Hoeffding’s inequality

We prove Hoeffding’s lemma and leave Hoeffding’s inequality as an exercise.

Definition 2.1. Let X be an arbitrary domain. A function $f : X \to \mathbb{R}$ is called convex if:

$$(\forall a,b \in X, s \in [0,1]) \ f((1-s)a + sb) \leq (1-s)f(a) + sf(b)$$

Lemma 2.1 (Hoeffding’s lemma). Assume that the random variable $x \in [0,1]$ has mean $\mathbb{E}[x] = \mu$. We have that:

$$\mathbb{E}[e^{t(x-\mu)}] \leq e^{\frac{1}{2}t^2}$$

for all $t \in \mathbb{R}$.

Proof. Invoke Definition 2.1 with $f(x) = e^{t(x-\mu)}$, $a = 0$, $b = 1$:

$$(\forall s \in [0,1]) \ f(s) \leq (1-s)f(0) + sf(1)$$

$$(\forall x \in [0,1]) \ f(x) \leq (1-x)f(0) + xf(1)$$

$$(\forall x \in [0,1]) \ e^{t(x-\mu)} \leq (1-x)e^{-t\mu} + xe^{t(1-\mu)}$$

By computing expectations on both sides, we get:

$$\mathbb{E}[e^{t(x-\mu)}] \leq (1 - \mathbb{E}[x])e^{-t\mu} + \mathbb{E}[x]e^{t(1-\mu)}$$

$$= (1 - \mu)e^{-t\mu} + \mu e^{t(1-\mu)}$$

$$= e^{-t\mu}(1 - \mu + \mu e^t)$$

$$= e^{g(t)}$$

where:

$$g(t) = -t\mu + \log(1 - \mu + \mu e^t)$$

It is easy to note that $g(0) = 0$ and that:

$$\frac{\partial g}{\partial t}(t) = -\mu + \frac{\mu e^t}{1 - \mu + \mu e^t} \Rightarrow \frac{\partial g}{\partial t}(0) = 0$$
Let $w = \frac{\mu e^t}{1 - \mu + \mu e^t}$, then:

$$
\frac{\partial^2 g}{\partial t^2}(t) = \frac{\mu e^t (1 - \mu + \mu e^t) - \mu e^t \mu e^t}{(1 - \mu + \mu e^t)^2}
$$

$$
= w(1 - w)
$$

$$
\leq 1/4
$$

By Taylor’s theorem, for every real t there exists a $v \in [0, t]$ such that:

$$
g(t) = g(0) + t \frac{\partial g}{\partial t}(0) + \frac{1}{2} t^2 \frac{\partial^2 g}{\partial t^2}(v)
$$

$$
\leq \frac{1}{2} t^2 \frac{1}{4}
$$

$$
= t^2 / 8
$$

which proves our claim.

\[\square \]

2 Exercises

a) Prove the following (look at the proofs of Corollaries 1.2 and 1.3, and use Hoeffding’s lemma 2.1):

Corollary 2.1 (Hoeffding’s inequality). Assume that $x_1 \ldots x_n$ are n independent random variables with support on $[0, 1]$ and mean μ. Fix $\varepsilon > 0$. We have that:

$$
P \left(\left| \frac{1}{n} \sum_{i=1}^{n} x_i - \mu \right| \geq \varepsilon \right) \leq 2e^{-2n\varepsilon^2}
$$

b) Prove the following (look at the proofs of Corollaries 1.2 and 1.3):

Corollary 2.2 (Hoeffding’s inequality). Assume that $x_1 \ldots x_n$ are n independent random variables, where each $x_i \in [a_i, b_i]$. Fix $\varepsilon > 0$. We have that:

$$
P \left(\left| \frac{1}{n} \sum_{i=1}^{n} x_i - \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} x_i \right] \right| \geq \varepsilon \right) \leq 2e^{\frac{-2\varepsilon^2}{\sum_{i=1}^{n}(b_i-a_i)^2}}
$$

3 Application: Empirical Risk Minimization with a Finite Hypothesis Class

One of the main goals of machine learning is to minimize a risk with respect to a data distribution. Unfortunately, we never observe the data distribution directly, but a finite set of samples drawn from it. Assume an algorithm “learns” by minimizing an empirical risk, i.e., a risk that depends on a training set. Here we prove a generalization result of this learning procedure.
Theorem 2.1. Assume that \(x \in \mathcal{X} \) and \(y \in \mathcal{Y} \) where \(\mathcal{X} \) and \(\mathcal{Y} \) are arbitrary domains. Assume that the pair \((x, y)\) follows an arbitrary distribution \(D \). Assume that \((x_1, y_1), \ldots, (x_n, y_n)\) are \(n \) i.i.d. samples drawn from the distribution \(D \). Assume that \(F \) is a finite set of functions, i.e., \(F = \{f_1 \ldots f_k\} \) where \(k < +\infty \) and \((\forall j) f_j : \mathcal{X} \to \mathcal{Y} \). The expected risk and its minimizer are defined as:

\[
R(f) = \mathbb{E}_{(x, y) \sim D}[1[f(x) \neq y]] \\
\hat{f} = \arg\min_{f \in F} R(f)
\]

