Computational Methods in Optimization
Spring 2016, Subgradient methods
Jean Honorio jhonorio@purdue.edu

1 Subgradient descent method

For brevity, everywhere differentiable functions will be called smooth. Similarly, not everywhere differentiable functions will be called nonsmooth.

First, we define Lipschitz continuity.

Definition 1 (Lipschitz continuity). A function $\phi : \mathbb{R}^p \to \mathbb{R}$ is called K-Lipschitz continuous with respect to the norm $\| \cdot \|$ if and only if there is a constant $K < +\infty$ such that

$$(\forall x, u \in \mathbb{R}^p) \ |\phi(x) - \phi(u)| \leq K \|x - u\|$$

A smooth function $\phi : \mathbb{R}^p \to \mathbb{R}$ is called K-Lipschitz continuous with respect to the norm $\| \cdot \|$ if and only if there is a constant $K < +\infty$ such that

$$(\forall x \in \mathbb{R}^p) \ \|\nabla \phi(x)\| \leq K$$

Recall that the gradient of a smooth convex function $\phi : \mathbb{R}^p \to \mathbb{R}$ at x fulfills:

$$(\forall u \in \mathbb{R}^p) \ \phi(u) - \phi(x) \geq \langle \nabla \phi(x), u - x \rangle$$

Definition 2 (Subgradient). For a (possibly nonsmooth) convex function $\phi : \mathbb{R}^p \to \mathbb{R}$, we can define a subdifferential set as follows:

$$\partial \phi(x) = \{ g \mid (\forall u \in \mathbb{R}^p) \ \phi(u) - \phi(x) \geq \langle g, u - x \rangle \}$$

Each element $g \in \partial \phi(x)$ is called a subdifferential or subgradient of ϕ at x.

Clearly, in the above definition, if $\phi : \mathbb{R}^p \to \mathbb{R}$ is smooth, then $\partial \phi(x)$ has a single element for every $x \in \mathbb{R}^p$. If $\partial \phi(x)$ is nonsmooth there exist some $x \in \mathbb{R}^p$ for which $\partial \phi(x)$ has more than one element.

Consider for instance the nonsmooth function $\phi(w) = |w|$ where $w \in \mathbb{R}$. By Definition 2, we have:

$$\partial \phi(0) = \{ g \mid (\forall u \in \mathbb{R}) \ |u| \geq g \ u \}$$

Thus, clearly $\partial \phi(0) = [-1, +1]$.

1
Now, consider the following optimization problem where \(f : \mathbb{R}^p \to \mathbb{R} \) is convex and \(K \)-Lipschitz with respect to the \(\ell_2 \)-norm:

\[
\hat{x} = \arg \min_{x \in \mathbb{R}^p} f(x) \quad (1)
\]

Let \(\eta_t \) be the step size at iteration \(t \geq 1 \). Specifically, let \(\beta \) be a constant factor and define:

\[
\eta_t = \frac{\beta}{K \sqrt{t}}
\]

Consider the next subgradient descent algorithm for solving the above problem:

Algorithm 1 Subgradient descent algorithm

Input: Number of iterations \(T \geq 1 \), factor \(\beta > 0 \), initial point \(x^{(1)} \in \mathbb{R}^p \) (The setting of \(x^{(1)} \) can be uninformed, e.g., \(x^{(1)} = 0 \))

for \(t = 1 \ldots T - 1 \) **do**

\(x^{(t+1)} \leftarrow x^{(t)} - \eta_t g^{(t)} \) where \(g^{(t)} \in \partial f(x^{(t)}) \)

end for

Output: \(\tilde{x}^{(T)} \leftarrow \frac{\sum_{t=1}^{T} \eta_t x^{(t)}}{\sum_{t=1}^{T} \eta_t} \)

2 Convergence analysis

In what follows, we state our main result regarding convergence rates for Algorithm 1.

