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B Trust Region Methods

I showed previously that line search methods & trust region

methods both generate steps based on a quadratic model of the

objective function but that they use the model in di↵erent ways.

• In Ch. 4.2 I showed that line search methods use the quadratic

model to generate a search direction & then focus on finding a

suitable step length ↵ along this direction.

• On the other hand, trust region methods define a region round

the current point within which they trust the model to be an

adequate representation of the objective function and then

choose the step to be the (approximate) minimiser of the model

in this trust region. (A more conservative approach.)
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Taken from http://jkcray.maths.ul.ie/ms4327/Slides.pdf                                                                     Annotated by Jean Honorio jhonorio@purdue.edu
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As  seen  before,   for  the  Newton  method,  we  used
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contours of mk
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Figure 34: Trust-region vs. line-search methods
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Obviously, the size of the trust region is crucial. Too small a region

means a missed opportunity to take a large step while too large a

region may mean a minimiser far from the minimiser of the

objective function in the region.

Fig. 34 shows the trust region approach on a function f (based on

Rosenbrock’s function — a “banana-shaped valley”). For a more

concrete example see Example A.1 and in particular Figure 24.

I will assume that the first two terms of the quadratic model

function mk at each iterate xk are identical to the first two terms of

the Taylor Series expansion of f around xk . I have

mk(p) = fk + gk
Tp+

1

2
pTBkp, (B.1)

where Bk is some (as yet unspecified) symmetric matrix.
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Comparing with the second-order Taylor Series expansion (3.10),

the di↵erence between mk(p) and f(xk + p) is O(kpk2).

The natural choice for Bk is the exact Hessian r2fk . For the

moment I make no assumptions about Bk except

• Bk symmetric

• kBkk  M for all k — M some positive constant.

– which means that the largest eigenvalue of Bk is bounded

by M for all k if I use the (Euclidean) 2-norm.

At each iteration, I seek a solution of the subproblem,

min
p2Rn

mk(p) = fk + gk
Tp+

1

2
pTBkp s.t. kpk  �k, (B.2)

where �k is the trust region radius.
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We have seen this problem in
Slide 5-14 (Boyd & Vandenberghe)
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• For the moment, I will use the 2-norm; so the trust region is a

ball centred at xk , radius �k.

• If Bk is positive definite and the Newton direction

pk
B = -Bk

-1gk has norm  �k, the solution of Eq. B.2 is just

the unconstrained minimum to the subproblem, (B.2).

• In this case I call pk
B the full step.

• In other cases it is not so easy to find an approximate solution

to (B.2).
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B.1 Outline of the Algorithm

• The first decision to make is the strategy for choosing the trust

region radius �k at each iteration.

• I base the strategy on the agreement between the model

function mk and the objective function f at previous iterations.

• Given a step pk , I define the ratio

rk =
f(xk)- f(xk + pk)

mk(0)-mk(pk)
=

actual reduction

predicted reduction
. (B.3)

• Note that since the step pk is found by minimising the model

mk over a region that includes the step p = 0, the predicted

reduction is always non-negative.
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• So, if rk < 0, the new objective value f(xk + pk) is greater than

the current value f(xk), so the step must be rejected.

• On the other hand, if rk ⇡ 1 then the quadratic model is a

good approximation to f — so take the step to a new point and

expand the trust region radius about the new point, confident

that I can trust the quadratic model there too.

• If rk is positive but much less than 1, I take the step but leave

the radius unchanged.

• Finally, if rk is close to zero or negative, I shrink the trust

region radius, “stay where I am” and calculate a new step.
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The following algorithm describes the process.
Algorithm B.1 (Trust Region)

(1) begin

(2) Choose

¯� > 0, �0 2 (0, ¯�), ⌘ 2 [0, 1
4

) and kmax

(3) k  0

(4) while k < kmax do

(5) Find pk by (approximately) solving B.2.

(6) Evaluate rk from B.3.

(7) if rk < 1
4

(8) then �k+1  
1
4

kpkk
(9) else

(10) if rk > 3
4

& kpkk = �k

(11) then �k+1  min(2�k, ¯�)

(12) else

(13) �k+1  �k
(14) fi

(15) fi

(16) if rk > ⌘ then xk+1  xk + pk
(17) else xk+1  xk
(18) fi

(19) k  k + 1

(20) end (while)

(21) end

To turn this into a practical algorithm, I need to focus on solving

the quadratic subproblem (B.2).
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B.2 The Cauchy Point and Variants

In this Section I first describe how to find the Cauchy point — the

most easily calculated approximate solution to the quadratic

subproblem (B.2) — and then some algorithms that improve

significantly on it.

