagrangian is
 \[L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x \]
 \[= -b^T \nu + (c + A^T \nu - \lambda)^T x \]

- \(L \) is affine in \(x \), hence
 \[g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) = \begin{cases}
- b^T \nu & A^T \nu - \lambda + c = 0 \\
- \infty & \text{otherwise}
\end{cases} \]

 for any nonzero vector \(y \), we can make \(y'x \) arbitrarily small

 \(g \) is linear on affine domain \(\{ (\lambda, \nu) \mid A^T \nu - \lambda + c = 0 \} \), hence concave

lower bound property: \(p^* \geq -b^T \nu \) if \(A^T \nu + c \geq 0 \)
Equality constrained norm minimization

\[
\text{minimize} \quad \|x\| \\
\text{subject to} \quad Ax = b \\
\quad \text{or} \quad -Ax + b = 0
\]

dual function

\[
g(\nu) = \inf_x (\|x\| - \nu^T Ax + b^T \nu) = \begin{cases}
 b^T \nu & \|A^T \nu\|_* \leq 1 \\
 -\infty & \text{otherwise}
\end{cases}
\]

where \(\|\nu\|_* = \sup_{\|u\| \leq 1} u^T \nu\) is dual norm of \(\| \cdot \|\)

Let \(y = A^T \nu\), proof: follows from \(\inf_x (\|x\| - y^T x) = 0\) if \(\|y\|_* \leq 1\), \(-\infty\) otherwise

- if \(\|y\|_* \leq 1\), then \(\|x\| - y^T x \geq 0\) for all \(x\), with equality if \(x = 0\)
 Cauchy-Schwarz: \(y^T x \leq \|y\|_* \|x\| \leq \|x\|\)

- if \(\|y\|_* > 1\), choose \(x = tu\) where \(\|u\| \leq 1\), \(u^T y = \|y\|_* > 1\):
 \[
 \|x\| - y^T x = t \|u\| - t y^T u = t \|u\| - t \|y\|_* \\
 = t (\|u\| - \|y\|_*) \to -\infty \quad \text{as} \quad t \to \infty
 \]

lower bound property: \(p^* \geq b^T \nu\) if \(\|A^T \nu\|_* \leq 1\)
Two-way partitioning

minimize $x^T W x$
subject to $x_i^2 = 1, \ i = 1, \ldots, n$

• a nonconvex problem; feasible set contains 2^n discrete points
• interpretation: partition $\{1, \ldots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{ij}$ is cost of assigning to different sets (one set is all i’s where $x_i = -1$, the second set is all i’s where $x_i = +1$)

dual function

$g(\nu) = \inf_x (x^T W x + \sum_i \nu_i(x_i^2 - 1)) = \inf_x x^T(W + \text{diag}(\nu))x - 1^T \nu$

$= \begin{cases} -1^T \nu & W + \text{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$

lower bound property: $p^* \geq -1^T \nu$ if $W + \text{diag}(\nu) \succeq 0$

if $W + \text{diag}(\nu)$ has at least one negative eigenvalue we can make $x'(W + \text{diag}(\nu))x$ arbitrarily small
The dual problem

Lagrange dual problem

maximize \(g(\lambda, \nu) \)
subject to \(\lambda \succeq 0 \)

- finds best lower bound on \(p^* \), obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted \(d^* \)
- \(\lambda, \nu \) are dual feasible if \(\lambda \succeq 0 \), \((\lambda, \nu) \in \text{dom } g\)
- often simplified by making implicit constraint \((\lambda, \nu) \in \text{dom } g\) explicit

example: standard form LP and its dual (page 5–5)

minimize \(c^T x \)
subject to \(Ax = b \)
\(x \succeq 0 \)

maximize \(-b^T \nu \)
subject to \(A^T \nu + c \succeq 0 \)
A nonconvex problem with strong duality

minimize \(x^T A x + 2b^T x \)
subject to \(x^T x \leq 1 \)
\(x'x - 1 \leq 0 \)

\(A \not\succeq 0 \), hence nonconvex

dual function: \(g(\lambda) = \inf_x (x^T (A + \lambda I)x + 2b^T x - \lambda) \)

- unbounded below if \(A + \lambda I \not\succeq 0 \)
- minimized by \(x = -(A + \lambda I)^\dagger b \) otherwise: \(g(\lambda) = -b^T (A + \lambda I)^\dagger b - \lambda \)

