Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- generalized inequalities

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$ (1)
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$ilde{x} \in \operatorname{\mathbf{dom}} f_0, \qquad f_i(ilde{x}) < 0, \quad i = 1, \dots, m, \qquad A ilde{x} = b$$
 (Slater's condition)

hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞} -norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise (indicator function of \mathbf{R}_{-})

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \to \infty$

min fo(x)

Ax=b

s.t.

f i(x) ≤ 0 , i=1...m

logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \operatorname{dom} \phi = \{x \mid \underline{f_1(x) < 0, \dots, f_m(x) < 0}\}$$
 (Slater's condition)
min_fo(x) + 1/t $\phi(x)$
s.t. Ax=b

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

(Useful for KKT analysis and Newton's method)

Central path

$$p^{\star} \geq g(\lambda^{\star}(t), \nu^{\star}(t)) \dots \text{ for any } (\lambda, v) \text{ so we can plug } (\lambda^{\star}(t), v^{\star}(t))$$

$$= L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t))$$

$$= fo(x^{\star}(t) + \sum_{i} \lambda^{\star}_{-i}(t) f_{-i}(x^{\star}(t)) + v^{\star}(t)(A x^{\star}(t)-b)$$

$$= fo(x^{\star}(t)) + \sum_{i} i f_{-i}(x^{\star}(t)) / (-t f_{-i}(x^{\star}(t))) \dots \text{ since } A x^{\star}(t)=b$$

$$= fo(x^{\star}(t)) - m/t \qquad \dots \text{ m terms}$$

$$As t \rightarrow \infty, m/t \rightarrow 0 \text{ and then } p^{\star} = fo(x^{\star}(t))$$

Interior-point methods

Interpretation via KKT conditions

$$x=x^{\star}(t)$$
 , $\lambda=\lambda^{\star}(t)$, $\nu=\nu^{\star}(t)$ satisfy

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, Ax = b
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \ldots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$
Recall original problem:
$$\min_{\substack{\text{min fo}(x) \\ \text{s.t. } f_i(x) \leq 0, \quad i=1...m \\ \text{Ax=b}}$$
difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

We said before: $\lambda_i(t) = 1/(-t f_i(x))$

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

- terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- centering usually done using Newton's method, starting at current x

The gradient at the current x is $d = t dfo(x) + d\phi(x)$ The Hessian at the current x is $H = t d^2fo(x) + d^2\phi(x)$ [H A'] [Δx] = [-d] [A 0] [v] [0]

Feasibility and phase I methods

feasibility problem: find x such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (2)

phase I: computes strictly feasible starting point for barrier method
basic phase I method

minimize (over
$$x, s$$
) s
subject to $f_i(x) \le s, \quad i = 1, \dots, m$ (3)
 $Ax = b$

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible (s>0)
- if $\bar{p}^{\star} = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star} = 0$ and not attained, then problem (2) is infeasible

Generalized inequalities

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \preceq_{K_i} 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

fo : R^n -> R

- f_0 convex, $f_i : \mathbb{R}^n \to \mathbb{R}^{k_i}$, i = 1, ..., m, convex with respect to proper cones $K_i \in \mathbb{R}^{k_i}$
- f_i twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{rank}} A = p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP

Similar to log z which is undefined for z=0

Generalized logarithm for proper cone

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

• dom
$$\psi = \operatorname{int} K$$
 and $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$

•
$$\psi(sy) = \psi(y) + \theta \log s$$
 for $y \succ_K 0$, $s > 0$ (0>0 is the degree of ψ)

Take K = {z in R | $z \ge 0$ }: $\psi(z) = \log z$ For y > 0, s > 0: $\psi(s y) = \psi(y) + \theta \log s$, where $\theta=1$

is positive definite

Example: for positive semidefinite cone: behaves like strictly concave when matrix

 $= \psi(y) + n \log s$

examples

- nonnegative orthant $K = \mathbf{R}^n_+$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$ $\psi(s y) = \sum_{i=1}^n \log y_i$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$:

ψ(s Y) = log det (s Y) = log(s^n det Y)

= log det Y + n log s $\psi(Y) = \log \det Y \quad (\theta = n)$ = $\psi(Y)$ + n log s

