Taken from http://stanford.edu/class/ee364a/lectures.html
Annotated by Jean Honorio jhonorio@purdue.edu

Convex Optimization — Boyd & Vandenberghe

10. Unconstrained minimization

e terminology and assumptions
e gradient descent method
e steepest descent method

e Newton's method

e implementation

10-1


Taken from http://stanford.edu/class/ee364a/lectures.html
Annotated by Jean Honorio jhonorio@purdue.edu


Unconstrained minimization

minimize f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

We will assume that x** = argmin_x f(x) exists and is unique
Recall p** = f(x**¥)

unconstrained minimization methods

e produce sequence of points z(*) € dom f, k =0, 1,... with

F(@™)) = p*  ask->infinity

x”(0), x*(1), ... is a minimizing sequence to the problem
Algorithm stops when f(x*(k)) - p** < g, for some tolerance € > 0

e can be interpreted as iterative methods for solving optimality condition

Vi(z*) =0

Unconstrained minimization 10-2


as k -> infinity

x^(0), x^(1), ... is a minimizing sequence to the problem
Algorithm stops when f(x^(k)) - p^* ≤ ε, for some tolerance ε > 0

Text

We will assume that x^* = argmin_x  f(x) exists and is unique
Recall p^* = f(x^*)


Strong convexity and implications
f is strongly convex on S if there exists an m > 0 such that

Vif(z) =mI  forallz €S

implications

o forz,y € 5,
) = f(@) + Vi@ (y - o)+ Slle - yl3

Assume f is twice differentiable

By Taylor’s theorem, there exists a z in the line segment from x to y such
that

f(y) = f(x) + df(x)’(y-x) + 72 (y-x)’ d*2 f(z) (y-x)
2 f(x) + df(x)’(y-x) + 72 (y-x)’ (m 1) (y-x) ... since f is strongly convex
= f(x) + df(x)’(y-x) + 72 m |y-x|_2"2

(Taylor’s theorem is a generalization of the mean value theorem,
and is very related to, but is not exactly the same as Taylor series)

Unconstrained minimization 10-4


Assume f is twice differentiable
By Taylor’s theorem, there exists a z in the line segment from x to y such that
f(y) = f(x) + df(x)’(y-x) + ½ (y-x)’ d^2 f(z) (y-x)
       ≥ f(x) + df(x)’(y-x) + ½ (y-x)’ (m I) (y-x)          … since f is strongly convex
       = f(x) + df(x)’(y-x) + ½ m |y-x|_2^2

(Taylor’s theorem is a generalization of the mean value theorem,
and is very related to, but is not exactly the same as Taylor series)


Descent methods

20D = 20 4 WAL ith F(zHD) < f(z00)

e other notations: 7 =z + tAx, x := x + tAx
e Ax is the step, or search direction; t is the step size, or step length

- . . T . . _ .
o from convexity, f(x+) < f(x) implies V f(x)"Ax <0 from cpeerty (e 27

(i.e., Az is a descent direction) N f=(f(x))+ ’;(d])‘(;();%);( n
us: f(x*+) - f(x) 2 X)’Ax

If f(xA+) < f(x) then:
0 > f(x*+) - f(x) 2 t df(x)’Ax
General descent method. Thus: df(x)’Ax < 0

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax. (Each algorithm has its own way for choosing Ax)

2. Line search. Choose a step size t > 0.
3. Update. x := x + tAx.
until stopping criterion is satisfied.

Unconstrained minimization 10-5


(Each algorithm has its own way for choosing Δx)

From convexity (slide 3-7):
f(x^+) ≥ f(x) + df(x)’(x^+ - x)
           = f(x) + t df(x)’Δx
Thus: f(x^+) - f(x) ≥ t df(x)’Δx

If f(x^+) < f(x) then:
0 > f(x^+) - f(x) ≥ t df(x)’Δx
Thus: df(x)’Δx < 0


Line search types

exact line search: ¢t = argmin, f(x + tAz)

backtracking line search (with parameters « € (0,1/2), 5 € (0,1))

(one of the many inexact methods)

e starting at t = 1, repeat t := [t until since B <1, t:= B t reduces t

f(CC + tA%) < f(ﬂj) + CytVf(gzj)TAgj (Armijo—Goldstein condition)

Since Ax is a descent direction (see previous slide) then df(x)’Ax <0
For small t, we have:

f(x + t Ax) = f(x) + t df(x)’Ax < f(x) + a t df(x)’Ax

Thus, the procedure will eventually terminate.

