12. Interior-point methods

• inequality constrained minimization
• logarithmic barrier function and central path
• barrier method
• feasibility and phase I methods
• generalized inequalities
Inequality constrained minimization

minimize \quad f_0(x)
subject to \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \tag{1}
Ax = b

- \(f_i \) convex, twice continuously differentiable
- \(A \in \mathbb{R}^{p \times n} \) with \(\text{rank} \ A = p \)
- we assume \(p^* \) is finite and attained
- we assume problem is strictly feasible: there exists \(\tilde{x} \) with

\[
\tilde{x} \in \text{dom } f_0, \quad f_i(\tilde{x}) < 0, \quad i = 1, \ldots, m, \quad A\tilde{x} = b
\]

(Slater’s condition)

hence, strong duality holds and dual optimum is attained
Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

\[
\begin{align*}
\text{minimize} & \quad \sum_{i=1}^{n} x_i \log x_i \\
\text{subject to} & \quad Fx \preceq g \\
& \quad Ax = b
\end{align*}
\]

with \(\text{dom} f_0 = \mathbb{R}^n_{++} \)

• differentiability may require reformulating the problem, \textit{e.g.}, piecewise-linear minimization or \(\ell_{\infty} \)-norm approximation via LP

• SDPs and SOCPs are better handled as problems with generalized inequalities (see later)
Logarithmic barrier

reformulation of (1) via indicator function:

\[
\text{minimize} \quad f_0(x) + \sum_{i=1}^{m} I_-(f_i(x)) \\
\text{subject to} \quad Ax = b
\]

where \(I_-(u) = 0 \) if \(u \leq 0 \), \(I_-(u) = \infty \) otherwise (indicator function of \(\mathbb{R}_- \))

approximation via logarithmic barrier

\[
\text{minimize} \quad f_0(x) - \frac{1}{t} \sum_{i=1}^{m} \log(-f_i(x)) \\
\text{subject to} \quad Ax = b
\]

• an equality constrained problem

• for \(t > 0 \), \(-(1/t) \log(-u) \) is a smooth approximation of \(I_- \)

• approximation improves as \(t \to \infty \)
logarithmic barrier function

\[\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \text{dom } \phi = \{ x \mid f_1(x) < 0, \ldots, f_m(x) < 0 \} \]

(Slater’s condition)

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

\[\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x) \]

\[\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x) \]

(Useful for KKT analysis and Newton’s method)
Central path

• for $t > 0$, define $x^*(t)$ as the solution of

\[
\begin{align*}
\text{minimize} & \quad t f_0(x) + \phi(x) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

(for now, assume $x^*(t)$ exists and is unique for each $t > 0$)

• central path is $\{x^*(t) | t > 0\}$

example: central path for an LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, \ldots, 6
\end{align*}
\]

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$
Dual points on central path

\[x = x^*(t) \] if there exists a \(w \) such that

\[
t \nabla f_0(x) + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0,
\]

\[
Ax = b \quad \text{(Primal feasibility)}
\]

- therefore, \(x^*(t) \) minimizes the Lagrangian

\[
L(x, \lambda^*(t), \nu^*(t)) = f_0(x) + \sum_{i=1}^{m} \lambda_i^*(t) f_i(x) + \nu^*(t)^T (Ax - b)
\]

where we define \(\lambda_i^*(t) = 1/(-tf_i(x^*(t))) \) and \(\nu^*(t) = w/t \)

- this confirms the intuitive idea that \(f_0(x^*(t)) \to p^* \) if \(t \to \infty \):

\[
p^* \geq g(\lambda^*(t), \nu^*(t)) \quad \text{... for any (\(\lambda, \nu \)) so we can plug (\(\lambda^*(t), \nu^*(t) \))}
\]

\[
= L(x^*(t), \lambda^*(t), \nu^*(t))
\]

\[
= f_0(x^*(t)) + \sum_i \lambda_i^*(t) f_i(x^*(t)) + \nu^*(t)(Ax^*(t) - b)
\]

\[
= f_0(x^*(t)) + \sum_i f_i(x^*(t)) / (-tf_i(x^*(t))) \quad \text{... since } A x^*(t) = b
\]

\[
= f_0(x^*(t)) - m/t \quad \text{... } m \text{ terms}
\]

As \(t \to \infty \), \(m/t \to 0 \) and then \(p^* = f_0(x^*(t)) \)

\[
\min \ t f_0(x) + \phi(x) \\
\text{s.t. } Ax = b
\]

\[
L(x, w) = t f_0(x) + \phi(x) + w'(Ax - b)
\]

