10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton’s method
- self-concordant functions
- implementation
Unconstrained minimization

minimize \(f(x) \)

- \(f \) convex, twice continuously differentiable (hence \(\text{dom} \ f \) open)
- we assume optimal value \(p^* = \inf_x f(x) \) is attained (and finite)

unconstrained minimization methods

- produce sequence of points \(x^{(k)} \in \text{dom} \ f, \ k = 0, 1, \ldots \) with
 \[
 f(x^{(k)}) \to p^* \quad \text{as } k \to \infty
 \]
 \(x^{(0)}, x^{(1)}, \ldots \) is a minimizing sequence to the problem
 Algorithm stops when \(f(x^{(k)}) - p^* \leq \varepsilon \), for some tolerance \(\varepsilon > 0 \)

- can be interpreted as iterative methods for solving optimality condition
 \[
 \nabla f(x^*) = 0
 \]
Strong convexity and implications

f is strongly convex on S if there exists an $m > 0$ such that

$$\nabla^2 f(x) \succeq mI \quad \text{for all } x \in S$$

implications

• for $x, y \in S$,

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|x - y\|^2$$

hence, S is bounded

Assume f is twice differentiable

By Taylor’s theorem, there exists a z in the line segment from x to y such that

$$f(y) = f(x) + df(x)'(y-x) + \frac{1}{2} (y-x)' d^2 f(z) (y-x)$$

$$\geq f(x) + df(x)'(y-x) + \frac{1}{2} (y-x)' (m I) (y-x) \quad \text{... since } f \text{ is strongly convex}$$

$$= f(x) + df(x)'(y-x) + \frac{1}{2} m |y-x|_2^2$$

(Taylor’s theorem is a generalization of the mean value theorem, and is very related to, but is not exactly the same as Taylor series)
Descent methods

\[x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with} \quad f(x^{(k+1)}) < f(x^{(k)}) \]

- other notations: \(x^+ = x + t \Delta x \), \(x := x + t \Delta x \)
- \(\Delta x \) is the step, or search direction; \(t \) is the step size, or step length
- from convexity, \(f(x^+) < f(x) \) implies \(\nabla f(x)^T \Delta x < 0 \) (i.e., \(\Delta x \) is a descent direction)

General descent method.

given a starting point \(x \in \text{dom } f \).

repeat

1. Determine a descent direction \(\Delta x \). \text{(Each algorithm has its own way for choosing \(\Delta x \))}
2. **Line search.** Choose a step size \(t > 0 \).
3. **Update.** \(x := x + t \Delta x \).

until stopping criterion is satisfied.
Line search types

exact line search: \(t = \text{argmin}_{t>0} f(x + t\Delta x) \)

backtracking line search *(with parameters \(\alpha \in (0, 1/2), \beta \in (0, 1) \))*

- starting at \(t = 1 \), repeat \(t := \beta t \) until

\[
f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x
\]

(Armijo–Goldstein condition)

Since \(\Delta x \) is a descent direction (see previous slide) then \(df(x)\Delta x < 0 \)

For small \(t \), we have:

\[
f(x + t \Delta x) \approx f(x) + t df(x)\Delta x < f(x) + \alpha t df(x)\Delta x
\]

Thus, the procedure will eventually terminate.
Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \text{dom } f$.

repeat

1. $\Delta x := -\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

• stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$

• convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \leq c^k(f(x^{(0)}) - p^*)$$

(linear convergence, details later)

$c \in (0, 1)$ depends on $m, x^{(0)}$, line search type

• very simple, but often very slow; rarely used in practice
quadratic problem in \mathbb{R}^2

$$f(x) = \left(\frac{1}{2}\right)(x_1^2 + \gamma x_2^2) \quad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \quad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$:
nonquadratic example

\[f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1} \]
a problem in \mathbb{R}^{100}

