Taken from http://jkcray.maths.ul.ie/ms4327/Slides.pdf MS4327

Optimisation

197

6.1 The BFGS Method

BFGS (Broyden, Fletcher, Goldfarb & Shanno) is perhaps the most popular quasi-Newton method

DFP (Davidon, Fletcher & Powell) is the BFGS precursor

Start by forming the familiar quadratic model/approximation:

$$\mathfrak{m}_{k}(\mathfrak{p}) = \mathfrak{f}_{k} + \mathfrak{g}_{k}^{\mathsf{T}} \mathfrak{p} + \frac{1}{2} \mathfrak{p}^{\mathsf{T}} \mathfrak{H}_{k} \mathfrak{p}$$
(6.1)

- Here H_k is an $n\times n$ positive definite $\mbox{ symmetric matrix (that is an approximation to the exact Hessian)}$.
- $\bullet~H_k$ will be updated at each iteration.

• For clarity, I will use H for approximations to the **Hessian** and J for approximations to the **Inverse Hessian**.

Optimisation

- The function and gradient values of the model at p=0 match $f_k \mbox{ and } g_k \,.$
- In other words $\mathfrak{m}_k(\mathfrak{0}) = \mathfrak{f}_k$ and $\nabla_p \mathfrak{m}_k(p)|_{p=\mathfrak{0}} = \mathfrak{g}_k$.
- The minimiser of this model wrt \mathbf{p} is as usual:

$$\mathbf{p}_{\mathbf{k}} = -\mathbf{H}_{\mathbf{k}}^{-1}\mathbf{g}_{\mathbf{k}} \tag{6.2}$$

and is used as the search direction.

• The new iterate is

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k \tag{6.3}$$

again as usual, where the step length α_k by line search

• Clearly if H_k is the exact Hessian, I have Newton's method in this Chapter, H_k will be an approximation to the Hessian based on gradient values.

- Instead of computing H_k from scratch at each iteration, Davidon used the following clever argument:
- Suppose that I have generated a new iterate \mathbf{x}_{k+1} and wish to construct a new quadratic model of the form

$$m_{k+1}(p) = f_{k+1} + g_{k+1}^T p + \frac{1}{2}p^T H_{k+1}p.$$

- It is reasonable to ask that the gradient of \mathfrak{m}_{k+1} should match the gradient of f at x_k & x_{k+1} .
- Since $\nabla \mathfrak{m}_{k+1}(0) \equiv \mathfrak{g}_{k+1}$, (they match at \mathfrak{x}_{k+1}) I need only check that they match at \mathfrak{x}_k —which means I require that:

$$\nabla \mathfrak{m}_{k+1}(-\alpha_k \mathfrak{p}_k) \equiv \mathfrak{g}_{k+1} - \alpha_k \mathfrak{H}_{k+1} \mathfrak{p}_k = \nabla \mathfrak{m}_k(\mathfrak{0}) \equiv \mathfrak{g}_k.$$

• Rearranging, I have

$$\mathsf{H}_{k+1}\alpha_k \mathfrak{p}_k = \mathfrak{g}_{k+1} - \mathfrak{g}_k.$$

(6.4)

MS4327

First define: s_k = x_{k+1} - x_k ≡ α_kp_k (6.5a) y_k = g_{k+1} - g_k (6.5b) Then (6.4) gives us the secant equation H_{k+1}s_k = y_k. (6.6)
I am taking H_{k+1} to be positive definite so s_k^TH_{k+1}s_k > 0 and so this equation is possible only if the step s_k and change in gradients y_k satisfy the curvature condition

$$\mathbf{s}_{\mathbf{k}}^{\mathsf{T}}\mathbf{y}_{\mathbf{k}} > \mathbf{0}. \tag{6.7}$$

• In general, though, I need to enforce 6.7 by imposing restrictions on the line search procedure for choosing α_k .

- The problem is that there are infinitely many solutions for H_k as there are n(n+1)/2 degrees of freedom in a symmetric matrix and the secant equation represents only n conditions.
- Requiring that H_{k+1} be positive definite represents n inequality conditions but there are still degrees of freedom left.
- To determine H_{k+1} uniquely, I impose the additional condition that; among all symmetric matrices satisfying the secant equation, H_{k+1} is "closest to" the current matrix H_k .
- So I need to solve the problem:

$$\min_{\mathbf{H}} \|\mathbf{H} - \mathbf{H}_{\mathbf{k}}\| \tag{6.9a}$$

subject to
$$H = H^T, Hs_k = y_k$$
 (6.9b)

• I can use any convenient matrix norm — a choice that simplifies the algebra (reduces the pain) is the "weighted Frobenius norm":

$$|A||_{W} \equiv ||W^{\frac{1}{2}}AW^{\frac{1}{2}}||_{F}, \qquad (6.10)$$

where $\|C\|_{F}^{2} \equiv \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij}^{2}$ for any square matrix C.