Unconstrained minimization 10-6


since β < 1,  t := β t reduces t

Since Δx is a descent direction (see previous slide) then df(x)’Δx < 0
For small t, we have:

f(x + t Δx) ≈ f(x) + t df(x)’Δx < f(x) + α t df(x)’Δx

Thus, the procedure will eventually terminate.

(Armijo–Goldstein condition)

(one of the many inexact methods)


Gradient descent method

general descent method with Ax = —V f(x)

given a starting point x € dom f.

repeat
1. Az := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + tAwx.

until stopping criterion is satisfied.

e stopping criterion usually of the form |V f(z)|2 <€

e convergence result: for strongly convex f,
f(:li(k)) — p* < Ck(f(:lj(o)) — p*) (linear convergence)

c € (0,1) depends on m, (9, line search type

e very simple, but often very slow; rarely used in practice

Unconstrained minimization 10-7


spongebob

(linear convergence)


quadratic problem in R?

flz) = (1/2)(x] + ya3) (v > 0)

with exact line search, starting at 2(%) = (v, 1):

k k
G G
Ly =TV > Lo = | ———
v+ 1 v+1

o veryslowif y>1orvy<1

e example for v = 10:

4,
g OF
— 4}
—10 0 10
L1

Unconstrained minimization 10-8



nonquadratic example

F(1, m9) = €1+302-01 | po1=322-0.1 4 =1 -0.1

backtracking line search exact line search

Unconstrained minimization 10-9



a problem in R'®

104
102
X
Q,
|
~~ 0
z 10
B
Sy
10~%
ng |.s.
104 ‘ ‘ ‘
0 50 100 150 200

‘linear’ convergence, i.e., a straight line on a semilog plot

Unconstrained minimization

10-10



Steepest descent method

normalized steepest descent direction (at x, for norm || - ||):
Ay = argmin{V f(z)'v | ||v]| = 1}

interpretation: for small v, f(x +v) = f(z) + Vf(z)lv;
direction Ax,sq is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

Azsqg = ||V f(2)][+Aznsa

steepest descent method
e general descent method with Ax = Az

e convergence properties similar to gradient descent

Unconstrained minimization 10-11



examples

e Euclidean norm: Azyq = —V f(x)
e quadratic norm |z||p = (zTPx)1/2 (P € 8" |): Azgg=—PVf(x)
o /1-norm: Axgq = —(0f(x)/0x;)e;, where |0f(x)/0x;| = ||V (%) oo

unit balls and normalized steepest descent directions for a quadratic norm
and the ¢1-norm:

L1 ball

—V f(x)
—Vf(z)

P defines the Axysd A
shape of the ellipse ° Lnsd

Unconstrained minimization 10-12


P defines the
shape of the ellipse

L1 ball


choice of norm for steepest descent

“--==""ellipses “align” better
with objective function
thus convergence is faster

e steepest descent with backtracking line search for two quadratic norms
(two different P’s)

o ellipses show {z | ||z — 2®)||p = 1}
See Figure 9.13
e equivalent interpretation of steepest descent with quadratic norm || - || p:

gradient descent after change of variables z = P1/2¢
See Figures 9.14, 9.15

shows choice of P has strong effect on speed of convergence

Unconstrained minimization 10-13


P = [2 0;
        0 8]

P = [8 0;
        0 2]

(two different P’s)

ellipses “align” better
with objective function
thus convergence is faster

See Figure 9.13

See Figures 9.14, 9.15


Newton step

(Uses the Hessian as a good ellipse, see previous slide)
2 —1
Azxyy = —Vaf(x)” "V f(x)
interpretations

e r + Ax,; minimizes second order approximation

1 Second order
-~ Taylor series
flx+v) = f(x) + Vi) v+ 0! Vif(x)v approximation
2 (we are discarding
the remainder term)

e r + Aux,; solves linearized optimality condition

Vi +v) = Vflx+v)= Vi) + Vif(z)v =0

. £
(@ A, (2 + Azyy))
" (z, f(=))

)

(z, f(z))

(37 + A3711‘57 f(x + A:Bnt)). f

Unconstrained minimization 10-14


Second order
Taylor series
approximation
(we are discarding
the remainder term)

(Uses the Hessian as a good ellipse, see previous slide)


o Aux,; is steepest descent direction at x in local Hessian norm

1/2
lullv2pm) = (u" V2 f(z)u)