$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

‘linear’ convergence, i.e., a straight line on a semilog plot
Steepest descent method

normalized steepest descent direction (at x, for norm $\| \cdot \|$):

$$\Delta x_{nsd} = \arg\min \{ \nabla f(x)^T v \mid \|v\| = 1 \}$$

interpretation: for small v, $f(x + v) \approx f(x) + \nabla f(x)^T v$;
direction Δx_{nsd} is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\Delta x_{sd} = \|\nabla f(x)\| \Delta x_{nsd}$$

steepest descent method

- general descent method with $\Delta x = \Delta x_{sd}$
- convergence properties similar to gradient descent
examples

• Euclidean norm: \(\Delta x_{\text{sd}} = -\nabla f(x) \)

• quadratic norm \(\|x\|_P = (x^T P x)^{1/2} \) \((P \in \mathbb{S}_++^n) \): \(\Delta x_{\text{sd}} = -P^{-1}\nabla f(x) \)

• \(\ell_1 \)-norm: \(\Delta x_{\text{sd}} = -(\partial f(x)/\partial x_i)e_i \), where \(|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_\infty \)

unit balls and normalized steepest descent directions for a quadratic norm and the \(\ell_1 \)-norm:

\[\begin{array}{c}
\Delta x_{\text{nsd}} \\
\Delta x_{\text{nsd}}
\end{array} \]
choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show \(\{ x \mid \| x - x^{(k)} \|_P = 1 \} \)
- equivalent interpretation of steepest descent with quadratic norm \(\| \cdot \|_P \): gradient descent after change of variables \(\bar{x} = P^{1/2} x \)

ellipses “align” better with objective function thus convergence is faster

See Figure 9.13

shows choice of \(P \) has strong effect on speed of convergence

Unconstrained minimization
Newton step
(Uses the Hessian as a good ellipse, see previous slide)

\[\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x) \]

interpretations

• \(x + \Delta x_{nt} \) minimizes second order approximation

\[\hat{f}(x + v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v \]

• \(x + \Delta x_{nt} \) solves linearized optimality condition

\[\nabla f(x + v) \approx \nabla \hat{f}(x + v) = \nabla f(x) + \nabla^2 f(x) v = 0 \]
• Δx_{nt} is steepest descent direction at x in local Hessian norm

\[\|u\|\nabla^2 f(x) = (u^T \nabla^2 f(x) u)^{1/2} \]

Let $H = d^2 f(x)$
\[d = df(x) \]
From slide 10-11 we have:

\[\begin{align*}
\text{min } d'u \\
\text{s.t. } u' H u = 1
\end{align*} \]

Let $u = H^{-1/2} s$

\[\begin{align*}
\text{min } (H^{-1/2} d)'s \\
\text{s.t. } s's = 1
\end{align*} \]

\[\begin{align*}
L(s,v) &= (H^{-1/2} d)'s + v (s's - 1) \\
dL/ds &= H^{-1/2} d + 2v s = 0 \\
s^* &= -1/(2v) H^{-1/2} d
\end{align*} \]

Then:
\[\begin{align*}
u^* &= H^{-1/2} s^* \\
&= -1/(2v) H^{-1/2} d
\end{align*} \]

which is the direction of Δx_{nt}!

Dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x) v = 1\}$

Arrow shows $- \nabla f(x)$
Newton decrement

\[\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2} \]

a measure of the proximity of \(x \) to \(x^* \)

properties

• gives an estimate of \(f(x) - p^* \), using quadratic approximation \(\hat{f} \):

\[f(x) - \inf_y \hat{f}(y) = \frac{1}{2} \lambda(x)^2 \]

Let \(H = d^2 f(x) \)
\[
\begin{align*}
 d &= df(x) \\
 \lambda &= \lambda(x) \\
 \Delta x &= \Delta x_{nt} = -H^{-1} d \\
\end{align*}
\]

\[
\begin{align*}
 \inf_y f^\wedge(y) &= f^\wedge(x + \Delta x) \\
 &= f(x) + d' \Delta x + \frac{1}{2} \Delta x' H \Delta x \\
 &= f(x) - \frac{1}{2} d' H^{-1} d \\
\end{align*}
\]

\[f(x) - \inf_y f^\wedge(y) = \frac{1}{2} d' H^{-1} d = \frac{1}{2} \lambda^2 \]