Stationarity:

\[
dL/dx = t d f_0(x) + d\phi(x) + A'w = 0
\]
Interpretation via KKT conditions

\[x = x^*(t), \lambda = \lambda^*(t), \nu = \nu^*(t) \] satisfy

1. primal constraints: \(f_i(x) \leq 0, i = 1, \ldots, m, Ax = b \)
2. dual constraints: \(\lambda \succeq 0 \)
3. approximate complementary slackness: \(-\lambda_i f_i(x) = 1/t, i = 1, \ldots, m \)
4. gradient of Lagrangian with respect to \(x \) vanishes:

\[
\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + A^T\nu = 0
\]

difference with KKT is that condition 3 replaces \(\lambda_i f_i(x) = 0 \)
Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.
repeat
1. Centering step. Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. Update. $x := x^*(t)$.
3. Stopping criterion. quit if $m/t < \epsilon$.
4. Increase t. $t := \mu t$.

- terminates with $f_0(x) - p^* \leq \epsilon$ (stopping criterion follows from $f_0(x^*(t)) - p^* \leq m/t$)
- centering usually done using Newton’s method, starting at current x

The gradient at the current x is $d = t dfo(x) + d\phi(x)$
The Hessian at the current x is $H = t d^2fo(x) + d^2\phi(x)$
$[H ~ A'] [\Delta x] = [-d]$
$[A ~ 0] [v] = [0]$
Feasibility and phase I methods

feasibility problem: find \(x \) such that

\[
f_i(x) \leq 0, \quad i = 1, \ldots, m, \quad Ax = b
\]

(2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over \(x, s \)) \(s \)
subject to
\[
f_i(x) \leq s, \quad i = 1, \ldots, m
\]
\[
Ax = b
\]

(3)

- if \(x, s \) feasible, with \(s < 0 \), then \(x \) is strictly feasible for (2)
- if optimal value \(\bar{p}^* \) of (3) is positive, then problem (2) is infeasible \((s>0)\)
- if \(\bar{p}^* = 0 \) and attained, then problem (2) is feasible (but not strictly);
 - if \(\bar{p}^* = 0 \) and not attained, then problem (2) is infeasible
Generalized inequalities

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \preceq K_i 0, \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

- \(f_0 \) convex, \(f_i : \mathbb{R}^n \to \mathbb{R}^{k_i} \), \(i = 1, \ldots, m \), convex with respect to proper cones \(K_i \subseteq \mathbb{R}^{k_i} \)
- \(f_i \) twice continuously differentiable
- \(A \in \mathbb{R}^{p \times n} \) with \(\text{rank} A = p \)
- we assume \(p^* \) is finite and attained
- we assume problem is strictly feasible; hence strong duality holds and dual optimum is attained

examples of greatest interest: SOCP, SDP
Generalized logarithm for proper cone

\(\psi : \mathbb{R}^q \rightarrow \mathbb{R} \) is generalized logarithm for proper cone \(K \subseteq \mathbb{R}^q \) if:

- \(\text{dom} \psi = \text{int} K \) and \(\nabla^2 \psi(y) \prec 0 \) for \(y \succ_K 0 \)
- \(\psi(sy) = \psi(y) + \theta \log s \) for \(y \succ_K 0, \ s > 0 \) \((\theta > 0 \text{ is the degree of } \psi)\)

Examples

- **Nonnegative orthant** \(K = \mathbb{R}^n_+ \):
 \(\psi(y) = \sum_{i=1}^{n} \log y_i \), with degree \(\theta = n \)

- **Positive semidefinite cone** \(K = S^n_+ \):
 \(\psi(Y) = \log \det Y \) \((\theta = n)\)

- **Second-order cone** \(K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \cdots + y_n^2)^{1/2} \leq y_{n+1} \} \):
 \(\psi(y) = \log(y_{n+1}^2 - y_1^2 - \cdots - y_n^2) \) \((\theta = 2)\)

Similar to \(\log z \) which is undefined for \(z = 0 \)

Example: for positive semidefinite cone: behaves like strictly concave when matrix is positive definite

Interior-point methods
Recall proper cones (2-21): \(z \geq_{K^*} 0 \) if and only if
\(y^T z \geq 0 \) for all \(y \geq_{K^*} 0 \)

\[\nabla \psi(y) \succeq_{K^*} 0, \quad y^T \nabla \psi(y) = \theta \]

(2) (1)

\[\nabla \psi(y) = (1/y_1, \ldots, 1/y_n), \quad y^T \nabla \psi(y) = n \]

\[\text{take } s=1: \quad y^T \nabla \psi(y) = \theta \]

\[\text{Take } s=1: \quad y^T \nabla \psi(y) = \theta \]

\[\text{Indeed } y^T \nabla \psi(y) = \theta > 0 \]

\[\text{Indeed } y^T \nabla \psi(y) = \theta > 0 \]

