10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton’s method
- implementation
Unconstrained minimization

minimize \(f(x) \)

- \(f \) convex, twice continuously differentiable (hence \(\text{dom} f \) open)
- we assume optimal value \(p^* = \inf_x f(x) \) is attained (and finite)

 We will assume that \(x^{^*} = \arg\min_x f(x) \) exists and is unique

 Recall \(p^{^*} = f(x^{^*}) \)

unconstrained minimization methods

- produce sequence of points \(x^{(k)} \in \text{dom} f, \ k = 0, 1, \ldots \) with

\[
f(x^{(k)}) \to p^* \quad \text{as } k \to \infty
\]

\(x^{^0}, x^{^1}, \ldots \) is a minimizing sequence to the problem

Algorithm stops when \(f(x^{(k)}) - p^{^*} \leq \varepsilon \), for some tolerance \(\varepsilon > 0 \)

- can be interpreted as iterative methods for solving optimality condition

\[
\nabla f(x^*) = 0
\]
Strong convexity and implications

\(f \) is strongly convex on \(S \) if there exists an \(m > 0 \) such that

\[
\nabla^2 f(x) \succeq mI \quad \text{for all} \ x \in S
\]

implications

- for \(x, y \in S \),

\[
f(y) \geq f(x) + \nabla f(x)^T(y - x) + \frac{m}{2} \|x - y\|^2
\]

Assume \(f \) is twice differentiable
By Taylor’s theorem, there exists a \(z \) in the line segment from \(x \) to \(y \) such that

\[
f(y) = f(x) + df(x)'(y-x) + \frac{1}{2} (y-x)' \ d^2 f(z) \ (y-x)
\geq f(x) + df(x)'(y-x) + \frac{1}{2} (y-x)' (m I) \ (y-x) \quad \text{... since} \ f \ \text{is strongly convex}
\]

\[
f(x) + df(x)'(y-x) + \frac{1}{2} m \ |y-x|_2^2
\]

(Taylor’s theorem is a generalization of the mean value theorem, and is very related to, but is not exactly the same as Taylor series)
Descent methods

\[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with} \quad f(x^{(k+1)}) < f(x^{(k)}) \]

- other notations: \(x^+ = x + t \Delta x \), \(x := x + t \Delta x \)
- \(\Delta x \) is the step, or search direction; \(t \) is the step size, or step length
- from convexity, \(f(x^+) < f(x) \) implies \(\nabla f(x)^T \Delta x < 0 \)
 \((i.e., \Delta x \text{ is a descent direction})\)

General descent method.

given a starting point \(x \in \text{dom } f \).
repeat
 1. Determine a descent direction \(\Delta x \). \(\text{(Each algorithm has its own way for choosing } \Delta x) \)
 2. Line search. Choose a step size \(t > 0 \).
 3. Update. \(x := x + t \Delta x \).
until stopping criterion is satisfied.
Line search types

exact line search: $t = \arg\min_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

- starting at $t = 1$, repeat $t := \beta t$ until $f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$ (Armijo–Goldstein condition)

Since Δx is a descent direction (see previous slide) then $df(x)' \Delta x < 0$

For small t, we have:

$f(x + t \Delta x) \approx f(x) + t df(x)' \Delta x < f(x) + \alpha t df(x)' \Delta x$

Thus, the procedure will eventually terminate.
Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$.

repeat
1. $\Delta x := -\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$
- convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \leq c^k (f(x^{(0)}) - p^*)$$

(linear convergence)

$c \in (0, 1)$ depends on m, $x^{(0)}$, line search type
- very simple, but often very slow; rarely used in practice
quadratic problem in \mathbb{R}^2

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \quad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1} \right)^k, \quad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1} \right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:
nonquadratic example

\[f(x_1, x_2) = e^{x_1+3x_2-0.1} + e^{x_1-3x_2-0.1} + e^{-x_1-0.1} \]

backtracking line search

exact line search
a problem in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

'linear' convergence, i.e., a straight line on a semilog plot
Steepest descent method

normalized steepest descent direction (at \(x \), for norm \(\| \cdot \| \)):

\[
\Delta x_{\text{nsd}} = \text{argmin}\{ \nabla f(x)^T v \mid \| v \| = 1 \}
\]

interpretation: for small \(v \), \(f(x + v) \approx f(x) + \nabla f(x)^T v \); direction \(\Delta x_{\text{nsd}} \) is unit-norm step with most negative directional derivative

unnormalized steepest descent direction

\[
\Delta x_{\text{sd}} = \| \nabla f(x) \| \ast \Delta x_{\text{nsd}}
\]

steepest descent method

- general descent method with \(\Delta x = \Delta x_{\text{sd}} \)
- convergence properties similar to gradient descent
examples

- Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$
- quadratic norm $\|x\|_P = (x^T P x)^{1/2}$ ($P \in \mathbf{S}^n_{++}$): $\Delta x_{sd} = -P^{-1}\nabla f(x)$
- ℓ_1-norm: $\Delta x_{sd} = - (\partial f(x)/\partial x_i) e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_\infty$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1-norm:
choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms (two different P’s)

- ellipses show \(\{x \mid \|x - x^{(k)}\|_P = 1\} \)

