1 Restricted Strong Convexity

Let w be a vector and ℓ be a loss function. In general, ℓ_1-norm regularized loss minimization can be written as follows for some $\lambda > 0$:

$$\hat{w} = \arg \min_{w \in \mathbb{R}^p} \ell(w) + \lambda \|w\|_1$$

We will also assume that there is an unknown but fixed $w^* \in \mathbb{R}^p$. Our goal will be to recover a vector \hat{w} which is close to w^*.

Next, we define restricted strong convexity [1].

Definition 8.1. Let $\alpha > 0$, $\tau \geq 0$ and $g : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}^+$. A loss function $\ell : \mathbb{R}^p \rightarrow \mathbb{R}$ is restricted strongly convex around w^* with parameters (α, τ, g) if and only if:

$$(\forall w \in \mathbb{R}^p) \ \ell(w) - \ell(w^*) - \langle \nabla \ell(w^*), w - w^* \rangle \geq \alpha \|w - w^*\|_2^2 - \tau g(n, p) \|w - w^*\|_1^2$$

For many specific learning problems $g(n, p) = \sqrt{\log \frac{p}{n}}$ or $g(n, p) = \log \frac{p}{n}$. In what follows, we analyze the sufficient number of samples for the problem in eq.(1).

Theorem 8.1. Assume that the convex loss function $\ell : \mathbb{R}^p \rightarrow \mathbb{R}$ is restricted strongly convex around w^* with parameters (α, τ, g) as in Definition 8.1. Let k be the number of nonzero elements in w^*. For a regularization weight $\lambda \geq 2 \|\nabla \ell(w^*)\|_\infty$ and a sufficient number of samples $17 \frac{\alpha}{\tau} kg(n, p) \leq 1$, we have that:

$$\|\hat{w} - w^*\|_2 \leq 102 \frac{\sqrt{k}}{\alpha} \lambda$$

$$\|\hat{w} - w^*\|_1 \leq 408 \frac{k}{\alpha} \lambda$$

For many specific learning problems $\lambda \in \mathcal{O}\left(\sqrt{\log \frac{p}{n}}\right)$ and thus, the above theorem establishes consistency as the number of samples n grows.

First, we derive an intermediate lemma needed for the final proof.
Lemma 8.1. Assume that the loss function $\ell : \mathbb{R}^p \to \mathbb{R}$ is convex. Let k be the number of nonzero elements in w^*. For a regularization weight $\lambda \geq 2\|\nabla \ell(w^*)\|_{\infty}$, we have:

$$\|\hat{w} - w^*\|_1 \leq 4\sqrt{k}\|\hat{w} - w^*\|_2$$

Proof. Let $\Delta \equiv \hat{w} - w^*$. Let \mathcal{K} be the set of nonzero elements of w^* and let \mathcal{K}^c be the complement of \mathcal{K}. Note that $k \equiv |\mathcal{K}|$ is the number of nonzero elements in w^*. For an arbitrary vector w, let w^K denote the original vector w with zeros on the entries in \mathcal{K} and let w^{K^c} denote the original vector w with zeros on the entries in \mathcal{K}.

Since by definition $w^* = w^K$ and by the reverse triangle inequality, we have:

$$\|\hat{w}\|_1 = |w^* + \Delta|_1$$

$$= |w^K + \Delta_{\mathcal{K}} + \Delta_{\mathcal{K}^c}|_1$$

$$= |w^K + \Delta_{\mathcal{K}}|_1 + |\Delta_{\mathcal{K}^c}|_1$$

$$\geq |w^K|_1 - |\Delta_{\mathcal{K}}|_1 + |\Delta_{\mathcal{K}^c}|_1$$

$$= |w^*|_1 - |\Delta_{\mathcal{K}}|_1 + |\Delta_{\mathcal{K}^c}|_1$$

(2)