1) For simplicity assume \((A + \lambda I) > 0\)

\[
L(x,\lambda) = x'A x + 2b'x + \lambda(x'x - 1) = x'(A + \lambda I)x + 2b'x - \lambda \\
g(\lambda) = \inf_x L(x,\lambda) \\
dL/dx = 2(A + \lambda I)x + 2b = 0 \quad \Rightarrow \quad x^* = -(A + \lambda I)^{-1}b
\]

Then \(g(\lambda) = L(x^*,\lambda) = -b' (A + \lambda I)^{-1} b - \lambda \)
Lagrange dual: \(\max g(\lambda) \) s.t. \(\lambda \geq 0 \)

Let \(A = UDU' \), then \(A + \lambda I = U(D + \lambda I)U' = U S(\lambda) U' \), where \(s_{ii}(\lambda) = d_{ii} + \lambda \)
Then \((A + \lambda I)^{-1} = U S^{-1}(\lambda) U' \), where \(s_{ii}^{-1}(\lambda) = 1/(d_{ii} + \lambda) \)

Let \(U = [u_1 \ldots u_n] \), where \(u_i \) are column eigenvectors
\[
g(\lambda) = -b' U S^{-1}(\lambda) U' b - \lambda = -\Sigma_i b' u_i s_{ii}^{-1}(\lambda) u_i' b - \lambda \\
\quad = -\Sigma_i s_{ii}^{-1}(\lambda) (b' u_i)^2 - \lambda \\
dg/d\lambda = \Sigma_i (b' u_i)^2 / (d_{ii} + \lambda)^2 - 1
\]

Easy to use a ONE-DIMENSIONAL gradient ascent or Newton method!
Lagrange dual and conjugate function

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad Ax \preceq b, \quad Cx = d
\end{align*}
\]

dual function

\[
g(\lambda, \nu) = \inf_{x \in \text{dom} f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)
\]

\[
= \inf_x \{ f_0(x) + (A'\lambda + C'\nu)'x \} - b'\lambda - d'\nu \\
= - \sup_x \{ (-A'\lambda - C'\nu)'x - f_0(x) \} - b'\lambda - d'\nu \\
= - f_0^*(-A'\lambda - C'\nu) - b'\lambda - d'\nu
\]

- recall definition of conjugate \(f^*(y) = \sup_{x \in \text{dom} f} (y^T x - f(x)) \)
- simplifies derivation of dual if conjugate of \(f_0 \) is known

example: entropy maximization

\[
f_0(x) = \sum_{i=1}^{n} x_i \log x_i, \quad f_0^*(y) = \sum_{i=1}^{n} e^{y_i - 1}
\]
Weak and strong duality

Weak duality: \(d^* \leq p^* \)

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

\[
\begin{align*}
\text{maximize} & \quad -1^T \nu \\
\text{subject to} & \quad W + \text{diag}(\nu) \succeq 0
\end{align*}
\]

gives a lower bound for the two-way partitioning problem on page 5–7

Strong duality: \(d^* = p^* \)

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called **constraint qualifications**

Remember the lower bound property: if \(\lambda \geq 0 \) then \(g(\lambda, \nu) \leq p^* \)

By taking the optimal \(\lambda^* \) and \(\nu^* \), \(d^* = g(\lambda^*, \nu^*) \leq p^* \)

Duality gap: \(p^* - d^* \)
Slater’s constraint qualification

Strong duality holds for a convex problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

if it is strictly feasible, \(i.e.,\)

\[
\exists x \quad f_i(x) < 0, \quad i = 1, \ldots, m, \quad Ax = b
\]

- also guarantees that the dual optimum is attained (if \(p^* > -\infty\))
- can be sharpened:

Assume \(f_1(x) \ldots f_k(x)\) are affine and \(\text{dom}(f_0)\) open, then the Refined Slater’s condition is

\[
\text{there is an } x, \quad f_i(x) \leq 0 \text{ for } i = 1 \ldots k \quad f_i(x) < 0 \text{ for } i = k+1 \ldots m \quad Ax = b
\]

Thus, if all inequalities are affine \((k=m)\) then strict inequality is not necessary!

