
MS4327 Optimisation 197'

&

$

%

6.1 The BFGS Method

In this Section, I will discuss the most popular quasi-Newton

method, the BFGS method, together with its precursor & close

relative, the DFP algorithm.

Start by forming the familiar quadratic model/approximation:

mk(p) = fk + gT
k p+

1

2
pTHkp (6.1)

• Here Hk is an n⇥ n positive definite symmetric matrix (that

is an approximation to the exact Hessian) .

• Hk will be updated at each iteration.

• In most books and published articles, B is used for the current

estimate of the Hessian.

• For clarity, I will use H for approximations to the Hessian and

J for approximations to the Inverse Hessian.

spongebob

spongebob
Taken from http://jkcray.maths.ul.ie/ms4327/Slides.pdf Annotated by Jean Honorio jhonorio@purdue.edu

spongebob

spongebob
BFGS (Broyden, Fletcher, Goldfarb & Shanno) is perhaps the most popular quasi-Newton method

DFP (Davidon, Fletcher & Powell) is the BFGS precursor

MS4327 Optimisation 198'

&

$

%

• The function and gradient values of the model at p = 0 match

fk and gk .

• In other words mk(0) = fk and rpmk(p)|p=0 = gk.

• The minimiser of this model wrt p is as usual:

pk = -H-1
k gk (6.2)

and is used as the search direction.

• The new iterate is

xk+1 = xk + ↵kpk (6.3)

again as usual, where the step length ↵k is chosen to satisfy

the Wolfe conditions.

• Clearly if Hk is the exact Hessian, I have Newton’s method —

in this Chapter, Hk will be an approximation to the Hessian

based on gradient values.

spongebob

spongebob

spongebob
by line search

MS4327 Optimisation 199'

&

$

%

• Instead of computing Hk from scratch at each iteration,

Davidon used the following clever argument:

• Suppose that I have generated a new iterate xk+1 and wish to

construct a new quadratic model of the form

mk+1(p) = fk+1 + gT
k+1 p+

1

2
pTHk+1p.

• How should I keep Hk+1 consistent with Hk?

• It is reasonable to ask that the gradient of mk+1 should match

the gradient of f at xk & xk+1 .

• Since rmk+1(0) ⌘ gk+1 , (they match at xk+1) I need only

check that they match at xk — which means I require that:

rmk+1(-↵kpk) ⌘ gk+1 - ↵kHk+1pk = rmk(0) ⌘ gk .

• Rearranging, I have

Hk+1↵kpk = gk+1 - gk . (6.4)

spongebob

MS4327 Optimisation 200'

&

$

%

• First define:

"�x" sk = xk+1 - xk ⌘ ↵kpk (6.5a)

"�g" yk = gk+1 - gk (6.5b)

Then (6.4) gives us the secant equation

Hk+1sk = yk. (6.6)

• I am taking Hk+1 to be positive definite so sk
THk+1sk > 0

and so this equation is possible only if the step sk and change

in gradients yk satisfy the curvature condition

sTkyk > 0. (6.7)

• When f is strongly convex, this condition is always satisfied

(see Exercises 6.5).

• In general, though, I need to enforce 6.7 by imposing

restrictions on the line search procedure for choosing ↵k.

spongebob

spongebob

MS4327 Optimisation 202'

&

$

%

• The problem is that there are infinitely many solutions for

Hk as there are n(n+ 1)/2 degrees of freedom in a symmetric

matrix and the secant equation represents only n conditions.

• Requiring that Hk+1 be positive definite represents n

inequality conditions but there are still degrees of freedom left.

• To determine Hk+1uniquely, I impose the additional condition

that; among all symmetric matrices satisfying the

secant equation, Hk+1 is “closest to” the current

matrix Hk .

• So I need to solve the problem:

min
H

kH-Hkk (6.9a)

subject to H = HT , Hsk = yk (6.9b)

Stopped here 13:00, Wednesday Week 5, 2016

spongebob

MS4327 Optimisation 203'

&

$

%

• I can use any convenient matrix norm — a choice that

simplifies the algebra (reduces the pain) is the “weighted

Frobenius norm”:

kAkW ⌘ kW 1
2AW

1
2 kF, (6.10)

where kCk2F ⌘
Pn

i=1

Pn
j=1 C

2
ij for any square matrix C.

• Any choice of the weight matrix W will do provided it is

positive definite, symmetric and satisfies Wyk = sk.

• The weight matrix W doesn’t play any role in the algorithm to

be discussed below — but I need W to derive the algorithm.

• So I just need to know that a matrix W can be found s.t.

Wyk = sk — as if not, the derivation below is built on sand.

spongebob

MS4327 Optimisation 204'

&

$

%

• For example, I could take W = Hk
-1

, where Hkis the average

Hessian defined by

Hk =

Z1

0

r2 f(xk + ⌧↵kpk)d⌧. (6.11)

• It follows that

yk = Hk↵kpk = Hksk (6.12)

using the definitions of sk & yk and the application of the

Chain Rule.