Let H = d*2 f(x)
d = df(x)
From slide 10-11 we have:

min d’u
st.UHu=1

L(u,v)=d’'u+v (UHu-1)
dlL/du=d+2vHu=0

Then:
ur* =-1/(2v) H*1 d

Now, the objective function is:
d'ur* =-1/(2v) d' H*-1 d

If f is strongly convex, then H is
positive definite, d' H*-1 d > 0.
Then v > 0 since otherwise
d'u** would not be minimized.

u”* has the direction of Ax_nt!

dashed lines are contour lines of f; ellipse is {z + v | v!VZf(z)v = 1}

arrow shows —V f(x)

Unconstrained minimization 10-15


Text

Let H = d^2 f(x)
       d = df(x)
From slide 10-11 we have:

min d’u
s.t. u’ H u = 1

L(u,v) = d’u + v (u’H u - 1)
dL/du = d + 2 v H u = 0

Then:
u^* = -1/(2v) H^-1 d

Now, the objective function is:
d'u^* = -1/(2v) d' H^-1 d

If f is strongly convex, then H is positive definite, d' H^-1 d > 0. Then v > 0 since otherwise d'u^* would not be minimized.

u^* has the direction of Δx_nt !


Newton decrement

Mz) = (VF(z)"V2f () 1V f ()

a measure of the proximity of x to x*

pr0perties / Remember p”* =inf_y f(y)

e gives an estimate of f(x) — p*, using quadratic approximation f

Let H = d”2 f(x)
d = df(x)
A = A(x)
Ax = Ax_nt=-H*1d

inf_y fA(y) = f* (x + Ax)
= f(x) + d’Ax + 2 Ax’ H Ax
=f(x) -2d’H*-1d

f(x) - inf_y fA(y) =2 d’ H*-1 d = 72 A*2

Thus A = sqrt( d’ HA-1 d )

Unconstrained minimization

10-16


Remember p^* = inf_y  f(y)

Let H = d^2 f(x)
       d = df(x)
       λ = λ(x)
       Δx = Δx_nt = -H^-1 d

inf_y f^(y) = f^ (x + Δx)
                  = f(x) + d’Δx + ½ Δx’ H Δx
                  = f(x) - ½ d’ H^-1 d

f(x) - inf_y f^(y) = ½ d’ H^-1 d = ½ λ^2

Thus λ = sqrt( d’ H^-1 d )


Newton’s method

given a starting point x € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Az = —V2f(x) 'Vf(z), N :=Vfx)TVif(z) 'Vf(z).
2. Stopping criterion. quit if A\*/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAxt.

affine invariant, 7.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(T'y) with starting point y(©) = 7120 are

x=Ty y=TA1x
Let Hf~(y) = d*2 f~(y) Ay = - Hf~(y)*-1 df~(y) = - (T’ Hf(x) T)*-1 T’ df(x)
df~(y) = T df(T y) = T’ df(x) = - TA-1 Hf(x)*-1 df(x) = TA-1 Ax

Hf~(y) = T'Hf(Ty) T=T Hf(x) T yA(k) =y + Ay = TA-1 (x + Ax) = TA-1 x*(k)

Unconstrained minimization 10-17


y = T^-1 x
Δy = - Hf~(y)^-1 df~(y) = - (T’ Hf(x) T)^-1 T’ df(x)
      = - T^-1 Hf(x)^-1 df(x) = T^-1 Δx
y^(k) = y + Δy = T^-1 (x + Δx) = T^-1 x^(k)

x = T y
Let Hf~(y) = d^2 f~(y)
df~(y) = T’ df(T y) = T’ df(x)
Hf~(y) = T’ Hf(T y) T = T’ Hf(x) T


Implementation

main effort in each iteration: evaluate derivatives and solve Newton system
HAx = —g

where H = V?f(x), g = Vf(z)

via Cholesky factorization
H=LL",  Azy=-L""L'g,  Xz)=|L"g|2

e cost (1/3)n? flops for unstructured system

e cost < (1/3)n? if H sparse, banded

Unconstrained minimization 10-29



example of dense Newton system with structure

f@) =) wi(w) +o(Az +b),  H=D+ ATHyA
i=1
e assume A € RP*", dense, with p < n

e D diagonal with diagonal elements v/ (x;); Hy = V?o(Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n?)

method 2 (page 9-15): factor Hy = LoL}’; write Newton system as
DAz 4+ AT Lyw = —g, LEAAz —w =0
eliminate Ax from first equation; compute w and Ax from
I+ LiAD *ATLo)w = —L}AD g, DAz =—g— A'Lyw
cost: 2p*n (dominated by computation of L AD™1 AT L)

Unconstrained minimization 10-30