- equivalent interpretation of steepest descent with quadratic norm \(\| \cdot \|_P \): gradient descent after change of variables \(\bar{x} = P^{1/2}x \)

ellipses “align” better with objective function thus convergence is faster

shows choice of \(P \) has strong effect on speed of convergence

Unconstrained minimization
Newton step
(Uses the Hessian as a good ellipse, see previous slide)

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

interpretations

- \(x + \Delta x_{nt} \) minimizes second order approximation

\[\hat{f}(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v \]

- \(x + \Delta x_{nt} \) solves linearized optimality condition

\[\nabla f(x + v) \approx \nabla \hat{f}(x + v) = \nabla f(x) + \nabla^2 f(x) v = 0 \]
• Δx_{nt} is steepest descent direction at x in local Hessian norm

$$\|u\|\nabla^2 f(x) = (u^T \nabla^2 f(x) u)^{1/2}$$

Let $H = d^2 f(x)
 d = df(x)
From slide 10-11 we have:

$$\min d'u$$
$$\text{s.t. } u^T H u = 1$$

Let $u = H^{-1/2} s$

$$\min (H^{-1/2} d)'s$$
$$\text{s.t. } s's = 1$$

$L(s,v) = (H^{-1/2} d)'s + v (s's - 1)$
$dL/ds = H^{-1/2} d + 2 v s = 0$
$s^* = -1/(2v) H^{-1/2} d$

Then:
$$u^* = H^{-1/2} s^*$$
$$= -1/(2v) H^{-1/2} d$$

which is the direction of Δx_{nt}!

dashed lines are contour lines of f; ellipse is \{ $x + v \mid v^T \nabla^2 f(x) v = 1$ \}
arrow shows $-\nabla f(x)$
Newton decrement

\[\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2} \]

a measure of the proximity of \(x \) to \(x^* \)

properties

• gives an estimate of \(f(x) - p^* \), using quadratic approximation \(\hat{f} \):

\[f(x) - \inf_y \hat{f}(y) = \frac{1}{2} \lambda(x)^2 \]

Let \(H = d^2 f(x) \)
\[d = df(x) \]
\[\lambda = \lambda(x) \]
\[\Delta x = \Delta x_{nt} = -H^{-1} d \]

\[\inf_y f^*(y) = f^*(x + \Delta x) \]
\[= f(x) + d' \Delta x + \frac{1}{2} \Delta x' H \Delta x \]
\[= f(x) - \frac{1}{2} d' H^{-1} d \]

\[f(x) - \inf_y f^*(y) = \frac{1}{2} d' H^{-1} d = \frac{1}{2} \lambda^2 \]

Thus \(\lambda = \sqrt{d' H^{-1} d} \)
Newton’s method

given a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$.
repeat
1. Compute the Newton step and decrement.
 \[
 \Delta x_{nt} := -\nabla^2 f(x)^{-1}\nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).
 \]
2. Stopping criterion. quit if $\lambda^2 / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x := x + t\Delta x_{nt}$.

affine invariant, \textit{i.e.}, independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

\[
y^{(k)} = T^{-1}x^{(k)}
\]

$x = Ty$
Let $Hf(y) = d^2 f(y)$
df$\sim(y) = T' df(Ty) = T' df(x)$
$Hf(y) = T' Hf(Ty) T = T' Hf(x) T$
y$= T^\sim^{-1} x$
$\Delta y = - Hf(y)^\sim^{-1} df(y) = - (T' Hf(x) T)^\sim^{-1} T' df(x)$
$= T^\sim^{-1} Hf(x)^\sim^{-1} df(x) = T^\sim^{-1} \Delta x$
y$^\sim(k) = y + \Delta y = T^\sim^{-1} (x + \Delta x) = T^\sim^{-1} x^\sim(k)$

Unconstrained minimization
Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

\[H \Delta x = -g \]

where \(H = \nabla^2 f(x) \), \(g = \nabla f(x) \)

via Cholesky factorization

\[H = LL^T, \quad \Delta x_{nt} = -L^{-T}L^{-1}g, \quad \lambda(x) = \|L^{-1}g\|_2 \]

• cost \((1/3)n^3\) flops for unstructured system
• cost \(\ll (1/3)n^3\) if \(H\) sparse, banded
example of dense Newton system with structure

\[f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \quad H = D + A^T H_0 A \]

- assume \(A \in \mathbb{R}^{p \times n} \), dense, with \(p \ll n \)
- \(D \) diagonal with diagonal elements \(\psi''_i(x_i) \); \(H_0 = \nabla^2 \psi_0(Ax + b) \)

method 1: form \(H \), solve via dense Cholesky factorization: (cost \((1/3)n^3\))

method 2 (page 9–15): factor \(H_0 = L_0 L_0^T \); write Newton system as

\[
D \Delta x + A^T L_0 w = -g, \quad L_0^T A \Delta x - w = 0
\]

eliminate \(\Delta x \) from first equation; compute \(w \) and \(\Delta x \) from

\[
(I + L_0^T A D^{-1} A^T L_0)w = -L_0^T A D^{-1} g, \quad D \Delta x = -g - A^T L_0 w
\]

cost: \(2p^2n \) (dominated by computation of \(L_0^T A D^{-1} A^T L_0 \))