Theorem 1 (Adapted from [1]). Assume that \(f : \mathbb{R}^p \to \mathbb{R} \) is convex and \(K \)-Lipschitz with respect to the \(\ell_2 \)-norm in the problem of eq. (1). Recall that \(\tilde{x} \) is the optimal solution of the problem of eq. (1). Assume that Algorithm 1 runs for a number of iterations \(T \), factor \(\beta \) and initial point \(x^{(1)} \), and that the algorithm outputs \(\tilde{x}^{(T)} \). We have:

\[
f(\tilde{x}^{(T)}) - f(\tilde{x}) \leq \frac{K\|x^{(1)} - \tilde{x}\|_2^2}{4\beta(\sqrt{T} - 1)} + \frac{\beta K(1 + \log T)}{4(\sqrt{T} - 1)}
\]

Proof. Let \(d^{(t)} = \|x^{(t)} - \tilde{x}\|_2^2 \). Note that since \(g^{(t)} \in \partial f(x^{(t)}) \), by Definition 2 we have:

\[
f(\tilde{x}) - f(x^{(t)}) \geq \langle g^{(t)}, \tilde{x} - x^{(t)} \rangle
\]
In fact, the above holds \(\forall \hat{x} \in \mathbb{R}^p \) but in our problem we care about a unique \(\hat{x} \).

By the Lipschitz continuity of \(f \), we know that (\(\forall t \)) \(\| g(t) \|_2 \leq K \). Therefore:

\[
a^{(t+1)} = \| x^{(t+1)} - \hat{x} \|_2^2 \\
= \| (x^{(t)} - \hat{x}) - \eta_t g^{(t)} \|_2^2 \\
= \| x^{(t)} - \hat{x} \|_2^2 - 2\eta_t (g^{(t)}, x^{(t)} - \hat{x}) + \eta_t^2 \| g^{(t)} \|_2^2 \\
\leq a^{(t)} + 2\eta_t \left(f(\hat{x}) - f(x^{(t)}) \right) + \eta_t^2 K^2
\]

Reorganizing the above, we obtain:

\[
\eta_t \left(f(x^{(t)}) - f(\hat{x}) \right) \leq \frac{1}{2} \left(a^{(t)} - a^{(t+1)} + \eta_t^2 K^2 \right)
\]

Summing over \(t \), we get:

\[
\sum_{t=1}^T \eta_t \left(f(x^{(t)}) - f(\hat{x}) \right) \leq \frac{1}{2} \sum_{t=1}^T \left(a^{(t)} - a^{(t+1)} + \eta_t^2 K^2 \right) \\
= \frac{1}{2} \left(a^{(1)} - a^{(T+1)} + K^2 \sum_{t=1}^T \eta_t^2 \right) \\
\leq \frac{1}{2} \left(\| x^{(1)} - \hat{x} \|_2^2 + \beta^2 \sum_{t=1}^T \frac{1}{t} \right) \\
\leq \frac{1}{2} \left(\| x^{(1)} - \hat{x} \|_2^2 + \beta^2 (1 + \log T) \right)
\]

where we used the fact that \(\sum_{t=1}^T 1/t \leq 1 + \log T \). By Jensen’s inequality and convexity of \(f \), we have:

\[
f(\bar{x}(T)) - f(\hat{x}) = f \left(\frac{\sum_{t=1}^T \eta_t x^{(t)}}{\sum_{t=1}^T \eta_t} \right) - f(\hat{x}) \\
\leq \frac{\sum_{t=1}^T \eta_t f(x^{(t)})}{\sum_{t=1}^T \eta_t} - f(\hat{x}) \\
= \frac{\sum_{t=1}^T \eta_t (f(x^{(t)}) - f(\hat{x}))}{\sum_{t=1}^T \eta_t} \\
= \frac{\sum_{t=1}^T \eta_t (f(x^{(t)}) - f(\hat{x}))}{\sum_{t=1}^T \eta_t} \cdot \frac{1}{\sqrt{T}} \\
\leq \frac{1}{2} \left(\| x^{(1)} - \hat{x} \|_2^2 + \beta^2 (1 + \log T) \right) \cdot \frac{2 \beta}{K (\sqrt{T} - 1)}
\]

where we used the fact that \(2(\sqrt{T} - 1) \leq \sum_{t=1}^T 1/\sqrt{t} \). This proves our claim. \(\square \)
3 A more general setting?