- there exist many other types of constraint qualifications
Inequality form LP

primal problem

minimize \(c^T x \)
subject to \(Ax \leq b \)

dual function

\[
g(\lambda) = \inf_x ((c + A^T \lambda)^T x - b^T \lambda) = \begin{cases}
-b^T \lambda & A^T \lambda + c = 0 \\
-\infty & \text{otherwise}
\end{cases}
\]

dual problem

maximize \(-b^T \lambda\)
subject to \(A^T \lambda + c = 0, \quad \lambda \succeq 0\)

• from Slater’s condition: \(p^* = d^* \) if \(A\tilde{x} \prec b \) for some \(\tilde{x} \)

• in fact, \(p^* = d^* \) except when primal and dual are infeasible \(\text{(refined Slater's)} \)
Quadratic program

primal problem (assume $P \in S^{n}_{++}$)

minimize $x^{T}Px$
subject to $Ax \preceq b$

dual function

$$g(\lambda) = \inf_{x} (x^{T}Px + \lambda^{T}(Ax - b)) = -\frac{1}{4}\lambda^{T}AP^{-1}A^{T}\lambda - b^{T}\lambda$$
dual problem

maximize $-(1/4)\lambda^{T}AP^{-1}A^{T}\lambda - b^{T}\lambda$
subject to $\lambda \succeq 0$

• from Slater’s condition: $p^{*} = d^{*}$ if $A\tilde{x} \prec b$ for some \tilde{x}
• in fact, $p^{*} = d^{*}$ always (refined Slater’s)
Geometric interpretation

for simplicity, consider problem with one constraint $f_1(x) \leq 0$

interpretation of dual function:

$$g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u), \quad \text{where } \mathcal{G} = \{ (f_1(x), f_0(x)) \mid x \in \mathcal{D} \}$$

- $\lambda u^* + t^* = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t = g(\lambda)$

Dual: $\lambda^{**} = \operatorname{argmax}_{\{\lambda \geq 0\}} g(\lambda)$

$d^{**} = g(\lambda^{**})$ is the “tightest” supporting hyperplane

(you cannot go up without violating the definition of supporting hyperplane)

what if all $u \geq 0$?
(i.e. $f_1(x) \geq 0$ for all x)
Constraint is $f_1(x) \leq 0$
Then solution has $f_1(x) = 0$
VERTICAL supporting hyperplane
$\lambda^{**} = \infty$
epigraph variation: same interpretation if G is replaced with

\[\mathcal{A} = \{(u, t) \mid f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in \mathcal{D}\} \]

strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^*)$
- for convex problem, \mathcal{A} is convex, hence has supp. hyperplane at $(0, p^*)$
- Slater’s condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical

(explained in previous slide)
Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i, h_i):

1. primal constraints: $f_i(x) \leq 0, i = 1, \ldots, m, \ h_i(x) = 0, i = 1, \ldots, p$
 (Primal feasibility)

2. dual constraints: $\lambda \succeq 0$
 (Dual feasiblity)

3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \ldots, m$
 if $\lambda_i > 0$ then $f_i(x) = 0$
 if $f_i(x) < 0$ then $\lambda_i = 0$

4. gradient of Lagrangian with respect to x vanishes:
 (Stationarity)

$$\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0$$

from page 5–17: if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

General idea, for general possibly nonconvex primal problem: OPTIMAL \Rightarrow KKT satisfied.
(subject to some technical conditions)
Complementary slackness

assume strong duality holds, \(x^* \) is primal optimal, \((\lambda^*, \nu^*)\) is dual optimal

\[
\begin{align*}
 f_0(x^*) &= g(\lambda^*, \nu^*) = \inf_x L(x, \lambda^*, \nu^*) \\
 &= \inf_x \left(f_0(x) + \sum_{i=1}^{m} \lambda_i^* f_i(x) + \sum_{i=1}^{p} \nu_i^* h_i(x) \right) \\
 \leq& \quad f_0(x^*) + \sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \nu_i^* h_i(x^*) \\
 \leq& \quad f_0(x^*)
\end{align*}
\]

hence, the two inequalities hold with equality

- \(x^* \) minimizes \(L(x, \lambda^*, \nu^*) \)
- \(\lambda_i^* f_i(x^*) = 0 \) for \(i = 1, \ldots, m \) (known as complementary slackness):

\[
\lambda_i^* > 0 \implies f_i(x^*) = 0, \quad f_i(x^*) < 0 \implies \lambda_i^* = 0
\]
KKT conditions for convex problem

