12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods
- generalized inequalities

Inequality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& A x=b
\end{array}
$$

- f_{i} convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A=p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$
\tilde{x} \in \operatorname{dom} f_{0}, \quad f_{i}(\tilde{x})<0, \quad i=1, \ldots, m, \quad A \tilde{x}=b
$$

(Slater's condition)
hence, strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints
with $\operatorname{dom} f_{0}=\mathbf{R}_{++}^{n}$

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & F x \preceq g \\
& A x=b
\end{array}
$$

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞}-norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:
minimize $\quad f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right)$ subject to $A x=b$
where $I_{-}(u)=0$ if $u \leq 0, I_{-}(u)=\infty$ otherwise (indicator function of \mathbf{R}_{-}) approximation via logarithmic barrier

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)-(1 / t) \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

- an equality constrained problem
- for $t>0,-(1 / t) \log (-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \rightarrow \infty$

logarithmic barrier function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \left\lvert\, \frac{\left.f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}}{\text { (Slater's condition) }}\right.\right.
$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

(Useful for KKT analysis and Newton's method)

Central path

- for $t>0$, define $x^{\star}(t)$ as the solution of minimize $\quad t f_{0}(x)+\phi(x)$ subject to $A x=b$
(for now, assume $x^{\star}(t)$ exists and is unique for each $t>0$)
- central path is $\left\{x^{\star}(t) \mid t>0\right\} \simeq \begin{aligned} & \text { Also, as tincreases, we obtain } x^{\star}(t) \text { approaches the } \\ & \text { optimal of the original problem }\end{aligned}$
- central path is $\left\{x^{\star}(t) \mid t>0\right\}$
optimal of the original problem
example: central path for an LP
minimize $\quad c^{T} \bar{x}$
subject to $\quad a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6$
hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Dual points on central path

$x=x^{\star}(t)$ if there exists a w such that
$\min _{t} \mathrm{fo}(\mathrm{x})+\phi(\mathrm{x})$
s.t. $\quad A x-b=0$
$L(x, w)=t$ fo $(x)+\phi(x)+w^{\prime}(A x-b)$
Stationarity:
$d L / d x=t d f o(x)+d \phi(x)+A^{\prime} w=0$

- therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$
A x=b \text { (Primal feasibility) }
$$

Make

 $\mathrm{dL} / \mathrm{dx}=0$ and get same as above$$
L\left(x, \lambda^{\star}(t), \nu^{\star}(t)\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) f_{i}(x)+\nu^{\star}(t)^{T}(A x-b)
$$

where we define $\lambda_{i}^{\star}(t)=1 /\left(-t f_{i}\left(x^{\star}(t)\right)\right.$ and $\nu^{\star}(t)=w / t$

$$
>0 \text { since } \mathrm{t}>0 \text { and } \mathrm{f} _\mathrm{i}\left(\mathrm{x}^{*}(\mathrm{t})\right)<0
$$

- this confirms the intuitive idea that $f_{0}\left(x^{\star}(t)\right) \rightarrow p^{\star}$ if $t \rightarrow \infty$:

$$
\begin{aligned}
& p^{\star} \geq g\left(\lambda^{\star}(t), \nu^{\star}(t)\right) \ldots \text { for any }(\lambda, \mathrm{v}) \text { so we can plug }\left(\lambda^{\star}(\mathrm{t}), \mathrm{v}^{\star}(\mathrm{t})\right) \\
& =L\left(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t)\right) \\
& =\mathrm{fo}\left(\mathbf{x}^{*}(\mathrm{t})\right)+\boldsymbol{\Sigma}_{-} \mathbf{i} \lambda^{*} \mathrm{i}(\mathrm{t}) \mathrm{f}_{-} \mathrm{i}\left(\mathrm{x}^{*}(\mathrm{t})\right)+\mathrm{v}^{*}(\mathrm{t})\left(\mathrm{A} \mathrm{x}^{*}(\mathrm{t})-\mathrm{b}\right) \\
& =\mathrm{fo}\left(\mathrm{x}^{*}(\mathrm{t})\right)+\Sigma_{-} \mathrm{i} \mathrm{f}_{-} \bar{i}\left(\mathrm{x}^{*}(\mathrm{t})\right) /\left(-\mathrm{t} \mathrm{f}_{-} \mathrm{i}\left(\mathrm{x}^{*}(\mathrm{t})\right)\right) \quad \text {... since } \mathbf{A} \mathrm{x}^{*}(\mathrm{t})=\mathrm{b} \\
& =\mathrm{fo}\left(\mathrm{x}^{*}(\mathrm{t})\right)-\mathrm{m} / \mathrm{t} \quad \ldots \mathrm{~m} \text { terms } \\
& \text { As } \mathrm{t}->\infty, \mathrm{m} / \mathrm{t}->0 \text { and then } \mathrm{p}^{*}=\mathrm{fo}\left(\mathrm{x}^{*}(\mathrm{t})\right)
\end{aligned}
$$

Interpretation via KKT conditions

$x=x^{\star}(t), \lambda=\lambda^{\star}(t), \nu=\nu^{\star}(t)$ satisfy

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, A x=b$

2. approximate complementary slackness: $-\lambda_{i} f_{i}(x)=1 / t, i=1, \ldots, m$
3. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+A^{T} \nu=0
$$

difference with KKT is that condition 3 replaces $\lambda_{i} f_{i}(x)=0$

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$. repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $m / t<\epsilon$.
4. Increase t. $t:=\mu t$.

- terminates with $f_{0}(x)-p^{\star} \leq \epsilon$ (stopping criterion follows from $\left.f_{0}\left(x^{\star}(t)\right)-p^{\star} \leq m / t\right)$
- centering usually done using Newton's method, starting at current x

```
The gradient at the current x is d=t dfo(x) + d\phi(x)
The Hessian at the current }x\mathrm{ is H = t d^\ 2fo(x) + d^2$(x)
[H A'] [\Deltax] = [-d]
[A 0][v] [0]
```


Feasibility and phase I methods

feasibility problem: find x such that

$$
\begin{equation*}
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{2}
\end{equation*}
$$

phase I: computes strictly feasible starting point for barrier method basic phase I method

$$
\begin{array}{ll}
\operatorname{minimize}(\operatorname{over} x, s) & s \\
\text { subject to } & f_{i}(x) \leq s, \quad i=1, \ldots, m \\
& A x=b \tag{3}
\end{array}
$$

- if x, s feasible, with $s<0$, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible (s>0)
- if $\bar{p}^{\star}=0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star}=0$ and not attained, then problem (2) is infeasible

Generalized inequalities

fo : $\mathbf{R}^{\wedge} \mathrm{n}->\mathbf{R}$

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq K_{i} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- f_{0} convex, $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k_{i}}, i=1, \ldots, m$, convex with respect to proper cones $K_{i} \in \mathbf{R}^{k_{i}}$
- f_{i} twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A=p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained
examples of greatest interest: SOCP, SDP

Similar to $\log z$ which is undefined for $z=0$

Generalized logarithm for proper cone

$\psi: \mathbf{R}^{q} \rightarrow \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^{q}$ if:
Example: for positive semidefinite cone:

- $\operatorname{dom} \psi=\operatorname{int} K$ and $\nabla^{2} \psi(y) \prec 0$ for $y \succ_{K} 0$ behaves like strictly concave when matrix is positive definite
- $\psi(s y)=\psi(y)+\theta \log s$ for $y \succ_{K} 0, s>0 \quad(\theta>0$ is the degree of $\Psi)$

$$
\begin{aligned}
& \text { Take } K=\{z \text { in } R \mid z \geq 0\}: ~ \\
& \text { For } y>0, s>0: \quad \Psi(z)=\log z \\
& \hline(s y)=\Psi(y)+\theta \log s \text {, where } \theta=1
\end{aligned}
$$

examples

- nonnegative orthant $K=\mathbf{R}_{+}^{n}: \psi(y)=\sum_{i=1}^{n} \log y_{i}$, with degree $\theta=n$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$:
$\Psi(s Y)=\log \operatorname{det}(s Y)$

$$
\begin{aligned}
\Psi(s y) & =\Sigma _\{i=1 \ldots n\} \log \left(s y_{_} i\right) \\
& =\Sigma\{i=1 \ldots n\}\left\{\log y_{-} i+\log s\right\} \\
& =\Sigma _\{i=1 \ldots n\} \log y_{-} i+n \log s \\
& =\Psi(y)+n \log s
\end{aligned}
$$

$=\log \left(s^{\wedge} n \operatorname{det} Y\right)$
$=\log \operatorname{det} Y+n \log s$
$=\Psi(Y)+n \log s$

$$
\psi(Y)=\log \operatorname{det} Y \quad(\theta=n)
$$

- second-order cone $K=\left\{y \in \mathbf{R}^{n+1} \mid\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)^{1 / 2} \leq y_{n+1}\right\}$:

$$
\begin{aligned}
& \psi(y)=\log \left(y_{n+1}^{2}-y_{1}^{2}-\cdots-y_{n}^{2}\right)(\theta=2) \\
& \Psi(\mathrm{s} y)= \log _{\left(s^{\wedge} 2\left(y_{_}\{n+1\}^{\wedge} 2-y_{-} 1^{\wedge} 2 \ldots-y_{-} n^{\wedge} 2\right)\right)} \\
&=\log \left(y-\{n+1\}^{\wedge} 2-y_{-} 1^{\wedge} 2 \ldots-y_{-} n^{\wedge} 2\right)+2 \log ^{\prime} \\
&=\Psi(y)+2 \log s
\end{aligned}
$$

properties for $y \succ_{K} 0$,
Make $z=d \psi(y)$:
$d \Psi(y) \geq K^{*} 0$ if and only if $y^{\prime} d \Psi(y) \geq 0$ for all $y \geq _K 0$

Indeed $y^{\prime} d \Psi(y)=\theta>0$

$\nabla \psi(y) \succeq_{K^{*}} 0$,	$y^{T} \nabla \psi(y)=\theta$
(2)	(1)

Recall: $\quad \psi(\mathrm{s} y)=\psi(\mathrm{y})+\theta \log \mathrm{s}$ from left: $\quad d \psi(s y) / d s=y ' d \psi(s y)$ from right: $d \psi(s y) / d s=\theta / s$ thus: $\quad y^{\prime} d \Psi(s y)=\theta / s$
take $s=1: \quad y^{\prime} d \psi(y)=\theta$

- nonnegative orthant $\mathbf{R}_{+}^{n}: \psi(y)=\sum_{i=1}^{n} \log y_{i}$

$$
\nabla \psi(y)=\left(1 / y_{1}, \ldots, 1 / y_{n}\right), \quad y^{T} \nabla \psi(y)=n \quad y^{\prime} \mathrm{d} \psi(y)=1+\ldots+1
$$

- positive semidefinite cone $\mathbf{S}_{+}^{n}: \psi(Y)=\log \operatorname{det} Y$

$$
\nabla \psi(Y)=Y^{-1}, \quad \operatorname{tr}(Y \nabla \psi(Y))=n \quad \operatorname{tr}\left(Y^{\prime} \mathrm{d} \psi(Y)\right)=\operatorname{tr} \mathrm{I}
$$

- second-order cone $K=\left\{y \in \mathbf{R}^{n+1} \mid\left(y_{1}^{2}+\cdots+y_{n}^{2}\right)^{1 / 2} \leq y_{n+1}\right\}$:

$$
\nabla \psi(y)=\frac{2}{y_{n+1}^{2}-y_{1}^{2}-\cdots-y_{n}^{2}}\left[\begin{array}{c}
-y_{1} \\
\vdots \\
-y_{n} \\
y_{n+1}
\end{array}\right], \quad y^{T} \nabla \psi(y)=2
$$

