2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities
Affine set

line through x_1, x_2: all points

\[x = \theta x_1 + (1 - \theta)x_2 \quad (\theta \in \mathbb{R}) \]

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{ x \mid Ax = b \}$

(conversely, every affine set can be expressed as solution set of system of linear equations)
Convex set

line segment between x_1 and x_2: all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 \leq \theta \leq 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \leq \theta \leq 1 \quad \Rightarrow \quad \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)
Convex combination and convex hull

convex combination of x_1, \ldots, x_k: any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1, \theta_i \geq 0$

convex hull $\text{conv } S$: set of all convex combinations of points in S
Convex cone

conic (nonnegative) combination of x_1 and x_2: any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \geq 0$, $\theta_2 \geq 0$

convex cone: set that contains all conic combinations of points in the set.
Hyperplanes and halfspaces

hyperplane: set of the form \(\{ x \mid a^T x = b \} \) \((a \neq 0)\)

\[
a^T x = b
\]

\(x_0\)

\(x\)

halfspace: set of the form \(\{ x \mid a^T x \leq b \} \) \((a \neq 0)\)

\[
a^T x \geq b
\]

\(a\)

\(x_0\)

\(a^T x \leq b\)

- \(a\) is the normal vector
- hyperplanes are affine and convex; halfspaces are convex
Euclidean balls and ellipsoids

Euclidean ball with center x_c and radius r:

$B(x_c, r) = \{ x \mid \|x - x_c\|_2 \leq r \} = \{ x_c + ru \mid \|u\|_2 \leq 1 \}$

Ellipsoid: set of the form

$\{ x \mid (x - x_c)^T P^{-1} (x - x_c) \leq 1 \}$

with $P \in S_{++}^n$ (*i.e.*, P symmetric positive definite)

Other representation: $\{ x_c + Au \mid \|u\|_2 \leq 1 \}$ with A square and nonsingular $A = P^{1/2}$
Norm balls and norm cones

norm: a function \(\| \cdot \| \) that satisfies

- \(\| x \| \geq 0; \| x \| = 0 \) if and only if \(x = 0 \)
- \(\| tx \| = |t| \| x \| \) for \(t \in \mathbb{R} \)
- \(\| x + y \| \leq \| x \| + \| y \| \)

notation: \(\| \cdot \| \) is general (unspecified) norm; \(\| \cdot \|_{\text{symb}} \) is particular norm

norm ball with center \(x_c \) and radius \(r \): \(\{ x \mid \| x - x_c \| \leq r \} \)

norm cone: \(\{ (x, t) \mid \| x \| \leq t \} \)

Euclidean norm cone is called second-order cone

norm balls and cones are convex
Polyhedra

solution set of finitely many linear inequalities and equalities

\[Ax \preceq b, \quad Cx = d \]

\((A \in \mathbb{R}^{m \times n}, \ C \in \mathbb{R}^{p \times n}, \ \preceq \text{ is componentwise inequality})\)

polyhedron is intersection of finite number of halfspaces and hyperplanes
Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $S^n_+ = \{ X \in S^n \mid X \succeq 0 \}$: positive semidefinite $n \times n$ matrices

\[X \in S^n_+ \iff z^T X z \geq 0 \text{ for all } z \]

(Reviewed later)

S^n_+ is a convex cone

- $S^{++}_n = \{ X \in S^n \mid X \succ 0 \}$: positive definite $n \times n$ matrices

example: \[
\begin{bmatrix}
x & y \\
y & z
\end{bmatrix} \in S^2_+
\]
Operations that preserve convexity

practical methods for establishing convexity of a set \(C \)

1. apply definition

\[
x_1, x_2 \in C, \quad 0 \leq \theta \leq 1 \quad \Rightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C
\]

2. show that \(C \) is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity

- intersection
- affine functions
- perspective function
- linear-fractional functions
Intersection

the intersection of (any number of) convex sets is convex

example:

(Review Example 2.7)
Affine function

suppose \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is affine \((f(x) = Ax + b \text{ with } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m) \)

- the image of a convex set under \(f \) is convex
 \[S \subseteq \mathbb{R}^n \text{ convex} \quad \implies \quad f(S) = \{ f(x) \mid x \in S \} \text{ convex} \]

- the inverse image \(f^{-1}(C) \) of a convex set under \(f \) is convex
 \[C \subseteq \mathbb{R}^m \text{ convex} \quad \implies \quad f^{-1}(C) = \{ x \in \mathbb{R}^n \mid f(x) \in C \} \text{ convex} \]

examples

- scaling, translation, projection
Perspective and linear-fractional function

Perspective function $P : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$:

$$P(x, t) = \frac{x}{t}, \quad \text{dom} \, P = \{(x, t) \mid t > 0\}$$

Images and inverse images of convex sets under perspective are convex.

Linear-fractional function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}, \quad \text{dom} \, f = \{x \mid c^T x + d > 0\}$$

Images and inverse images of convex sets under linear-fractional functions are convex.
Example of a linear-fractional function

\[f(x) = \frac{1}{x_1 + x_2 + 1} \]

(Of course, C is not convex in this example)
Generalized inequalities

A convex cone $K \subseteq \mathbb{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- K is solid (has nonempty interior) \(^{(\text{Counterex: } x2 = 2 \times 1)}\)
- K is pointed (contains no line) \(^{(\text{Counterex: } x2 = -x1)}\)

Examples

- Nonnegative orthant $K = \mathbb{R}^n_+ = \{x \in \mathbb{R}^n \mid x_i \geq 0, \ i = 1, \ldots, n\}$
- Positive semidefinite cone $K = S^n_+$
- Nonnegative polynomials on $[0, 1]$:
 \[K = \{x \in \mathbb{R}^n \mid x_1 + x_2t + x_3t^2 + \cdots + x_nt^{n-1} \geq 0 \ \text{for} \ t \in [0, 1]\} \]
generalized inequality defined by a proper cone K:

$$x \preceq_K y \iff y - x \in K, \quad x \prec_K y \iff y - x \in \text{int } K$$

examples

- componentwise inequality ($K = \mathbb{R}_+^n$)

 $$x \preceq_{\mathbb{R}_+^n} y \iff x_i \leq y_i, \quad i = 1, \ldots, n$$

- matrix inequality ($K = S_+^n$)

 $$X \preceq_{S_+^n} Y \iff Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \preceq_K

properties: many properties of \preceq_K are similar to \leq on \mathbb{R}, e.g.,

$$x \preceq_K y, \quad u \preceq_K v \implies x + u \preceq_K y + v$$
Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \leq b \text{ for } x \in C, \quad a^T x \geq b \text{ for } x \in D$$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D
Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0:

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C
Dual cones and generalized inequalities

Dual cone of a cone K:

$$K^* = \{ y \mid y^T x \geq 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbb{R}_+^n$: $K^* = \mathbb{R}_+^n$
- $K = S_+^n$: $K^* = S_+^n$
- $K = \{(x, t) \mid \|x\|_2 \leq t\}$: $K^* = \{(x, t) \mid \|x\|_2 \leq t\}$
- $K = \{(x, t) \mid \|x\|_1 \leq t\}$: $K^* = \{(x, t) \mid \|x\|_\infty \leq t\}$
 (See Example 2.25)

first three examples are **self-dual** cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \geq 0 \text{ for all } x \succeq_K 0$$