The empirical risk and its minimizer are defined as:

\[
\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} 1[f(x_i) \neq y_i] \\
\hat{f} = \arg\min_{f \in F} \hat{R}(f)
\]

Fix \(\delta \in (0, 1) \). We have that:

\[
P\left[\left| \hat{R}(\hat{f}) - R(\hat{f}) \right| \geq \varepsilon \right] \leq 2e^{-2n\varepsilon^2} \leq 1 - \delta
\]

or equivalently, if \(n \geq \frac{2(\log k + \log (2/\delta))}{\varepsilon^2} \) then:

\[
P\left[\left| \hat{R}(\hat{f}) - R(\hat{f}) \right| < \varepsilon \right] \geq 1 - \delta
\]

Proof. Fix a function \(f \in F \). Define the random variable \(z = 1[f(x) \neq y] \in [0, 1] \). Note that the expected and empirical risks are:

\[
\bar{R}(f) = \mathbb{E}_{(x, y) \sim D}[z] \\
\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} z_i
\]

and moreover \(\mathbb{E}[z_i] = \bar{R}(f) \), thus:

\[
\mathbb{E}[\hat{R}(f)] = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} z_i \right] \\
= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[z_i] \\
= \bar{R}(f)
\]

By the Hoeffding’s inequality (Corollary 2.1) for a single hypothesis \(f \in F \), we have:

\[
P\left[\left| \hat{R}(\hat{f}) - \bar{R}(f) \right| \geq \varepsilon \right] \leq 2e^{-2n\varepsilon^2}
\]
By applying the union bound for all k functions in \mathcal{F} and by Hoeffding’s inequality (Corollary 2.1), we have:

$$P \left(\exists f \in \mathcal{F} \mid \left| \hat{R}(f) - R(f) \right| \geq \varepsilon \right) = P \left(\bigcup_{f \in \mathcal{F}} \left| \hat{R}(f) - R(f) \right| \geq \varepsilon \right)$$

$$\leq \sum_{f \in \mathcal{F}} P \left(\left| \hat{R}(f) - R(f) \right| \geq \varepsilon \right)$$

$$\leq 2ke^{-2n\varepsilon^2}$$

Equivalently:

$$P \left(\forall f \in \mathcal{F} \mid \left| \hat{R}(f) - R(f) \right| < \varepsilon \right) = P \left(\bigcap_{f \in \mathcal{F}} \left| \hat{R}(f) - R(f) \right| < \varepsilon \right)$$

$$= 1 - P \left(\exists f \in \mathcal{F} \mid \left| \hat{R}(f) - R(f) \right| \geq \varepsilon \right)$$

$$\geq 1 - 2ke^{-2n\varepsilon^2} \quad (1)$$

Let $\delta = 2ke^{-2n\varepsilon^2}$, then $\varepsilon = \sqrt{\frac{\log k + \log (2/\delta)}{2n}}$. Finally since \hat{f} minimizes \hat{R} we know that $\hat{R}(\hat{f}) \leq \hat{R}(\mathcal{F})$. From eq. (1) and the above, we have:

$$\hat{R}(f) - R(\mathcal{F}) < \hat{R}(\hat{f}) + \varepsilon - \hat{R}(\mathcal{F}) + \varepsilon$$

$$\leq 2\varepsilon$$

which proves our claim. \hfill \square

Expressions of the form of eq. (1) are called uniform convergence.

4 Exercises

a) Assume that $\mathcal{X} = \mathbb{R}^p$ for some number of features p. As in binary classification, assume that $\mathcal{Y} = \{-1, +1\}$. First, assume that \mathcal{F} is the set of linear classifier functions of the form:

$$f(x) = \begin{cases} +1 & \text{if } \langle w, x \rangle \geq 0 \\ -1 & \text{if } \langle w, x \rangle < 0 \end{cases}$$

for some $w \in \{-1, 0, +1\}^p$. How many vectors w are in the set $\{-1, 0, +1\}^p$? In other words, what is k in Theorem 2.1? Now, assume that \mathcal{F} is the set of linear classifier functions where $w \in \{-1, 0, +1\}^p$ and where w has at most s non-zero elements, for some fixed value s. What is k in Theorem 2.1?

b) Assume that \mathcal{A} is an event that depends on a random variable x. Fix a, b and $\delta \in (0, 1)$. Assume that $P[\mathcal{A}(a)] \leq \delta$ and $P[\mathcal{A}(b)] \leq \delta$. Furthermore, assume that if not $\mathcal{A}(a)$ and not $\mathcal{A}(b)$ then $(\forall x \in [a, b])$ not $\mathcal{A}(x)$. Find c in the expression $P[(\forall x \in [a, b])$ not $\mathcal{A}(x)] \geq c$.

4