By optimality of \hat{w} in eq.(1), we have:

$$\ell(\hat{w}) + \lambda\|\hat{w}\|_1 \leq \ell(w^*) + \lambda\|w^*\|_1$$

and therefore:

$$\ell(\hat{w}) - \ell(w^*) \leq -\lambda\|\hat{w}\|_1 + \lambda\|w^*\|_1$$

(3)

By convexity of ℓ, the Cauchy-Schwarz inequality ($\forall a, b \mid \langle a, b \rangle \leq \|a\|_1 \|b\|_\infty$), and since we assume that $\lambda \geq 2\|\nabla \ell(w^*)\|_{\infty}$, we have:

$$\ell(\hat{w}) - \ell(w^*) \geq \langle \nabla \ell(w^*), \Delta \rangle$$

$$\geq -\|\nabla \ell(w^*)\|_{\infty}\|\Delta\|_1$$

$$\geq -\frac{1}{2}\lambda\|\Delta\|_1$$

(4)

By eq.(3) and eq.(4), it follows that $-\frac{1}{2}\lambda\|\Delta\|_1 \leq -\lambda|\hat{w}|_1 + \lambda\|w^*\|_1$ or equivalently since $\lambda > 0$:

$$0 \geq -\|\Delta\|_1 + 2\|\hat{w}\|_1 - 2\|w^*\|_1$$

$$\geq -\|\Delta\|_1 + 2\|w^*\|_1 - 2\|\Delta_{\mathcal{K}}\|_1 + 2\|\Delta_{\mathcal{K}^c}\|_1 - 2\|w^*\|_1$$

$$= -\|\Delta\|_1 - 2\|\Delta_{\mathcal{K}}\|_1 + 2\|\Delta_{\mathcal{K}^c}\|_1$$

$$= -\|\Delta_{\mathcal{K}}\|_1 - \|\Delta_{\mathcal{K}^c}\|_1 - 2\|\Delta_{\mathcal{K}}\|_1 + 2\|\Delta_{\mathcal{K}^c}\|_1$$

$$= -3\|\Delta_{\mathcal{K}}\|_1 + \|\Delta_{\mathcal{K}^c}\|_1$$
where the second line follows from eq.(2). Given the above, we have:

$$
\|\Delta\|_1 = \|\Delta_K\|_1 + \|\Delta_{Kc}\|_1 \\
\leq \|\Delta_K\|_1 + 3\|\Delta_{Kc}\|_1 \\
= 4\|\Delta_K\|_1 \\
\leq 4\sqrt{k}\|\Delta_{Kc}\|_2 \\
\leq 4\sqrt{k}\|\Delta_K\|_2 \\
\leq 4\sqrt{k}\|\Delta\|_2
$$

which proves our claim. □

Next, we provide the final proof.

Proof of Theorem 8.1. Let $\Delta \equiv \hat{w} - w^*$. First, since we assume that $\lambda \geq 2\|\nabla \ell(w^*)\|_\infty$ we can invoke Lemma 8.1 and therefore:

$$
\|\Delta\|_1 \leq 4\sqrt{k}\|\Delta\|_2
$$

(6)

For $w = \hat{w}$, by restricted strong convexity of ℓ around w^* with parameters (α, τ, g) as in Definition 8.1, by eq.(6) and since $17\frac{n}{\alpha}kg(n,p) \leq 1$, we have:

$$
\ell(\hat{w}) - \ell(w^*) - \langle \nabla \ell(w^*), \Delta \rangle \geq \alpha\|\Delta\|_2^2 - \tau g(n,p)\|\Delta\|_1^2 \\
\geq (\alpha - 16k\tau g(n,p))\|\Delta\|_2^2 \\
\geq (\alpha - \frac{16}{17}\alpha)\|\Delta\|_2^2 \\
= \frac{1}{17}\alpha\|\Delta\|_2^2
$$

(7)

