1 Hoeffding’s inequality

We prove Hoeffding’s lemma and leave Hoeffding’s inequality as an exercise.

Definition 2.1. Let \mathcal{X} be an arbitrary domain. A function $f : \mathcal{X} \to \mathbb{R}$ is called convex if:

$$(\forall a, b \in \mathcal{X}, s \in [0, 1]) \ f((1-s)a + sb) \leq (1-s)f(a) + sf(b)$$

Lemma 2.1 (Hoeffding’s lemma). Assume that the random variable $x \in [0, 1]$ has mean $\mathbb{E}[x] = \mu$. We have that:

$$\mathbb{E}[e^{t(x-\mu)}] \leq e^{\frac{1}{2}t^2}$$

for all $t \in \mathbb{R}$.

Proof. Invoke Definition 2.1 with $f(x) = e^{t(x-\mu)}$, $a = 0$, $b = 1$:

$$(\forall s \in [0, 1]) \ f(s) \leq (1-s)f(0) + sf(1)$$

$$(\forall x \in [0, 1]) \ f(x) \leq (1-x)f(0) + xf(1)$$

$$\Rightarrow (\forall x \in [0, 1]) \ e^{t(x-\mu)} \leq (1-x)e^{-t\mu} + xe^{t(1-\mu)}$$

By computing expectations on both sides, we get:

$$\mathbb{E}[e^{t(x-\mu)}] \leq (1 - \mathbb{E}[x])e^{-t\mu} + \mathbb{E}[x]e^{t(1-\mu)}$$

$$= (1 - \mu)e^{-t\mu} + \mu e^{t(1-\mu)}$$

$$= e^{-t\mu}(1 - \mu + \mu e^{t})$$

$$= e^{g(t)}$$

where:

$$g(t) = -t\mu + \log (1 - \mu + \mu e^{t})$$

It is easy to note that $g(0) = 0$ and that:

$$\frac{\partial g}{\partial t}(t) = -\mu + \frac{\mu e^{t}}{1 - \mu + \mu e^{t}} \Rightarrow \frac{\partial g}{\partial t}(0) = 0$$
Let \(w = \frac{\mu e^t}{1 - \mu + \mu e^t} \), then:

\[
\frac{\partial^2 g}{\partial t^2}(t) = \frac{\mu e^t (1 - \mu + \mu e^t) - \mu e^t \mu e^t}{(1 - \mu + \mu e^t)^2} = w(1 - w) \leq 1/4
\]

By Taylor’s theorem, for every real \(t \) there exists a \(v \in [0, t] \) such that:

\[
g(t) = g(0) + t \frac{\partial g}{\partial t}(0) + \frac{1}{2} t^2 \frac{\partial^2 g}{\partial t^2}(v) \leq \frac{1}{2} t^2 \frac{1}{4} = t^2 / 8
\]

which proves our claim. \(\square \)

2 Exercises

a) Prove the following (look at the proofs of Corollaries 1.2 and 1.3, and use Hoeffding’s lemma 2.1):

Corollary 2.1 (Hoeffding’s inequality). Assume that \(x_1 \ldots x_n \) are \(n \) independent random variables with support on \([0, 1]\) and mean \(\mu \). Fix \(\varepsilon > 0 \). We have that:

\[
P\left[\left| \frac{1}{n} \sum_{i=1}^{n} x_i - \mu \right| \geq \varepsilon \right] \leq 2e^{-2n\varepsilon^2}
\]

b) Prove the following (look at the proofs of Corollaries 1.2 and 1.3):

Corollary 2.2 (Hoeffding’s inequality). Assume that \(x_1 \ldots x_n \) are \(n \) independent random variables, where each \(x_i \in [a_i, b_i] \). Fix \(\varepsilon > 0 \). We have that:

\[
P\left[\left| \frac{1}{n} \sum_{i=1}^{n} x_i - \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} x_i \right] \right| \geq \varepsilon \right] \leq 2e^{-\frac{2\varepsilon^2}{\sum_{i=1}^{n} (b_i - a_i)^2}}
\]

3 Application: Empirical Risk Minimization with a Finite Hypothesis Class

One of the main goals of machine learning is to minimize a risk with respect to a data distribution. Unfortunately, we never observe the data distribution directly, but a finite set of samples drawn from it. Assume an algorithm “learns” by minimizing an empirical risk, i.e., a risk that depends on a training set. Here we prove a generalization result of this learning procedure.
Theorem 2.1. Assume that $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ where \mathcal{X} and \mathcal{Y} are arbitrary domains. Assume that the pair (x, y) follows an arbitrary distribution \mathcal{D}. Assume that $(x_1, y_1) \ldots (x_n, y_n)$ are n i.i.d. samples drawn from the distribution \mathcal{D}. Assume that \mathcal{F} is a finite set of functions, i.e., $\mathcal{F} = \{f_1 \ldots f_k\}$ where $k < +\infty$ and $(\forall j) f_j : \mathcal{X} \to \mathcal{Y}$. The expected risk and its minimizer are defined as:

$$
\mathcal{R}(f) = \mathbb{E}_{(x,y) \sim \mathcal{D}}[1[f(x) \neq y]] \\
\bar{f} = \arg \min_{f \in \mathcal{F}} \mathcal{R}(f)
$$

