10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton’s method
- implementation
Unconstrained minimization

\[
\text{minimize } f(x)
\]

- \(f \) convex, twice continuously differentiable (hence \(\text{dom } f \) open)

- we assume optimal value \(p^* = \inf_x f(x) \) is attained (and finite)

\begin{align*}
\text{unconstrained minimization methods} \\
\text{produce sequence of points } x^{(k)} \in \text{dom } f, \ k = 0, 1, \ldots \text{ with}
\end{align*}

\[
f(x^{(k)}) \to p^* \quad \text{as } k \to \text{infinity}
\]

\(x^{(0)}, x^{(1)}, \ldots \) is a minimizing sequence to the problem
Algorithm stops when \(f(x^{(k)}) - p^* \leq \varepsilon \), for some tolerance \(\varepsilon > 0 \)

- can be interpreted as iterative methods for solving optimality condition

\[
\nabla f(x^*) = 0
\]
Strong convexity and implications

\(f \) is strongly convex on \(S \) if there exists an \(m > 0 \) such that

\[
\nabla^2 f(x) \succeq mI \quad \text{for all } x \in S
\]

implications

- for \(x, y \in S \),

\[
f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|x - y\|_2^2
\]

Assume \(f \) is twice differentiable

By Taylor’s theorem, there exists a \(z \) in the line segment from \(x \) to \(y \) such that

\[
f(y) = f(x) + \frac{d f(x)}{dx} (y - x) + \frac{1}{2} (y - x)' \frac{d^2 f(z)}{dx^2} (y - x)
\]

\[
\geq f(x) + \frac{d f(x)}{dx} (y - x) + \frac{1}{2} (y - x)' \frac{d f(z)}{dx} (y - x)
\]

\[
= f(x) + \frac{d f(x)}{dx} (y - x) + \frac{1}{2} \frac{d^2 f(z)}{dx^2} (y - x)
\]

\[
\quad \text{... since } f \text{ is strongly convex}
\]

\[
= f(x) + \frac{d f(x)}{dx} (y - x) + \frac{1}{2} m \|y - x\|_2^2
\]

(Taylor’s theorem is a generalization of the mean value theorem, and is very related to, but is not exactly the same as Taylor series)
Descent methods

\[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with} \quad f(x^{(k+1)}) < f(x^{(k)}) \]

- other notations: \(x^+ = x + t\Delta x \), \(x := x + t\Delta x \)
- \(\Delta x \) is the step, or search direction; \(t \) is the step size, or step length
- from convexity, \(f(x^+) < f(x) \) implies \(\nabla f(x)^T \Delta x < 0 \) (i.e., \(\Delta x \) is a descent direction)

General descent method.

given a starting point \(x \in \text{dom} \ f \).
repeat
1. Determine a descent direction \(\Delta x \). (Each algorithm has its own way for choosing \(\Delta x \))
2. Line search. Choose a step size \(t > 0 \).
3. Update. \(x := x + t\Delta x \).
until stopping criterion is satisfied.
Line search types

exact line search: \(t = \arg\min_{t>0} f(x + t\Delta x) \)

backtracking line search (with parameters \(\alpha \in (0, 1/2), \beta \in (0, 1) \))

- starting at \(t = 1 \), repeat \(t := \beta t \) until

\[
f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x
\]

(Armijo–Goldstein condition)

Since \(\Delta x \) is a descent direction (see previous slide) then \(df(x)'\Delta x < 0 \)
For small \(t \), we have:

\[
f(x + t \Delta x) \approx f(x) + t df(x)' \Delta x < f(x) + \alpha t df(x)' \Delta x
\]

Thus, the procedure will eventually terminate.
Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom} \ f$.

repeat
1. $\Delta x := -\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x := x + t \Delta x$.

until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*)$$

(linear convergence)

$c \in (0, 1)$ depends on $m, x^{(0)},$ line search type

- very simple, but often very slow; rarely used in practice
quadratic problem in \mathbb{R}^2

$$f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2) \quad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \quad x_2^{(k)} = \left(\frac{-\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:
nonquadratic example

\[f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1} \]
A problem in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

‘linear’ convergence, i.e., a straight line on a semilog plot
Steepest descent method

normalized steepest descent direction (at x, for norm $\| \cdot \|$):

$$
\Delta x_{\text{nsd}} = \arg\min \{ \nabla f(x)^T v \mid \|v\| = 1 \}
$$

interpretation: for small v, $f(x + v) \approx f(x) + \nabla f(x)^T v$;
direction Δx_{nsd} is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$
\Delta x_{\text{sd}} = \| \nabla f(x) \| \ast \Delta x_{\text{nsd}}
$$

steepest descent method

• general descent method with $\Delta x = \Delta x_{\text{sd}}$
• convergence properties similar to gradient descent
examples

- Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$
- quadratic norm $\|x\|_P = (x^T P x)^{1/2}$ ($P \in \mathbb{S}^n_{++}$): $\Delta x_{sd} = -P^{-1}\nabla f(x)$
- ℓ_1-norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_\infty$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1-norm:
choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms (two different P’s)
- ellipses show \(\{ x \mid \| x - x^{(k)} \|_P = 1 \} \)
- equivalent interpretation of steepest descent with quadratic norm \(\| \cdot \|_P \): gradient descent after change of variables \(\bar{x} = P^{1/2}x \)