Now, consider the following optimization problem where \(f, r : \mathbb{R}^p \to \mathbb{R} \) are convex and \(K \)-Lipschitz with respect to the \(\ell_2 \)-norm:

\[
\hat{x} = \arg \min_{x \in \mathbb{R}^p} f(x) + r(x)
\]

Consider the next subgradient descent algorithm for solving the above problem:

Algorithm 2 Subgradient descent algorithm

<table>
<thead>
<tr>
<th>Input:</th>
<th>Number of iterations (T \geq 1), factor (\beta > 0), initial point (x^{(1)} \in \mathbb{R}^p) (The setting of (x^{(1)}) can be uninformed, e.g., (x^{(1)} = 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>for (t = 1 \ldots T - 1) do</td>
<td>(x^{(t+1/2)} \leftarrow x^{(t)} - \eta_t g^{(t)}) where (g^{(t)} \in \partial f(x^{(t)}))</td>
</tr>
<tr>
<td></td>
<td>(x^{(t+1)} \leftarrow \arg \min_{x \in \mathbb{R}^p} \left(\frac{1}{2} | x - x^{(t+1/2)} |^2 + \eta_{t+1} r(x) \right))</td>
</tr>
<tr>
<td>end for</td>
<td></td>
</tr>
<tr>
<td>Output:</td>
<td>(\tilde{x}^{(T)} \leftarrow \frac{\sum_{t=1}^{T} \eta_t x^{(t)}}{\sum_{t=1}^{T} \eta_t})</td>
</tr>
</tbody>
</table>

Before going into more general observations, let's first consider an example in order to show the usefulness of the above.

Sparse optimization example. Let \(r(x) = \lambda \| x \|_1 \). In this case, the second assignment reduces to \(p \) independent assignments of the form:

\[
(\forall j = 1, \ldots, p) \quad x_j^{(t+1)} \leftarrow \arg \min_{x_j \in \mathbb{R}} \left(\frac{1}{2} (x_j - x_j^{(t+1/2)})^2 + \eta_{t+1} \lambda |x_j| \right)
\]

\[
\leftarrow \text{sgn} \left(x_j^{(t+1/2)} \right) \max \left(0, |x_j^{(t+1/2)}| - \eta_{t+1} \lambda \right)
\]

While the Algorithm 2 might look like a drastic generalization of Algorithm 1, in fact it is not. Note that:

\[
x^{(t+1)} = \arg \min_{x \in \mathbb{R}^p} \left(\frac{1}{2} \| x - x^{(t+1/2)} \|^2 + \eta_{t+1} r(x) \right)
\]

Recall that \(g^{(t)} \in \partial f(x^{(t)}) \) and let \(s^{(t)} \in \partial r(x^{(t)}) \). Note that \(x^{(t+1)} \) is optimal if and only if \(0 \) belongs to the subdifferential set of eq.(3) evaluated at \(x^{(t+1)} \):

\[
0 \in \partial \left(\frac{1}{2} \| x - x^{(t+1/2)} \|^2 + \eta_{t+1} r(x) \right) \bigg|_{x = x^{(t+1)}}
\]

\[
0 \in \left(x - x^{(t+1/2)} + \eta_{t+1} \partial r(x) \right) \bigg|_{x = x^{(t+1)}}
\]

\[
0 = x^{(t+1)} - x^{(t+1/2)} + \eta_{t+1} s^{(t+1)}
\]

\[
= x^{(t+1)} - x^{(t)} + \eta_t g^{(t)} + \eta_{t+1} s^{(t+1)}
\]

4
Reorganizing the above, we obtain:

\[x^{(t+1)} = x^{(t)} - \eta_t g^{(t)} - \eta_{t+1}s^{(t+1)} \]

which looks a lot like a regular subgradient descent step.

4 Exercise

Prove convergence of Algorithm 2.

References