By eq.(6) and eq.(7), the Cauchy-Schwarz inequality $(\forall a, b) |\langle a, b \rangle| \leq \|a\|_1\|b\|_\infty$, and since we assume that $\lambda \geq 2\|\nabla \ell(w^*)\|_\infty$, we have:

$$
\frac{1}{17}\alpha\|\Delta\|_2^2 \leq \ell(\hat{w}) - \ell(w^*) - \langle \nabla \ell(w^*), \Delta \rangle \\
\leq -\lambda\|\hat{w}\|_1 + \lambda\|w^*\|_1 + \|\nabla \ell(w^*)\|_\infty\|\Delta\|_1 \\
\leq -\lambda\|\hat{w}\|_1 + \lambda\|w^*\|_1 + \|\Delta\|_1 \\
\leq -\lambda\|\hat{w}\|_1 + \lambda\|\hat{w}\|_1 + \lambda\|\Delta\|_1 + \|\Delta\|_1 \\
= \frac{3}{2}\lambda\|\Delta\|_1 \\
\leq 6\sqrt{k}\lambda\|\Delta\|_2
$$

which proves the first claim after canceling $\|\Delta\|_2$ on both sides of the inequality. The second claim can be proven by the above and eq.(6). □

2 Application: Compressed Sensing

Assume that there is an unknown but fixed $w^* \in \mathbb{R}^p$. The only way to access w^* is through a black box that works as follows. We (somehow) generate an input vector $x_i \in \{-1,+1\}^p$ and the black box returns an output:

$$
y_i = \langle x_i, w^* \rangle + \varepsilon_i
$$
where \(\varepsilon_i \in \{-1, +1\} \) is a Rademacher random variable (see Definition 6.1). In the above, we know that \(y_i \) is equal to \(\langle x_i, w^* \rangle + \varepsilon_i \), but we do not have access to \(w^* \) or \(\varepsilon_i \). We only have access to the output \(y_i \), and of course the input \(x_i \).

The question is how many pairs \((x_i, y_i)\) are sufficient in order to recover a vector \(\hat{w} \) which is close to \(w^* \). Assume we obtain \(n \) pairs. Let \(X \in \{-1, +1\}^{n \times p} \), \(y \in \mathbb{R}^n \) and \(\epsilon \in \{-1, +1\}^n \). Note that:

\[
y = Xw^* + \epsilon \tag{8}
\]

We solve eq.(1) by using the loss function:

\[
\ell(w) = \frac{1}{2n} \|Xw - y\|_2^2 \tag{9}
\]

For answering our question, we will have to show that the loss function \(\ell \) fulfills the conditions of Theorem 8.1. From eq.(8) and eq.(9), we have:

\[
\ell(w) = \frac{1}{2n} \|X(w - w^*) - \epsilon\|_2^2
\]

\[
= \frac{1}{2n}(w - w^*)^T X^T X(w - w^*) - \frac{1}{n} \epsilon^T X(w - w^*) + \frac{1}{2n} \epsilon^T \epsilon \tag{10}
\]

By the above, we can conclude that:

\[
\ell(w^*) = \frac{1}{2n} \epsilon^T \epsilon \tag{11}
\]

\[
\nabla \ell(w) = \frac{1}{n} X^T X(w - w^*) - \frac{1}{n} X^T \epsilon
\]

\[
\nabla \ell(w^*) = -\frac{1}{n} X^T \epsilon \tag{12}
\]

In what follows we will assume that each entry of \(X \) and \(\epsilon \) is independent and Rademacher distributed.

First Condition: \(\lambda \geq 2\|\nabla \ell(w^*)\|_\infty \). Assume that we set the regularization weight as follows \(\lambda = 4 \sqrt{\frac{n \log p}{n}} \). Let \(x^j \in \{-1, +1\}^n \) be the \(j \)-th column of \(X \). Fix \(j \). Note that \(\frac{1}{n} \langle x^j, \epsilon \rangle = \frac{1}{n} \sum_{i=1}^n x_{ij} \epsilon_i = \frac{1}{n} \sum_{i=1}^n z_i \) where \(z_i \equiv x_{ij} \epsilon_i \) for \(i = 1 \ldots n \) are independent random variables. Moreover, \(z_i \in [-1,1] \) and \(\mathbb{E}_{\epsilon} [\frac{1}{n} \langle x^j, \epsilon \rangle | X] = 0 \) since \(\mathbb{E}_{\epsilon} [\epsilon | X] = 0 \). Thus, by Hoeffding’s inequality (Corollary 2.2) and the union bound:

\[
P_{\epsilon} \left(\exists j = 1 \ldots p \ \text{ s.t. } \frac{1}{n} \langle x^j, \epsilon \rangle \geq \frac{\lambda}{2} \right) \leq 2p \ e^{-\frac{-2\lambda^2 (\lambda/2)^2}{n^2}}
\]

\[
= 2p \ e^{-\frac{\lambda^2}{8}}
\]

\[
= 2p \ e^{-2\log p}
\]

\[
= 2/p
\]
By eq.(12) and the above, we have:

\[
\mathbb{P}_{X, \epsilon} \left[\left\| \nabla \ell(w^*) \right\|_\infty \geq \frac{\lambda}{2} \right] = \mathbb{P}_{X, \epsilon} \left[\left\| \frac{1}{n} X^T \epsilon \right\|_\infty \geq \frac{\lambda}{2} \right] = \mathbb{P}_{X, \epsilon} \left[\sum_{j=1}^{p} \frac{1}{n} \langle x^j, \epsilon \rangle \geq \frac{\lambda}{2} \right] = \mathbb{E}_X \left[\mathbb{P}_{\epsilon} \left[\sum_{j=1}^{p} \frac{1}{n} \langle x^j, \epsilon \rangle \geq \frac{\lambda}{2} X \right] \right] \leq \mathbb{E}_X \left[\frac{2}{p} \right] = \frac{2}{p}
\]

Therefore, with probability at least \(1 - \frac{2}{p}\) over the choice of \(X\) and \(\epsilon\), we have that \(\lambda \geq 2 \left\| \nabla \ell(w^*) \right\|_\infty\) when we use the regularization weight \(\lambda = 4 \sqrt{\log p / n}\).

Second Condition: Restricted Strong Convexity. Theorem 8.1 requires that the loss function \(\ell\) in eq.(9) fulfills Definition 8.1. Here, we will show that indeed this is fulfilled. That is:

\[
(\forall w \in \mathbb{R}^p) \quad \ell(w) - \ell(w^*) - \langle \nabla \ell(w^*), w - w^* \rangle \geq \alpha \left\| w - w^* \right\|_2^2 - \tau g(n, p) \left\| w - w^* \right\|_1^2
\]

Note that by eq.(10), eq.(11) and eq.(12), we have:

\[
\ell(w) - \ell(w^*) - \langle \nabla \ell(w^*), w - w^* \rangle = \frac{1}{2n} (w - w^*)^T X^T X (w - w^*) = \frac{1}{2n} \left\| X (w - w^*) \right\|_2^2
\]

Let \(v = w - w^*\). Our goal is to show that:

\[
(\forall v \in \mathbb{R}^p) \quad \frac{1}{2n} \left\| X v \right\|_2^2 \geq \alpha \left\| v \right\|_2^2 - \tau g(n, p) \left\| v \right\|_1^2
\]

Since the above is trivially fulfilled for \(v = 0\) and since if the above holds for some \(v \in \mathbb{R}^p\) then it also holds for \(cv\) for all \(c \in \mathbb{R}\), we will equivalently show that:

\[
(\forall \left\| v \right\|_1 = 1) \quad \frac{1}{2n} \left\| X v \right\|_2^2 \geq \alpha \left\| v \right\|_2^2 - \tau g(n, p)
\]