General idea, for convex primal problem: KKT satisfied \Rightarrow OPTIMAL and thus KKT satisfied \Leftrightarrow OPTIMAL (subject to some technical conditions)

if \tilde{x}, $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$

zero duality gap since $x^* = x^\lambda$, $\lambda^* = \lambda^{\lambda^*}$, $\nu^* = \nu^{\lambda^*}$

$f_0(x^*) = p^* = d^* = g(\lambda^{\lambda^*}, \nu^{\lambda^*})$

if **Slater’s condition** is satisfied:

x is optimal if and only if there exist λ, ν that satisfy KKT conditions

Slide 5-11: Slater \Rightarrow strong duality
Slide 5-18: Strong duality + OPTIMAL \Rightarrow KKT satisfied
Here so far: KKT satisfied \Rightarrow OPTIMAL
Therefore assume Slater: KKT satisfied \Leftrightarrow OPTIMAL
example: water-filling (assume $\alpha_i > 0$)

$$\begin{align*}
\text{minimize} & \quad - \sum_{i=1}^{n} \log(x_i + \alpha_i) \\
\text{subject to} & \quad x_i \geq 0, \quad 1^T x = 1 \\
\text{Primal feasibility} & \quad -x \leq 0, \quad 1'x - 1 = 0 \\
\end{align*}$$

x is optimal iff $x \succeq 0$, $1^T x = 1$, and there exist $\lambda \in \mathbb{R}^n$, $\nu \in \mathbb{R}$ such that

- **Dual feasibility**: $\lambda \succeq 0$, $\lambda_i x_i = 0$, $\lambda_i = \nu$
- **Complementary slackness**: $\lambda_i x_i = 0$, $\lambda_i = \nu$
- **Stationarity**: $\frac{1}{x_i + \alpha_i} + \lambda_i = \nu$

Then:

$$\frac{dL}{dx_i} = -1/(x_i + \alpha_i) - \lambda_i + \nu = 0$$

Lagrangian: $L(x,\lambda,\nu) = \sum_i \{ -\log(x_i + \alpha_i) \} - \lambda'x + \nu(1'x - 1)$

$$= \sum_i \{ -\log(x_i + \alpha_i) - \lambda_i x_i + \nu x_i \} - \nu$$

• if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu - \alpha_i$ (because λ_i cannot be negative)
• if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu - 1/\alpha_i$ and $x_i = 0$ (because $\lambda_i x_i = 0$)
• determine ν from $1^T x = \sum_{i=1}^{n} \max\{0, 1/\nu - \alpha_i\} = 1$

interpretation

• n patches; level of patch i is at height α_i
Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions

 e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing
Introducing new variables and equality constraints

\[
\text{minimize } f_0(Ax + b)
\]

- dual function is constant: \(g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^* \)
- we have strong duality, but dual is quite useless

reformulated problem and its dual

\[
\begin{align*}
\text{minimize} & \quad f_0(y) & \text{maximize} & \quad b^T \nu - f_0^*(\nu) \\
\text{subject to} & \quad Ax + b - y = 0 & \text{subject to} & \quad A^T \nu = 0
\end{align*}
\]

dual function follows from

\[
g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T Ax + b^T \nu)
\]

\[
= \inf_y \{ f_0(y) - \nu^T y \} + \inf_x \{ \nu^T Ax + b^T \nu \}
\]

\[
= - \sup_y \{ -f_0(y) + \nu^T y \} + \inf_x \{ \nu^T Ax + b^T \nu \}
\]

\[
= -f_0^*(\nu) + b^T \nu \quad \text{if } A^T \nu = 0
\]

\[
= -\infty \quad \text{otherwise}
\]

Note: if \(A^T \nu \neq 0 \), we can pick \(x \) so that \(\nu^T Ax \) is arbitrarily small
norm approximation problem: minimize $\|Ax - b\|$

minimize $\|y\|$
subject to $y = Ax - b$

can look up conjugate of $\| \cdot \|$, or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T Ax + b^T \nu)$$

$$= \begin{cases}
 b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\
 -\infty & \text{otherwise}
\end{cases}$$

$$= \begin{cases}
 b^T \nu & A^T \nu = 0, \quad \|\nu\|^* \leq 1 \\
 -\infty & \text{otherwise}
\end{cases}$$