Logarithmic barrier and central path

logarithmic barrier for $f_{1}(x) \preceq_{K_{1}} 0, \ldots, f_{m}(x) \preceq_{K_{m}} 0$:

$$
\phi(x)=-\sum_{i=1}^{m} \psi_{i}\left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{i}(x) \prec_{K_{i}} 0, i=1, \ldots, m\right\}
$$

- ψ_{i} is generalized logarithm for K_{i}, with degree θ_{i}
- ϕ is convex, twice continuously differentiable
central path: $\left\{x^{\star}(t) \mid t>0\right\}$ where $x^{\star}(t)$ solves

$$
\begin{array}{ll}
\operatorname{minimize} & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{array}
$$

Dual points on central path

$x=x^{\star}(t)$ if there exists $w \in \mathbf{R}^{p}$,

$$
t \nabla f_{0}(x)+\sum_{i=1}^{m} D f_{i}(x)^{T} \nabla \psi_{i}\left(-f_{i}(x)\right)+A^{T} w=0
$$

$$
\text { s.t. } \underset{A x-b=0}{ } \mathrm{i}(x) \leq\left\{K_{-} i\right\} 0, \quad i=1 \ldots m
$$

$D f_{i}(x) \in \mathbf{R}^{k_{i} \times n}$ is derivative matrix of $f_{i}: \mathbf{R}^{\wedge} \cap>\mathbf{R}^{\wedge}\left\{\mathbf{K}_{-}\right\}$

- therefore, $x^{\star}(t)$ minimizes Lagrangian $L\left(x, \lambda^{\star}(t), \nu^{\star}(t)\right)$, where

$$
\lambda_{i}^{\star}(t)=\frac{1}{t} \nabla \psi_{i}\left(-f_{i}\left(x^{\star}(t)\right)\right), \quad \nu^{\star}(t)=\frac{w}{t}
$$

Make dL/dx=0 and get same as above

- from properties of $\psi_{i}: \lambda_{i}^{\star}(t) \succ_{K_{i}^{*}} 0$, with duality gap

$$
\begin{aligned}
& \text { As } t->\infty, 1 / t \Sigma_{-} i \theta_{-} i->0 \text { and then } p^{*}=f 0\left(x^{*}(t)\right) \\
& f_{0}\left(x^{\star}(t)\right)-g\left(\lambda^{\star}(t), \nu^{\star}(t)\right)=(1 / t) \sum_{i=1}^{m} \theta_{i} \\
& p^{*} \geq g\left(\lambda^{*}(t), v^{*}(t)\right) \quad \ldots \text { for any }(\lambda, v) \text { so we can plug }\left(\lambda^{*}(t), v^{*}(t)\right) \\
& =\mathrm{L}\left(\mathrm{x}^{*}(\mathrm{t}), \mathrm{\Lambda}^{*}(\mathrm{t}), \mathrm{v}^{*}(\mathrm{t})\right) \\
& =\mathrm{fo}\left(\mathrm{x}^{*}(\mathrm{t})\right)+\sum_{\mathrm{i}} \mathrm{i} \lambda^{*} _i(t)^{\prime} \mathrm{f} \text { _ } i\left(x^{*}(t)\right)+\mathrm{v}^{*}(\mathrm{t})\left(\mathrm{A} \mathrm{x}^{*}(\mathrm{t})-\mathrm{b}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 12-27 }
\end{aligned}
$$

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$.
repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $\left(\sum_{i} \theta_{i}\right) / t<\epsilon$.
4. Increase t. $t:=\mu t$.

- only difference is duality gap m / t on central path is replaced by $\sum_{i} \theta_{i} / t$