Fix \(j \neq k\). Note that \(\frac{1}{n} \sum_{i=1}^{n} x_{ij} x_{ik} = \frac{1}{n} \sum_{i=1}^{n} z_i\) where \(z_i \equiv x_{ij} x_{ik}\) for \(i = 1 \ldots n\) are independent random variables. Moreover, \(z_i \in [-1, +1]\) and we also know that \(\mathbb{E}_X \left[\frac{1}{n} \sum_{i=1}^{n} x_{ij} x_{ik} \right] = 0\) since the entries of \(X\) are independent and zero-mean. Thus, by Hoeffding’s inequality (Corollary 2.2), the union bound and by
assuming $t = \sqrt{\frac{\log p}{n}}$:

$$
\mathbb{P}_X \left[\max_{j \neq k} \left| \frac{1}{n} \sum_{i=1}^{n} x_{ij} x_{ik} \right| \geq t \right] = \mathbb{P}_X \left[(\exists j \neq k) \left| \frac{1}{n} \sum_{i=1}^{n} x_{ij} x_{ik} \right| \geq t \right] \\
\leq 2 \left(\frac{p}{2} \right) e^{-n^2 t^2} \\
\leq p^2 e^{-n^2} \\
= p^2 e^{-3 \log p} \\
= \frac{1}{p}
$$

Therefore, with probability at least $1 - \frac{1}{p}$ over the choice of X, we have that:

$$
\max_{j \neq k} \left| \frac{1}{n} \sum_{i=1}^{n} x_{ij} x_{ik} \right| \leq \sqrt{\frac{6 \log p}{n}} \tag{13}
$$

Note that since $\|v\|_1 = 1$, then:

$$
\sum_{j \neq k} |v_j v_k| \leq \sum_{j=1}^{p} \sum_{k=1}^{p} |v_j v_k| \\
= \sum_{j=1}^{p} \sum_{k=1}^{p} |v_j| |v_k| \\
= \|v\|^2_1 \\
= 1 \tag{14}
$$

Since $(\forall ij) \; x_{ij}^2 = 1$ and the above, we have:

$$
\frac{1}{2n} \|Xv\|^2 = \frac{1}{2n} \sum_{i=1}^{n} (Xv)^2_i \\
= \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} x_{ij} v_j \right)^2 \\
= \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} x_{ij}^2 v_j^2 + \sum_{j \neq k} x_{ij} x_{ik} v_j v_k \right) \\
= \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} v_j^2 + \sum_{j \neq k} x_{ij} x_{ik} v_j v_k \right) \\
= \frac{1}{2} \|v\|^2 + \frac{1}{2} \sum_{j \neq k} \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij} x_{ik} \right) v_j v_k
$$
where the previous-to-the-last step follows from the Cauchy-Schwarz inequality $(\forall \mathbf{a}, \mathbf{b}) \mid \langle \mathbf{a}, \mathbf{b} \rangle \leq \|\mathbf{a}\|_1\|\mathbf{b}\|_\infty$. The last step follows from eq.(13) and eq.(14).

Note that given our brief introduction at the beginning of the proof, we have shown that:

$$(\forall \mathbf{w} \in \mathbb{R}^p) \ell(\mathbf{w}) - \ell(\mathbf{w}^*) - \langle \nabla \ell(\mathbf{w}^*), \mathbf{w} - \mathbf{w}^* \rangle \geq \frac{1}{2} \|\mathbf{w} - \mathbf{w}^*\|_2^2 - \frac{1}{2} \sqrt{6 \log\frac{p}{n}} \|\mathbf{w} - \mathbf{w}^*\|_1^2$$

Therefore, we conclude that the loss function ℓ in eq.(9) fulfills Definition 8.1 with $\alpha = 1/2$, $\tau = \sqrt{6}/2$ and $g(n, p) = \sqrt{\log\frac{p}{n}}$.

Third Condition: Sufficient Number of Samples. Theorem 8.1 also requires that $17\frac{\tau}{\alpha}kg(n, p) \leq 1$. That is:

$$17\frac{\tau}{\alpha}kg(n, p) = 17\sqrt{6} k \sqrt{\log\frac{p}{n}} \leq 1$$

Thus, we require $n \geq 17^36k^2 \log p$.

A proof for possibly correlated Gaussian random variables can be found in [2] where they obtained results with $g(n, p) = \frac{\log p}{n}$, which is better for the required number of samples in the Third Condition.

References