(see page 5-6)

dual of norm approximation problem

maximize $b^T \nu$
subject to $A^T \nu = 0, \quad \|\nu\|^* \leq 1$
Implicit constraints

LP with box constraints: primal and dual problem

minimize \(c^T x \)

subject to \(Ax = b \)

maximize \(-b^T \nu - 1^T \lambda_1 - 1^T \lambda_2 \)

subject to \(c + A^T \nu + \lambda_1 - \lambda_2 = 0 \)

\(\lambda_1 \succeq 0, \quad \lambda_2 \succeq 0 \)

reformulation with box constraints made implicit

minimize \(f_0(x) = \begin{cases} c^T x & -1 \leq x \leq 1 \\ \infty & \text{otherwise} \end{cases} \)

subject to \(Ax = b \)

dual function

\[
g(\nu) = \inf_{-1 \leq x \leq 1} (c^T x + \nu^T (Ax - b))
\]

\[
= \inf_{\{x \text{ infty} \leq 1\}} \{(A'\nu+c)'x\} - b'\nu
\]

\[
= - \sup_{\{x \text{ infty} \leq 1\}} \{(-A'\nu-c)'x\} - b'\nu
\]

\[
= - |A'\nu+c|_1 - b'\nu \quad \text{... by norm duality}
\]

dual problem: maximize \(-b^T \nu - \|A^T \nu + c\|_1 \)
Problems with generalized inequalities

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \preceq_{K_i} 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

\(\preceq_{K_i}\) is generalized inequality on \(\mathbb{R}^{k_i}\)

definitions are parallel to scalar case:

- Lagrange multiplier for \(f_i(x) \preceq_{K_i} 0\) is vector \(\lambda_i \in \mathbb{R}^{k_i}\)
- Lagrangian \(L : \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \rightarrow \mathbb{R}\), is defined as

\[
L(x, \lambda_1, \cdots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i^T f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]

- dual function \(g : \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \rightarrow \mathbb{R}\), is defined as

\[
g(\lambda_1, \ldots, \lambda_m, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda_1, \cdots, \lambda_m, \nu)
\]
lower bound property: if $\lambda_i \succeq K_i^*$ 0, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$

proof: if \tilde{x} is feasible and $\lambda_i \succeq K_i^*$ 0, then

$$f_0(\tilde{x}) \geq f_0(\tilde{x}) + \sum_{i=1}^{m} \lambda_i^T f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x})$$

$$\geq \inf_{x \in D} L(x, \lambda_1, \ldots, \lambda_m, \nu)$$

$$= g(\lambda_1, \ldots, \lambda_m, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \geq g(\lambda_1, \ldots, \lambda_m, \nu)$

dual problem

maximize $g(\lambda_1, \ldots, \lambda_m, \nu)$
subject to $\lambda_i \succeq K_i^*$ 0, $i = 1, \ldots, m$

• weak duality: $p^* \geq d^*$ always
• strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater’s: primal problem is strictly feasible)
Semidefinite program

primal SDP \((F_i, G \in S^k)\)

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad x_1 F_1 + \cdots + x_n F_n \preceq G
\end{align*}
\]

- Lagrange multiplier is matrix \(Z \in S^k\)
- Lagrangian \(L(x, Z) = c^T x + \text{tr} (Z(x_1 F_1 + \cdots + x_n F_n - G))\)
 \[= -\text{tr}(GZ) + \sum_i x_i (c_i + \text{tr}(Z F_i))\]
 Note: if \(c_i + \text{tr}(Z F_i) \neq 0\), we can pick \(x_i\) so that \(x_i (c_i + \text{tr}(Z F_i))\) is arbitrarily small

- dual function

\[
g(Z) = \inf_x L(x, Z) = \begin{cases}
-\text{tr}(GZ) & \text{tr}(F_i Z) + c_i = 0, \quad i = 1, \ldots, n \\
-\infty & \text{otherwise}
\end{cases}
\]

dual SDP

\[
\begin{align*}
\text{maximize} & \quad -\text{tr}(GZ) \\
\text{subject to} & \quad Z \succeq 0, \quad \text{tr}(F_i Z) + c_i = 0, \quad i = 1, \ldots, n
\end{align*}
\]

\(p^* = d^*\) if primal SDP is strictly feasible (\(\exists x\) with \(x_1 F_1 + \cdots + x_n F_n < G\))