Thus \(\lambda = \sqrt{d' H^{-1} d} \)
Newton’s method

given a starting point \(x \in \text{dom } f \), tolerance \(\epsilon > 0 \).

repeat

1. Compute the Newton step and decrement.
 \[
 \Delta x_{\text{nt}} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).
 \]

2. Stopping criterion. quit if \(\lambda^2 / 2 \leq \epsilon \).

3. Line search. Choose step size \(t \) by backtracking line search.

4. Update. \(x := x + t \Delta x_{\text{nt}} \).

affine invariant, \(i.e. \), independent of linear changes of coordinates:

Newton iterates for \(\tilde{f}(y) = f(Ty) \) with starting point \(y^{(0)} = T^{-1}x^{(0)} \) are

\[
y^{(k)} = T^{-1}x^{(k)}
\]

\[
x = Ty
\]

Let \(Hf\sim(y) = d^2 f\sim(y) \)

\[
\Delta y = -Hf\sim(y)^{-1} df(y) = - (T' Hf(x) T)^{-1} T' df(x)
\]

\[
df\sim(y) = T' df(Ty) = T' df(x)
\]

\[
Hf\sim(y) = T' Hf(Ty) T = T' Hf(x) T
\]

\[
y^{(k)} = y + \Delta y = T^{-1} (x + \Delta x) = T^{-1} x^{(k)}
\]
Classical convergence analysis

assumptions

• f strongly convex on S with constant m
• $\nabla^2 f$ is Lipschitz continuous on S, with constant $L > 0$:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq L\|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L), \gamma > 0$ such that

• if $\|\nabla f(x)\|_2 \geq \eta$, then $f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma$
• if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2}\|\nabla f(x^{(k+1)})\|_2 \leq \left(\frac{L}{2m^2}\|\nabla f(x^{(k)})\|_2\right)^2$$
damped Newton phase \((\|\nabla f(x)\|_2 \geq \eta)\)

- most iterations require backtracking steps
- function value decreases by at least \(\gamma\)
- if \(p^* > -\infty\), this phase ends after at most \((f(x^{(0)}) - p^*)/\gamma\) iterations

quadratically convergent phase \((\|\nabla f(x)\|_2 < \eta)\)

- all iterations use step size \(t = 1\)
- \(\|\nabla f(x)\|_2\) converges to zero quadratically: if \(\|\nabla f(x^{(k)})\|_2 < \eta\), then

\[
\frac{L}{2m^2}\|\nabla f(x^l)\|_2 \leq \left(\frac{L}{2m^2}\|\nabla f(x^k)\|_2\right)^{2^{l-k}} \leq \left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k
\]
Conclusion: The number of iterations until $f(x) - p^* \leq \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ, ϵ_0 are constants that depend on $m, L, x^{(0)}$
- Second term is small (of the order of 6) and almost constant for practical purposes
- In practice, constants m, L (hence γ, ϵ_0) are usually unknown
- Provides qualitative insight in convergence properties (i.e., explains two algorithm phases)
Examples

example in \mathbb{R}^2 (page 10–9)

- backtracking parameters $\alpha = 0.1, \beta = 0.7$
- converges in only 5 steps
- quadratic local convergence

Unconstrained minimization
example in \mathbb{R}^{100} (page 10–10)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbb{R}^{10000} (with sparse a_i)

$$f(x) = -\sum_{i=1}^{10000} \log(1 - x_i^2) - \sum_{i=1}^{100000} \log(b_i - a_i^T x)$$

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples
Self-concordance

shortcomings of classical convergence analysis

• depends on unknown constants \((m, L, \ldots)\)
• bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