See Figures 9.14, 9.15

shows choice of \(P \) has strong effect on speed of convergence
Newton step
(Uses the Hessian as a good ellipse, see previous slide)

$$\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

• $x + \Delta x_{nt}$ minimizes second order approximation

$$\hat{f}(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves linearized optimality condition

$$\nabla f(x + v) \approx \nabla \hat{f}(x + v) = \nabla f(x) + \nabla^2 f(x) v = 0$$

Second order Taylor series approximation (we are discarding the remainder term)
\[\|u\| \nabla^2 f(x) = (u^T \nabla^2 f(x) u)^{1/2} \]

- \(\Delta x_{nt} \) is steepest descent direction at \(x \) in local Hessian norm

\[\text{Let } H = d^2 f(x) \]
\[d = df(x) \]

From slide 10-11 we have:

\[\min d'u \]
\[\text{s.t. } u' H u = 1 \]

\[L(u,v) = d'u + v (u' H u - 1) \]
\[dL/du = d + 2 v H u = 0 \]

Then:
\[u^{\ast} = -1/(2v) H^{-1} d \]

Now, the objective function is:
\[d'u^{\ast} = -1/(2v) d' H^{-1} d \]

If \(f \) is strongly convex, then \(H \) is positive definite, \(d' H^{-1} d > 0 \). Then \(v > 0 \) since otherwise \(d'u^{\ast} \) would not be minimized.

\[u^{\ast} \] has the direction of \(\Delta x_{nt} \)

Dashed lines are contour lines of \(f \); ellipse is \(\{x + v \mid v^T \nabla^2 f(x) v = 1\} \)

Arrow shows \(-\nabla f(x)\)

Unconstrained minimization 10–15
Newton decrement

\[\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2} \]

a measure of the proximity of \(x \) to \(x^* \)

properties

- gives an estimate of \(f(x) - p^* \), using quadratic approximation \(\hat{f} \):

\[f(x) - \inf_y \hat{f}(y) = \frac{1}{2} \lambda(x)^2 \]

Let \(H = d^\top 2 f(x) \)
\[d = df(x) \]
\[\lambda = \lambda(x) \]
\[\Delta x = \Delta x_{nt} = -H^{-1} d \]

\[\inf_y f^\top(y) = f^\top(x + \Delta x) \]
\[= f(x) + d^\top \Delta x + \frac{1}{2} \Delta x^\top H \Delta x \]
\[= f(x) - \frac{1}{2} d^\top H^{-1} d \]

\[f(x) - \inf_y f^\top(y) = \frac{1}{2} d^\top H^{-1} d = \frac{1}{2} \lambda^2 \]

Thus \(\lambda = \sqrt{d^\top H^{-1} d} \)
Newton’s method

Given a starting point \(x \in \text{dom} \, f \), tolerance \(\epsilon > 0 \).

Repeat

1. Compute the Newton step and decrement.
 \[\Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x). \]
2. Stopping criterion. Quit if \(\lambda^2 / 2 \leq \epsilon \).
3. Line search. Choose step size \(t \) by backtracking line search.
4. Update. \(x := x + t \Delta x_{nt} \).

Affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for \(\tilde{f}(y) = f(Ty) \) with starting point \(y^{(0)} = T^{-1}x^{(0)} \) are

\[y^{(k)} = T^{-1}x^{(k)} \]

\begin{align*}
 x &= T \, y \\
 \text{Let } Hf(y) &= d^2 f(y) \\
 df(y) &= T' \, df(T \, y) = T' \, df(x) \\
 Hf(y) &= T' \, Hf(T \, y) \\
 y^{(k)} &= T^{-1}x^{(k)} \\
 \Delta y &= -Hf(y)^{-1} df(y) = -(T' \, Hf(x) \, T)^{-1} \, T' \, df(x) \\
 \Delta y &= -T^{-1} Hf(x)^{-1} df(x) = T^{-1} \, \Delta x \\
 y^{(k)} &= y + \Delta y = T^{-1} \, (x + \Delta x) = T^{-1} \, x^{(k)}
\end{align*}
Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

\[H \Delta x = -g \]

where \(H = \nabla^2 f(x), \ g = \nabla f(x) \)

via Cholesky factorization

\[H = LL^T, \quad \Delta x_{nt} = -L^{-T}L^{-1}g, \quad \lambda(x) = \|L^{-1}g\|_2 \]

• cost \((1/3)n^3\) flops for unstructured system
• cost \(\ll (1/3)n^3\) if \(H\) sparse, banded
example of dense Newton system with structure

\[f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \quad H = D + A^T H_0 A \]

- assume \(A \in \mathbb{R}^{p \times n} \), dense, with \(p \ll n \)
- \(D \) diagonal with diagonal elements \(\psi_i''(x_i) \); \(H_0 = \nabla^2 \psi_0(Ax + b) \)

method 1: form \(H \), solve via dense Cholesky factorization: (cost \((1/3)n^3\))

method 2 (page 9–15): factor \(H_0 = L_0 L_0^T \); write Newton system as

\[D \Delta x + A^T L_0 w = -g, \quad L_0^T A \Delta x - w = 0 \]

eliminate \(\Delta x \) from first equation; compute \(w \) and \(\Delta x \) from

\[(I + L_0^T AD^{-1} A^T L_0)w = -L_0^T AD^{-1} g, \quad D \Delta x = -g - A^T L_0 w \]

cost: \(2p^2 n \) (dominated by computation of \(L_0^T AD^{-1} A^T L_0 \))