
Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• generalized inequalities

12–1
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Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

• fi convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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spongebob


(Slater’s condition)



Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi

subject to Fx ≼ g
Ax = b

with dom f0 = Rn
++

• differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or ℓ∞-norm approximation via LP

• SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)

Interior-point methods 12–3

min_x   max_{i=1…m} { x’ a_i + b_i }

min_{x,t}    t
s.t.    x’ a_i + b_i ≤ t,    i=1…m

Text



Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x)− (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a
smooth approximation of I−

• approximation improves as t → ∞

u
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min   fo(x)
s.t.    f_i(x) ≤ 0  ,  i=1…m
         Ax=b



logarithmic barrier function

φ(x) = −
m
∑

i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

∇φ(x) =
m
∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =
m
∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T +
m
∑

i=1

1

−fi(x)
∇2fi(x)
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(Slater’s condition)

min   fo(x) + 1/t ϕ(x)
s.t.    Ax=b

(Useful for KKT analysis and Newton’s method)



Central path

• for t > 0, define x⋆(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x⋆(t) exists and is unique for each t > 0)

• central path is {x⋆(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx⋆(t) is tangent to
level curve of φ through x⋆(t)

c

x⋆ x⋆(10)
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min   fo(x) + 1/t ϕ(x)
s.t.    Ax=b

Also, as t increases, we obtain x*(t) approaches the
optimal of the original problem

x*(11)

x*(12)

All points that
have ϕ(x) = ϕ(x*(10))




Dual points on central path

x = x⋆(t) if there exists a w such that

t∇f0(x) +
m
∑

i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

• therefore, x⋆(t) minimizes the Lagrangian

L(x,λ⋆(t), ν⋆(t)) = f0(x) +
m
∑

i=1

λ⋆i (t)fi(x) + ν⋆(t)T (Ax− b)

where we define λ⋆i (t) = 1/(−tfi(x⋆(t)) and ν⋆(t) = w/t

• this confirms the intuitive idea that f0(x⋆(t)) → p⋆ if t → ∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))

= L(x⋆(t),λ⋆(t), ν⋆(t))

= f0(x
⋆(t))−m/t
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min   t fo(x) + ϕ(x)
s.t.    Ax-b=0

L(x,w) = t fo(x) + ϕ(x) + w’(Ax-b)

Stationarity:
dL/dx = t dfo(x) + dϕ(x) + A’w = 0

min fo(x)
s.t.  f_i(x) ≤ 0,    i=1…m
       Ax-b=0

L(x,λ,v) = fo(x) + Σ_i λ_i f_i(x) + v’(Ax-b)

(Primal feasibility)

Make
dL/dx=0
and get
same as
above

… for any (λ,v) so we can plug (λ*(t),v*(t))

As t -> ∞, m/t -> 0 and then p* = fo(x*(t))

> 0 since t>0 and f_i(x*(t)) < 0

= fo(x*(t)) + Σ_i λ*_i(t) f_i(x*(t)) + v*(t)(A x*(t)-b)
= fo(x*(t)) + Σ_i f_i(x*(t)) / (-t f_i(x*(t)))   … since A x*(t)=b
= fo(x*(t)) - m/t                                         … m terms



Interpretation via KKT conditions

x = x⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ ≽ 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m
∑

i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0
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spongebob


Recall original problem:
min fo(x)
s.t.  f_i(x) ≤ 0,    i=1…m
       Ax=b

We said before:
λ_i(t) = 1/(-t f_i(x))



Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ϵ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x⋆(t).
3. Stopping criterion. quit if m/t < ϵ.
4. Increase t. t := µt.

• terminates with f0(x)− p⋆ ≤ ϵ (stopping criterion follows from
f0(x⋆(t))− p⋆ ≤ m/t)

• centering usually done using Newton’s method, starting at current x

• choice of µ involves a trade-off: large µ means fewer outer iterations,
more inner (Newton) iterations; typical values: µ = 10–20

• several heuristics for choice of t(0)
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The gradient at the current x is d = t dfo(x) + dϕ(x)
The Hessian at the current x is H = t d^2fo(x) + d^2ϕ(x)
[H  A’] [Δx] = [-d]
[A  0 ] [ v ]     [ 0 ]



Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

• if optimal value p̄⋆ of (3) is positive, then problem (2) is infeasible

• if p̄⋆ = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄⋆ = 0 and not attained, then problem (2) is infeasible
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(s>0)



Generalized inequalities

minimize f0(x)
subject to fi(x) ≼Ki 0, i = 1, . . . ,m

Ax = b

• f0 convex, fi : R
n → Rki, i = 1, . . . ,m, convex with respect to proper

cones Ki ∈ Rki

• fi twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible; hence strong duality holds and
dual optimum is attained

examples of greatest interest: SOCP, SDP
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spongebob

fo : R^n -> R



Generalized logarithm for proper cone

ψ : Rq → R is generalized logarithm for proper cone K ⊆ Rq if:

• domψ = intK and ∇2ψ(y) ≺ 0 for y ≻K 0

• ψ(sy) = ψ(y) + θ log s for y ≻K 0, s > 0 (θ is the degree of ψ)

examples

• nonnegative orthant K = Rn
+: ψ(y) =

∑n
i=1 log yi, with degree θ = n

• positive semidefinite cone K = Sn
+:

ψ(Y ) = log detY (θ = n)

• second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)
1/2 ≤ yn+1}:

ψ(y) = log(y2n+1 − y21 − · · ·− y2n) (θ = 2)
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Example: for positive semidefinite cone:
behaves like strictly concave when matrix
is positive definite

Take K = {z in R | z ≥ 0}: ψ(z) = log z
For y > 0, s > 0:               ψ(s y) = ψ(y) + θ log s, where θ=1

ψ(s y) = Σ_{i=1…n} log(s y_i)
           = Σ_{i=1…n} { log y_i + log s }
           = Σ_{i=1…n} log y_i + n log s
           = ψ(y) + n log s

ψ(s Y) = log det (s Y)
           = log(s^n det Y)
           = log det Y + n log s
           = ψ(Y) + n log s

ψ(s y) = log(s^2 (y_{n+1}^2 - y_1^2 … - y_n^2))
           = log(y_{n+1}^2 - y_1^2 … - y_n^2) + 2 log s
           = ψ(y) + 2 log s

Similar to log z
which is undefined
for z=0

(θ>0 is the degree of ψ)



properties (without proof): for y ≻K 0,

∇ψ(y) ≽K∗ 0, yT∇ψ(y) = θ

• nonnegative orthant Rn
+: ψ(y) =

∑n
i=1 log yi

∇ψ(y) = (1/y1, . . . , 1/yn), yT∇ψ(y) = n

• positive semidefinite cone Sn
+: ψ(Y ) = log detY

∇ψ(Y ) = Y −1, tr(Y∇ψ(Y )) = n

• second-order cone K = {y ∈ Rn+1 | (y21 + · · ·+ y2n)
1/2 ≤ yn+1}:

∇ψ(y) =
2

y2n+1 − y21 − · · ·− y2n

⎡

⎢

⎢

⎣

−y1
...

−yn
yn+1

⎤

⎥

⎥

⎦

, yT∇ψ(y) = 2
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Recall:        ψ(s y) = ψ(y) + θ log s
from left:     dψ(s y)/ds = y’ dψ(s y)
from right:  dψ(s y)/ds = θ/s
thus:           y’ dψ(s y) = θ/s

take s=1:    y’ dψ(y) = θ

Recall proper cones (2-21):
z ≥_K* 0 if and only if
y’ z ≥ 0 for all y ≥_K 0


Make z = dψ(y):
dψ(y) ≥_K* 0 if and only if
y’ dψ(y) ≥ 0 for all y ≥_K 0

Indeed y’ dψ(y) = θ > 0

(1)

(2)

y’ dψ(y) = 1+…+1

tr(Y’ dψ(Y)) = tr I



Logarithmic barrier and central path

logarithmic barrier for f1(x) ≼K1 0, . . . , fm(x) ≼Km 0:

φ(x) = −
m
∑

i=1

ψi(−fi(x)), domφ = {x | fi(x) ≺Ki 0, i = 1, . . . ,m}

• ψi is generalized logarithm for Ki, with degree θi

• φ is convex, twice continuously differentiable

central path: {x⋆(t) | t > 0} where x⋆(t) solves

minimize tf0(x) + φ(x)
subject to Ax = b
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Dual points on central path

x = x⋆(t) if there exists w ∈ Rp,

t∇f0(x) +
m
∑

i=1

Dfi(x)
T∇ψi(−fi(x)) +ATw = 0

(Dfi(x) ∈ Rki×n is derivative matrix of fi)

• therefore, x⋆(t) minimizes Lagrangian L(x,λ⋆(t), ν⋆(t)), where

λ⋆i (t) =
1

t
∇ψi(−fi(x

⋆(t))), ν⋆(t) =
w

t

• from properties of ψi: λ⋆i (t) ≻K∗

i
0, with duality gap

f0(x
⋆(t))− g(λ⋆(t), ν⋆(t)) = (1/t)

m
∑

i=1

θi

Interior-point methods 12–27

spongebob


p* ≥ g(λ*(t),v*(t))     … for any (λ,v) so we can plug (λ*(t),v*(t))
     = L(x*(t),λ*(t),v*(t))
     = fo(x*(t)) + Σ_i λ*_i(t)’ f_i(x*(t)) + v*(t)(A x*(t)-b)
     = fo(x*(t)) - 1/t Σ_i y_i’ dψ_i(y_i)  … since A x*(t)=b, and letting y_i = -f_i(x*(t))
     = fo(x*(t)) - 1/t Σ_i θ_i                   … since y_i’ dψ_i(y_i) = θ_i

min   t fo(x) + ϕ(x)
s.t.    Ax-b=0

L(x,w) = t fo(x) + ϕ(x) + w’(Ax-b)

Stationarity:
dL/dx = t dfo(x) + dϕ(x) + A’w = 0

min fo(x)
s.t.  f_i(x) ≤_{K_i} 0,    i=1…m
       Ax-b=0

L(x,λ,v) = fo(x) + Σ_i λ_i’ f_i(x) + v’(Ax-b)

: R^n -> R^{k_i}

Make dL/dx=0
and get same as
above

As t -> ∞, 1/t Σ_i θ_i -> 0 and then p* = fo(x*(t))



Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ϵ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x⋆(t).
3. Stopping criterion. quit if (

∑
i θi)/t < ϵ.

4. Increase t. t := µt.

• only difference is duality gap m/t on central path is replaced by
∑

i θi/t

• number of outer iterations:
⌈

log((
∑

i θi)/(ϵt
(0)))

logµ

⌉

• complexity analysis via self-concordance applies to SDP, SOCP
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