• does not depend on any unknown constants
• gives affine-invariant bound
• applies to special class of convex functions (‘self-concordant’ functions)
• developed to analyze polynomial-time interior-point methods for convex optimization
Self-concordant functions

definition

- convex $f : \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if $|f'''(x)| \leq 2f''(x)^{3/2}$ for all $x \in \text{dom } f$

- $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is self-concordant if $g(t) = f(x + tv)$ is self-concordant for all $x \in \text{dom } f$, $v \in \mathbb{R}^n$

examples on \mathbb{R}

- linear and quadratic functions

- negative logarithm $f(x) = -\log x$

- negative entropy plus negative logarithm: $f(x) = x \log x - \log x$

affine invariance: if $f : \mathbb{R} \rightarrow \mathbb{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$
\tilde{f}'''(y) = a^3 f'''(ay + b), \quad \tilde{f}''(y) = a^2 f''(ay + b)
$$
Self-concordant calculus

properties

• preserved under positive scaling $\alpha \geq 1$, and sum
• preserved under composition with affine function
• if g is convex with $\text{dom} \, g = \mathbb{R}_{++}$ and $|g'''(x)| \leq 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

• $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$ on $\{x \mid a_i^T x < b_i, \, i = 1, \ldots, m\}$
• $f(X) = -\log \det X$ on \mathbb{S}_{++}^n
• $f(x) = -\log(y^2 - x^T x)$ on $\{(x, y) \mid \|x\|_2 < y\}$
Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

- if $\lambda(x) > \eta$, then
 \[f(x^{(k+1)}) - f(x^{(k)}) \leq -\gamma \]
- if $\lambda(x) \leq \eta$, then
 \[2\lambda(x^{(k+1)}) \leq \left(2\lambda(x^{(k)})\right)^2 \]

(η and γ only depend on backtracking parameters α, β)

complexity bound: number of Newton iterations bounded by

\[\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(1/\epsilon) \]

for $\alpha = 0.1$, $\beta = 0.8$, $\epsilon = 10^{-10}$, bound evaluates to $375(f(x^{(0)}) - p^*) + 6$
numerical example: 150 randomly generated instances of

\[
\text{minimize } f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)
\]

- \(\bigcirc\): \(m = 100, n = 50\)
- \(\square\): \(m = 1000, n = 500\)
- \(\diamondsuit\): \(m = 1000, n = 50\)

- number of iterations much smaller than \(375(f(x^{(0)}) - p^*) + 6\)
- bound of the form \(c(f(x^{(0)}) - p^*) + 6\) with smaller \(c\) (empirically) valid
Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

\[H \Delta x = -g \]

where \(H = \nabla^2 f(x), \ g = \nabla f(x) \)

via Cholesky factorization

\[H = LL^T, \quad \Delta x_{nt} = -L^{-T}L^{-1}g, \quad \lambda(x) = \|L^{-1}g\|_2 \]

- cost \((1/3)n^3 \) flops for unstructured system
- cost \(\ll (1/3)n^3 \) if \(H \) sparse, banded
example of dense Newton system with structure

\[f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \quad H = D + A^T H_0 A \]

- assume \(A \in \mathbb{R}^{p \times n} \), dense, with \(p \ll n \)
- \(D \) diagonal with diagonal elements \(\psi_i''(x_i) \); \(H_0 = \nabla^2 \psi_0(Ax + b) \)

method 1: form \(H \), solve via dense Cholesky factorization: (cost \((1/3)n^3\))

method 2 (page 9–15): factor \(H_0 = L_0L_0^T \); write Newton system as

\[D\Delta x + A^T L_0 w = -g, \quad L_0^T A\Delta x - w = 0 \]

eliminate \(\Delta x \) from first equation; compute \(w \) and \(\Delta x \) from

\[(I + L_0^T AD^{-1} A^T L_0)w = -L_0^T AD^{-1} g, \quad D\Delta x = -g - A^T L_0 w \]

cost: \(2p^2n \) (dominated by computation of \(L_0^T AD^{-1} A^T L_0 \))