B.2.1 Cauchy Point

I saw in the previous Chapter that a line search doesn’t need to

take the optimal step for the method to be globally convergent. In

the same way, for a trust region method, it is enough for global

convergence purposes to find an approximate solution pk that lies

in the trust region and gives a su�cient reduction in the value of

the model function.
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As    we    have    seen    previously,
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This su�cient reduction can be expressed using as a benchmark

the Cauchy point which I refer to as pc
k and define using the

following simple steps:

1. Find the vector ps
k which minimises a linear version of mk ,

i.e.

ps
k = arg min

p2Rn
fk + gk

Tp, such that kpk  �k. (B.4)

Clearly ps
k is not the “right answer” but a poor approximation

to it, so:

2. Calculate the scalar ⌧k > 0 that minimises the full quadratic

mk(⌧ps
k), subject to satisfying the trust region bound, i.e.

⌧k = argmin
⌧>0

mk(⌧p
s
k), such that k⌧ps

kk  �k. (B.5)

3. Set pc
k = ⌧kp

s
k.
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Trust Region

contours of mk

-gk

pc
k

Figure 35: The Cauchy point
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p^s_k   and   p^c_k   point in the direction of the negative gradient: -g_k
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In summary,

pc
k = -⌧k

�k

kgk k
gk , (B.7)

where

⌧k =

8
<

:
1 if gk

TBkgk  0 ;

min
�
1, kgk k3/(�kgk

TBkgk )
�

otherwise.
(B.8)
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Lets remove the index k for clarity

FOR FINDING p^s in (B.4):

Primal problem:   min g’ p,    s.t.    ½ p’ p ≤ ½ Δ^2

L(p,λ) = g’ p + ½ λ p’ p - ½ λ Δ^2
dL/dp = g + λ p = 0
p^s = -1/λ g

2G(λ) = 2L(p^s,λ) = -2/λ g’ g + 1/λ g’ g - λ Δ^2 = -2/λ g’ g - λ Δ^2

Dual problem:   max 2G(λ)   s.t.   λ ≥ 0

2dG/dλ = 1/λ^2 g’ g - Δ^2 = 0
λ = |g| / Δ
which fulfills λ ≥ 0

Finally: p^s = -1/λ g = -Δ g / |g|

Note that |p^s| = Δ
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In summary,

pc
k = -⌧k

�k

kgk k
gk , (B.7)

where

⌧k =

8
<

:
1 if gk

TBkgk  0 ;

min
�
1, kgk k3/(�kgk

TBkgk )
�

otherwise.
(B.8)
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Recall m(p) = f + g’ p + ½ p’ B p,     and that   p^s = -Δ g / |g|

FOR FINDING p^c in (B.5):

Primal problem:   min m(τ p^s) = τ g’ p^s + ½ τ^2 p^s’ B p^s
                             s.t.   τ | p^s | ≤ Δ

Since |p^s| = Δ, then   τ ≤ 1   and recall that   τ > 0

The problem is quadratic and one-dimensional.
Can be either concave p^s’ B p^s ≤ 0,    or convex  p^s’ B p^s > 0

Furthermore, note that    p^s’ B p^s = c g’ B g,     for    c = Δ^2 / |g|^2 > 0
Thus   g’ B g   controls whether   p^s’ B p^s   is positive or not

We put everything together in the next slide.
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I can write a closed-form definition of the Cauchy point. The

solution to (B.4) is just

ps
k = -

�k

kgk k
gk , (B.6)

To calculate ⌧k explicitly, consider the cases gk
TBkgk  0 and

gk
TBkgk > 0 separately.

• In the first case, the function mk(⌧ps
k) decreases monotonically

with positive ⌧ provided gk 6= 0. (Can you explain why? See

Ex. 4.) So ⌧k is just the largest value that satisfies the trust

region bound, namely ⌧k = 1.

• In the second case, mk(⌧ps
k) is a convex quadratic in ⌧, so ⌧k is

either the unconstrained minimiser of mk(⌧ps
k),

⌧k =
1

�k

kgk k3

gk
TBkgk

; or the boundary value 1, whichever is

smaller.
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Recall that:
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In summary,

pc
k = -⌧k

�k

kgk k
gk , (B.7)

where

⌧k =

8
<

:
1 if gk

TBkgk  0 ;

min
�
1, kgk k3/(�kgk

TBkgk )
�

otherwise.
(B.8)
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• The Cauchy point is quick to calculate — no linear systems

have to be solved — and is crucial in deciding whether an

approximate solution to the trust region subproblem is

acceptable.

• I will show later (Section B.3) that a trust region method is

globally convergent if its steps pk attain a su�cient reduction

in mk , i.e. they give a reduction in mk that is at least some

fixed multiple of the decrease attained by the Cauchy step at

each iteration.

• So the Cauchy point algorithm provides a benchmark against

which other methods can be evaluated.
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It   can   be   formally   shown   that   the

spongebob
Improvements include the dogleg method and 2-dimensional subspace
minimization (See Chapter 4 of Nocedal & Wright)
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