The empirical risk and its minimizer are defined as:

$$
\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} 1[f(x_i) \neq y_i] \\
\hat{f} = \arg \min_{f \in \mathcal{F}} \hat{\mathcal{R}}(f)
$$

Fix $\delta \in (0, 1)$. We have that:

$$
\mathbb{P} \left[|\hat{\mathcal{R}}(\hat{f}) - \mathcal{R}(f)| < \sqrt{\frac{2(\log k + \log (2/\delta))}{n}} \right] \geq 1 - \delta
$$

or equivalently, if $n \geq \frac{2(\log k + \log (2/\delta))}{\varepsilon^2}$ then:

$$
\mathbb{P} \left[|\hat{\mathcal{R}}(\hat{f}) - \mathcal{R}(\bar{f})| < \varepsilon \right] \geq 1 - \delta
$$

Proof. Fix a function $f \in \mathcal{F}$. Define the random variable $z = 1[f(x) \neq y] \in [0, 1]$. Note that the expected and empirical risks are:

$$
\mathcal{R}(f) = \mathbb{E}_{(x,y) \sim \mathcal{D}}[z] \\
\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} z_i
$$

and moreover $\mathbb{E}[z_i] = \mathcal{R}(f)$, thus:

$$
\mathbb{E}[\hat{\mathcal{R}}(f)] = \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} z_i \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[z_i] \\
= \mathcal{R}(f)
$$

By the Hoeffding’s inequality (Corollary 2.1) for a single hypothesis $f \in \mathcal{F}$, we have:

$$
\mathbb{P} \left[|\hat{\mathcal{R}}(\hat{f}) - \mathcal{R}(f)| \geq \varepsilon \right] \leq 2e^{-2n\varepsilon^2}
$$
By applying the union bound for all \(k \) functions in \(F \) and by Hoeffding’s inequality (Corollary 2.1), we have:

\[
P\left(\exists f \in F \mid \left|\hat{R}(f) - R(f)\right| \geq \varepsilon\right) = P\left[\bigcup_{f \in F} \left|\hat{R}(f) - R(f)\right| \geq \varepsilon\right]
\leq \sum_{f \in F} P\left[\left|\hat{R}(f) - R(f)\right| \geq \varepsilon\right]
\leq 2ke^{-2n\varepsilon^2}
\]

Equivalently:

\[
P\left(\forall f \in F \mid \left|\hat{R}(f) - R(f)\right| < \varepsilon\right) = 1 - P\left[\bigcup_{f \in F} \left|\hat{R}(f) - R(f)\right| \geq \varepsilon\right]
\geq 1 - 2ke^{-2n\varepsilon^2}
\]

Let \(\delta = 2ke^{-2n\varepsilon^2} \), then \(\varepsilon = \sqrt{\frac{\log k + \log(2/\delta)}{2n}} \). Finally since \(\hat{f} \) minimizes \(\hat{R} \) we know that \(\hat{R}(\hat{f}) \leq \hat{R}(\bar{f}) \). From eq.(1) and the above, we have:

\[
\hat{R}(\hat{f}) - \hat{R}(\bar{f}) < \hat{R}(\hat{f}) + \varepsilon - \hat{R}(\bar{f}) + \varepsilon
\leq 2\varepsilon
\]

which proves our claim. \(\square \)

Expressions of the form of eq.(1) are called uniform convergence.

4 Exercises

a) Assume that \(\mathcal{X} = \mathbb{R}^p \) for some number of features \(p \). As in binary classification, assume that \(\mathcal{Y} = \{-1, +1\} \). First, assume that \(\mathcal{F} \) is the set of linear classifier functions of the form:

\[
f(x) = \begin{cases}
+1 & \text{if } \langle w, x \rangle \geq 0 \\
-1 & \text{if } \langle w, x \rangle < 0
\end{cases}
\]

for some \(w \in \{-1, 0, +1\}^p \). How many vectors \(w \) are in the set \(\{-1, 0, +1\}^p \)? In other words, what is \(k \) in Theorem 2.1? Now, assume that \(\mathcal{F} \) is the set of linear classifier functions where \(w \in \{-1, 0, +1\}^p \) and where \(w \) has at most \(s \) non-zero elements, for some fixed value \(s \). What is \(k \) in Theorem 2.1?

b) Assume that \(\mathcal{A} \) is an event that depends on a random variable \(x \). Fix \(a, b \) and \(\delta \in (0, 1) \). Assume that \(P[\mathcal{A}(a)] \leq \delta \) and \(P[\mathcal{A}(b)] \leq \delta \). Furthermore, assume that if not \(\mathcal{A}(a) \) and not \(\mathcal{A}(b) \) then \((\forall x \in [a, b]) \) not \(\mathcal{A}(x) \). Find \(c \) in the expression \(P[(\forall x \in [a, b]) \text{ not } \mathcal{A}(x)] \geq c \).