• second-order cone
$$K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$$
:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \qquad (\theta = 2)$$

$$\psi(s \ y) = \log(s^2 \ (y_{n+1}^2 - y_1^2 \dots - y_n^2))$$

= log(y_{n+1}^2 - y_1^2 \dots - y_n^2) + 2 log s
= $\psi(y)$ + 2 log s

= $\Sigma_{i=1...n}$ { log y_i + log s } = $\Sigma_{i=1...n}$ log y i + n log s

Recall proper cones (2-21):

$$z \ge K^* 0$$
 if and only if
 $y' z \ge 0$ for all $y \ge K 0$
make $z = d\psi(y)$:
 $d\psi(y) \ge K^* 0$ if and only if
 $y' d\psi(y) \ge 0$ for all $y \ge K 0$
Indeed $y' d\psi(y) = \theta > 0$
Recall: $\psi(s y) = \psi(y) + \theta \log s$
from left: $d\psi(s y)/ds = y' d\psi(s y)$
from right: $d\psi(s y)/ds = \theta/s$
thus: $y' d\psi(y) = \theta$

• nonnegative orthant \mathbf{R}^n_+ : $\psi(y) = \sum_{i=1}^n \log y_i$

$$abla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T
abla \psi(y) = n \qquad extsf{y'} \ extsf{d} \psi(y) = 1 + \dots + 1$$

• positive semidefinite cone \mathbf{S}^n_+ : $\psi(Y) = \log \det Y$

$$abla \psi(Y) = Y^{-1}, \qquad \mathbf{tr}(Y
abla \psi(Y)) = n \qquad \qquad \mathbf{tr}(\mathbf{Y}' \, \mathrm{d} \mathbf{\psi}(\mathbf{Y})) = \mathbf{tr} \, \mathbf{I}$$

• second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \qquad y^T \nabla \psi(y) = 2$$

Logarithmic barrier and central path

logarithmic barrier for $f_1(x) \preceq_{K_1} 0, \ldots, f_m(x) \preceq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom}\,\phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i , with degree θ_i
- ϕ is convex, twice continuously differentiable

central path: $\{x^{\star}(t) \mid t > 0\}$ where $x^{\star}(t)$ solves

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

$$\begin{array}{l} \textbf{Dual points on central path} \\ \textbf{x} = x^{\star}(t) \text{ if there exists } w \in \mathbb{R}^{p}, \\ t \nabla f_{0}(x) + \sum_{i=1}^{m} Df_{i}(x)^{T} \nabla \psi_{i}(-f_{i}(x)) + A^{T}w = 0 \\ Df_{i}(x) \in \mathbb{R}^{k_{i} \times n} \text{ is derivative matrix of } f_{i} : \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \mathbb{L}_{i} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{R}^{k_{i} \times n} \text{ is derivative matrix of } f_{i} : \mathbb{R}^{n} \rightarrow \mathbb{R}^{k} \mathbb{L}_{i} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{C}^{(k_{i}) \mid 0, \quad i=1...m} \\ \Delta x_{i} = \frac{1}{t} \nabla \psi_{i}(-f_{i}(x^{\star}(t))), \quad \nu^{\star}(t) = \frac{w}{t} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{C}^{(k_{i}) \mid 0, \quad i=1...m} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{C}^{(k_{i}) \mid 0, \quad i=1...m} \\ \Delta x_{i}^{\star}(t) = \frac{1}{t} \nabla \psi_{i}(-f_{i}(x^{\star}(t))), \quad \nu^{\star}(t) = \frac{w}{t} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{C}^{(k_{i}) \mid 0, \quad i=1...m} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{C}^{(k_{i}) \mid 0, \quad i=1...m} \\ \Delta x_{i}^{\star}(t) = \frac{1}{t} \nabla \psi_{i}(-f_{i}(x^{\star}(t))), \quad \nu^{\star}(t) = \frac{w}{t} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{C}^{(k_{i}) \mid v(Ax-b)} \\ \textbf{s.t. } f_{i}(x) \in \mathbb{C}^{(k_{i}) \mid v(Ax-b)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \nabla \psi_{i}(-f_{i}(x^{\star}(t))), \quad \nu^{\star}(t) = \frac{w}{t} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \nabla \psi_{i}(-f_{i}(x^{\star}(t))), \quad \nu^{\star}(t) = \frac{w}{t} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \nabla \psi_{i}(x) + \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ f_{0}(x^{\star}(t)) - g(\lambda^{\star}(t), \nu^{\star}(t)) = (1/t) \sum_{i=1}^{m} \theta_{i} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \nabla (0, x^{\star}(t)) = \frac{1}{t} \sum_{i=1}^{m} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ f_{0}(x^{\star}(t)) - g(\lambda^{\star}(t), \nu^{\star}(t)) = (1/t) \sum_{i=1}^{m} \theta_{i} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0, \quad x \in \mathbb{C}^{(k_{i}) \mid v(x)} \\ \textbf{s.t. } f_{i}(x) = \frac{1}{t} \sum_{i=1}^{n} 0,$$

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{\star}(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase t. $t := \mu t$.
- only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$