• Check that this choice of W is positive definite and symmetric.

spongebob

spongebob
by using Taylor’s theorem.

MS4327 Optimisation 205'

&

$

%

I can now state my update formula for the Hessian estimate Hk as

a Theorem:

Theorem 6.1 a solution of (6.9a, 6.9b) is

DFP Hk+1 = (I- �kyks
T
k)Hk(I- �ksky

T
k) + �kyky

T
k , (6.13)

where

�k =
1

yT
ksk

Before I prove the Theorem a couple of points:

• Hk is my current estimate of the Hessian, usually initially the

Identity matrix.

• Hk+1 is my (I hope) improved estimate of the Hessian, using

newly available information, namely the two vectors sk & yk .

spongebob

MS4327 Optimisation 211'

&

$

%

6.2 Inverting the Hessian approximation

It would be very useful if I could calculate an estimate of the the

inverse Hessian r2f — say Jk ⌘ H-1
k . This would allow us to

calculate pk = -Jkgk instead of solving Hkpk = -gk for the search

direction pk — giving a speedup in the algorithm.

But how to transform Eq. 6.13 into an update formula for Jk+1in

terms of Jk ?

I need a formula that gives the inverse of Hk+1in terms of the

inverse of Hk+1.

MS4327 Optimisation 212'

&

$

%

The Sherman-Morrison-Woodbury formula is what I need.

It states that if a square non-singular matrix A is updated by

Â = A+ RSTT

where R, T are n⇥ p matrices for 1 p < n and S is p⇥ p then

Â-1 = A-1 -A-1RU-1TTA-1, (6.20)

where U = S-1 + TTA-1R.

See Ex. 3 for hints on proving this result.

spongebob

MS4327 Optimisation 213'

&

$

%

Using the SMW formula, I can derive the following equation for the

update of the inverse Hessian approximation, Hk that corresponds

to the DFP update of Bk in Eq. 6.13;

DFP- Inverse Jk+1 = Jk -
Jkyky

T
kJk

yT
kJkyk

+
sks

T
k

yT
ksk

. (6.21)

(See Exercise 4 for some of the details.)

This is a rank-2 update as the two terms added to Jk are both

rank-1.

spongebob

MS4327 Optimisation 214'

&

$

%

The DFP method has been superseded by the BFGS (Broyden,

Fletcher, Goldfarb & Shanno) method. It can be derived by making

a small change in the derivation that led to Eq. 6.13. Instead of

imposing conditions on the Hessian approximations Hk , I impose

corresponding conditions on their inverses Jk . The updated

approximation Jk+1must be symmetric and positive definite. It

must satisfy the secant equation Eq. 6.6, now written as

Jk+1yk = sk. (6.22)

and also the “closeness” condition

min
J

kJ- Jkk (6.23a)

subject to J = JT , Jyk = sk. (6.23b)

The matrix norm is again the weighted Frobenius norm, where the

weight matrix is now any matrix satisfying Wsk = yk.

MS4327 Optimisation 215'

&

$

%

(You can take W to be the “average” Hessian Hk defined in

Eq. 6.11 above — though any matrix satisfying Wsk = yk will do.)

Using the same reasoning as above, a solution to 6.23a is given by

BFGS Jk+1 = (I- �ksky
T
k)Jk(I- �kyks

T
k) + �ksks

T
k . (6.24)

Note the symmetry between this equation and Eq. 6.13 — one

transforms into the other by simply interchanging sk and yk — of

course �k = 1
sk

Tyk
is invariant under this transformation.

J0 is often taken to be just the identity matrix — possibly scaled.

(Again, as the DFP update formula on Slide 210 above and in

Ex. 8, there is a two-parameter family of formulas that solve this

problem. See Ex. 9.)

spongebob

MS4327 Optimisation 216'

&

$

%

Algorithm 6.1 (BFGS)

(1) begin

(2) Given x0, tolerance " > 0 and starting J0
(3) k 0;

(4) while kgk k > " do

(5) pk -Jkgk

(6) xk+1 xk + ↵kpk(where ↵k satisfies the Wolfe conditions)

(7) Define sk = xk+1 - xk and yk = gk+1 - gk

(8) Compute Jk+1using Eq. 6.24

(9) k k+ 1;

(10) end (while)

(11) end

spongebob

spongebob

spongebob

spongebob

spongebob
after performing line search

spongebob

spongebob
This takes O(n^2) time, while solving a linear
system for the Newton method takes O(n^3)

spongebob

	Organisation of Course
	Introduction
	Mathematical Formulation
	Some Definitions
	Linear vs. NonLinear Optimisation
	Continuous vs. Discrete Optimisation
	Constrained vs. Unconstrained Optimisation
	Global vs. Local Optimisation
	Convex vs. NonConvex Problems

	Exercises

	Fundamentals of Unconstrained Optimisation
	Solutions
	Important Ideas From Vector Analysis
	Parametric equation of a Line in Rn
	The Chain Rule

	Optimality Conditions
	Rates of Convergence
	Order Notation

	Overview of Algorithms
	Exercises

	Search Direction Methods
	Introduction to Search Direction Methods
	A Comment on Search Direction Methods in General
	Steepest Descent Method
	Newton's Method
	Quasi-Newton Methods
	Non-Linear Conjugate Gradient Methods
	Matlab Tools

	Line Searches — How Far Should I Go Along The Search Direction?
	The Wolfe Conditions
	Sufficient Decrease & Backtracking
	Do Not Read This!