- nonnegative orthant \(\mathbb{R}_n^+ \): \(\psi(y) = \sum_{i=1}^{n} \log y_i \)

\[\nabla \psi(y) = (1/y_1, \ldots, 1/y_n), \quad y^T \nabla \psi(y) = n \]

\[\text{Take } s=1: \quad y^T \nabla \psi(y) = \theta \]

\[\text{Take } s=1: \quad y^T \nabla \psi(y) = \theta \]

- positive semidefinite cone \(\mathbb{S}_n^+ \): \(\psi(Y) = \log \det Y \)

\[\nabla \psi(Y) = Y^{-1}, \quad \text{tr}(Y \nabla \psi(Y)) = n \]

\[\text{Take } s=1: \quad \text{tr}(Y \nabla \psi(Y)) = 1 \]

- second-order cone \(K = \{ y \in \mathbb{R}^{n+1} \mid (y_1^2 + \cdots + y_n^2)^{1/2} \leq y_{n+1} \} \):

\[\nabla \psi(y) = \frac{2}{y_{n+1} - y_1^2 - \cdots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \quad y^T \nabla \psi(y) = 2 \]
Logarithmic barrier and central path

logarithmic barrier for \(f_1(x) \preceq_{K_1} 0, \ldots, f_m(x) \preceq_{K_m} 0 \):

\[
\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom} \phi = \{x \mid f_i(x) \prec_{K_i} 0, \ i = 1, \ldots, m\}
\]

- \(\psi_i \) is generalized logarithm for \(K_i \), with degree \(\theta_i \)
- \(\phi \) is convex, twice continuously differentiable

central path: \(\{x^*(t) \mid t > 0\} \) where \(x^*(t) \) solves

\[
\begin{align*}
\text{minimize} & \quad tf_0(x) + \phi(x) \\
\text{subject to} & \quad Ax = b
\end{align*}
\]
Dual points on central path

\(x = x^*(t) \) if there exists \(w \in \mathbb{R}^p \),

\[
t \nabla f_0(x) + \sum_{i=1}^{m} Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0
\]

\(Df_i(x) \in \mathbb{R}^{k_i \times n} \) is derivative matrix of \(f_i : \mathbb{R}^n \rightarrow \mathbb{R}^{\{k_i\}} \)

- therefore, \(x^*(t) \) minimizes Lagrangian \(L(x, \lambda^*(t), \nu^*(t)) \), where

\[
\lambda_i^*(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^*(t))), \quad \nu^*(t) = \frac{w}{t}
\]

- from properties of \(\psi_i \): \(\lambda_i^*(t) \succ K_i^* 0 \), with duality gap

\[
f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = \frac{1}{t} \sum_{i=1}^{m} \theta_i
\]

\(p^* \geq g(\lambda^*(t), \nu^*(t)) \) ... for any \((\lambda, \nu) \) so we can plug \((\lambda^*(t), \nu^*(t)) \)

\[
= L(x^*(t), \lambda^*(t), \nu^*(t)) = f_0(x^*(t)) + \sum_{i} \lambda_i^*(t) f_i(x^*(t)) + \nu^*(t)(A x^*(t)-b)
\]

\[
= f_0(x^*(t)) - \frac{1}{t} \sum y_i' \psi_i(y_i) \quad \text{... since } A x^*(t)=b, \text{ and letting } y_i = -f_i(x^*(t))
\]

\[
= f_0(x^*(t)) - \frac{1}{t} \sum \theta_i \quad \text{... since } y_i' \psi_i(y_i) = \theta_i
\]

\[
\min \ t f_0(x) + \phi(x) \\
\text{s.t.} \quad Ax=b=0
\]

\[
L(x,w) = t f_0(x) + \phi(x) + w'(Ax-b)
\]

Stationarity:
\(\frac{dL}{dx} = t \frac{d f_0}{x} + d \phi(x) + A'w = 0 \)

\[
\min f_0(x) \\
\text{s.t.} \quad f_i(x) \leq \{K_i\} 0, \quad i=1...m
\]

\[
Ax-b=0
\]

\[
L(x,\lambda,v) = f_0(x) + \sum_i \lambda_i f_i(x) + v'(Ax-b)
\]

Make \(dL/dx=0 \) and get same as above

As \(t \rightarrow \infty \), \(1/t \sum \theta_i \rightarrow 0 \) and then \(p^* = f_0(x^*(t)) \)
Barrier method

\textbf{given} strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

\textbf{repeat}

1. \textit{Centering step.} Compute $x^*(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$.
2. \textit{Update.} $x := x^*(t)$.
3. \textit{Stopping criterion.} \textbf{quit} if $(\sum_i \theta_i)/t < \epsilon$.
4. \textit{Increase t.} $t := \mu t$.

- only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$