• Any choice of the weight matrix W will do provided it is positive definite, symmetric and satisfies $Wy_k = s_k$.

• For example, I could take $W = \overline{H}_k^{-1}$, where \overline{H}_k is the **average Hessian** defined by

$$\overline{H}_{k} = \int_{0}^{1} \nabla^{2} f(x_{k} + \tau \alpha_{k} p_{k}) d\tau.$$
 (6.11)

• It follows that

$$y_k = \overline{H}_k \alpha_k p_k = \overline{H}_k s_k \tag{6.12}$$

by using Taylor's theorem.

205

I can now state my update formula for the Hessian estimate H_k as a Theorem:

Theorem 6.1 a solution of (6.9a, 6.9b) is

DFP
$$H_{k+1} = (I - \gamma_k y_k s_k^T) H_k (I - \gamma_k s_k y_k^T) + \gamma_k y_k y_k^T, \quad (6.13)$$

where

$$\gamma_k = \frac{1}{y_k^\mathsf{T} s_k}$$

- H_k is my current estimate of the Hessian, usually initially the Identity matrix.
- H_{k+1} is my (I hope) improved estimate of the Hessian, using newly available information, namely the two vectors $s_k \& y_k$.

6.2 Inverting the Hessian approximation

It would be very useful if I could calculate an estimate of the the **inverse** Hessian $\nabla^2 f$ — say $J_k \equiv H_k^{-1}$. This would allow us to calculate $p_k = -J_k g_k$ instead of solving $H_k p_k = -g_k$ for the search direction p_k — giving a speedup in the algorithm.

But how to transform Eq. 6.13 into an update formula for $\ J_{k+1} {\rm in}$ terms of J_k ?

I need a formula that gives the inverse of H_{k+1} in terms of the inverse of H_{k+1} .

The Sherman-Morrison-Woodbury formula is what I need.

It states that if a square non-singular matrix A is updated by

 $\hat{A} = A + RST^{T}$

where R,T are $n \times p$ matrices for $1 \le p < n$ and S is $p \times p$ then

$$\hat{A}^{-1} = A^{-1} - A^{-1} R U^{-1} T^{T} A^{-1}, \qquad (6.20)$$

where $\mathbf{U} = \mathbf{S}^{-1} + \mathbf{T}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{R}$.

Using the SMW formula, I can derive the following equation for the update of the inverse Hessian approximation, H_k that corresponds to the DFP update of B_k in Eq. 6.13;

DFP – **Inverse**
$$J_{k+1} = J_k - \frac{J_k y_k y_k^T J_k}{y_k^T J_k y_k} + \frac{s_k s_k^T}{y_k^T s_k}.$$
 (6.21)

This is a rank-2 update as the two terms added to J_k are both rank-1.

The DFP method has been superseded by the BFGS (Broyden, Fletcher, Goldfarb & Shanno) method. It can be derived by making a small change in the derivation that led to Eq. 6.13. Instead of imposing conditions on the Hessian approximations H_k , I impose corresponding conditions on their inverses J_k . The updated approximation J_{k+1} must be symmetric and positive definite. It must satisfy the secant equation Eq. 6.6, now written as

$$J_{k+1}y_k = s_k.$$
 (6.22)

and also the "closeness" condition

$$\min_{\mathbf{J}} \|\mathbf{J} - \mathbf{J}_{\mathbf{k}}\| \tag{6.23a}$$

subject to
$$J = J^T, Jy_k = s_k.$$
 (6.23b)

The matrix norm is again the weighted Frobenius norm, where the weight matrix is now any matrix satisfying $Ws_k = y_k$.

215

(You can take W to be the "average" Hessian \overline{H}_k defined in Eq. 6.11 above — though any matrix satisfying $Ws_k = y_k$ will do.) Using the same reasoning as above, a solution to 6.23a is given by

BFGS
$$J_{k+1} = (I - \gamma_k s_k y_k^{\mathsf{T}}) J_k (I - \gamma_k y_k s_k^{\mathsf{T}}) + \gamma_k s_k s_k^{\mathsf{T}}.$$
 (6.24)

Note the symmetry between this equation and Eq. 6.13 — one transforms into the other by simply interchanging s_k and y_k — of course $\gamma_k = \frac{1}{s_k^{-1}y_k}$ is invariant under this transformation. J₀ is often taken to be just the identity matrix — possibly scaled.