	Are Search Direction Methods Guaranteed To Converge?
	A Class of Methods Which Satisfy the Requirements for Zoutendijk's Thm.

	How Quickly Do Search Direction Methods Converge?
	Convergence Rate for Steepest Descent Method
	Convergence for Newton's Method
	Convergence for Quasi-Newton Methods

	When To Stop
	Exercises

	Conjugate Gradient Methods
	Linear Conjugate Gradient Method
	Nonlinear Conjugate Gradient Methods
	Fletcher-Reeves Method
	Polak-Ribière Method
	Advanced Methods

	Exercises

	Quasi-Newton Methods
	The BFGS Method
	Inverting the Hessian approximation
	Robustness of BFGS

	Convergence Analysis
	L-BFGS Method
	Exercises

	Introduction to Constrained Optimisation
	Characterising Optimal Points
	Examples

	First-Order Optimality Conditions
	Background Material for KKT Theorem
	Proof of Theorem 7.2 KKT (Equality Constraints)
	KKT conditions for Inequality Constrained problems
	Sensitivity Analysis

	Second-Order Conditions
	Weaker Necessary Conditions

	Exercises

	Linear Programs
	LP Definitions
	The Simplex Method
	Optimality Conditions
	The Dual Problem
	Geometry Of The Feasible Set
	The Revised Simplex Method
	Introduction to the method
	A Single Step of the Revised Simplex Method

	More On Basic Feasible Points
	Vertices Of the Feasible Polytope

	What Was Not Mentioned
	Exercises

	Quadratic Programs
	QP Definitions
	Example QP's
	Equality Constrained QP's
	Second-Order Necessary & Sufficient Conditions for Equality-constrained Problems
	Solving the KKT equation

	Inequality Constrained QP's
	Optimality Conditions for Inequality Constrained QP's
	Active Set Methods for Convex Inequality Constrained QP's
	Maintenance of Feasibility After Constraint is Dropped
	Reduction in q at each iteration
	Choosing a Start Point
	Final Comments on Constrained Optimisation

	Exercises

	Supplementary Material
	Introduction to Convexity
	Convexity Results
	Proof of Lemma A.4
	Proof of Theorem A.1
	Stronger Proof of First-Order Necessary Conditions
	Stronger Proof of Second-Order Necessary Conditions
	Introduction to Trust Region Methods
	Contrasting Search Direction and Trust Region Methods

	Why is -f Perpendicular to the Tangent to Contour/Tangent Plane to the Level Surface?
	Hessian With Uniformly Bounded Norm Implies Lipschitz Continuity
	Proof of Theorem 4.2
	Solution to Question 4 on Slide 159
	Proof of Question 6 on Slide 160 — the Kantorovitch inequality
	Solution to Question 8 on Slide 160
	Step-Length Selection Algorithms — an Introduction
	Some Technical Results
	Interpolation

	A Step-Length Selection Algorithm — the Details
	Proof of Theorem B.2 on Slide 713
	Global Convergence for the Trust Region Algorithm
	Convergence to Stationary Points

	Proof of Theorem A.22 on Slide 550
	Advanced nonlinear conjugate gradient methods
	Dai-Yuan Method
	Hybrid Method

	Matrix Norms
	Sherman-Morrison-Woodbury Formula
	Derivation of Inverse DFP Formula
	Robustness of BFGS
	Second-Order Necessary Conditions for Inequality-Constrained Problems
	Second-Order Sufficient Conditions for Inequality-Constrained Problems
	Outline of Analysis for Robustness of DFP
	 The L-BFGS Algorithm
	Justification for the L-BFGS Algorithm
	Convergence of the L-BFGS Algorithm
	Example With Two Inequality Constraints
	Informal Sensitivity Analysis for Inequality Constrained problems
	The Bord Gáis Uplift Problem—Introduction
	Solving the QP
	KKT equations
	The KKT Equations for the QP
	Analysis
	Significance of the KKT necessary/sufficient condition
	Preliminary Conclusions From KKT Analysis

	Trust Region Methods
	Outline of the Algorithm
	The Cauchy Point and Variants
	Cauchy Point
	Improving on the Cauchy Point
	The Dogleg Method
	Two-Dimensional Subspace Minimisation
	``Nearly Exact'' Trust Region Methods

	Global Convergence
	Exercises

