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6.1 The BFGS Method

In this Section, I will discuss the most popular quasi-Newton

method, the BFGS method, together with its precursor & close

relative, the DFP algorithm.

Start by forming the familiar quadratic model/approximation:

mk(p) = fk + gT
k p+

1

2
pTHkp (6.1)

• Here Hk is an n⇥ n positive definite symmetric matrix (that

is an approximation to the exact Hessian) .

• Hk will be updated at each iteration.

• In most books and published articles, B is used for the current

estimate of the Hessian.

• For clarity, I will use H for approximations to the Hessian and

J for approximations to the Inverse Hessian.
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BFGS (Broyden, Fletcher, Goldfarb & Shanno) is perhaps the most popular quasi-Newton method

DFP (Davidon, Fletcher & Powell) is the BFGS precursor
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• The function and gradient values of the model at p = 0 match

fk and gk .

• In other words mk(0) = fk and rpmk(p)|p=0 = gk.

• The minimiser of this model wrt p is as usual:

pk = -H-1
k gk (6.2)

and is used as the search direction.

• The new iterate is

xk+1 = xk + ↵kpk (6.3)

again as usual, where the step length ↵k is chosen to satisfy

the Wolfe conditions.

• Clearly if Hk is the exact Hessian, I have Newton’s method —

in this Chapter, Hk will be an approximation to the Hessian

based on gradient values.
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• Instead of computing Hk from scratch at each iteration,

Davidon used the following clever argument:

• Suppose that I have generated a new iterate xk+1 and wish to

construct a new quadratic model of the form

mk+1(p) = fk+1 + gT
k+1 p+

1

2
pTHk+1p.

• How should I keep Hk+1 consistent with Hk?

• It is reasonable to ask that the gradient of mk+1 should match

the gradient of f at xk & xk+1 .

• Since rmk+1(0) ⌘ gk+1 , (they match at xk+1 ) I need only

check that they match at xk — which means I require that:

rmk+1(-↵kpk) ⌘ gk+1 - ↵kHk+1pk = rmk(0) ⌘ gk .

• Rearranging, I have

Hk+1↵kpk = gk+1 - gk . (6.4)
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• First define:

"�x" sk = xk+1 - xk ⌘ ↵kpk (6.5a)

"�g" yk = gk+1 - gk (6.5b)

Then (6.4) gives us the secant equation

Hk+1sk = yk. (6.6)

• I am taking Hk+1 to be positive definite so sk
THk+1sk > 0

and so this equation is possible only if the step sk and change

in gradients yk satisfy the curvature condition

sTkyk > 0. (6.7)

• When f is strongly convex, this condition is always satisfied

(see Exercises 6.5).

• In general, though, I need to enforce 6.7 by imposing

restrictions on the line search procedure for choosing ↵k.
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• The problem is that there are infinitely many solutions for

Hk as there are n(n+ 1)/2 degrees of freedom in a symmetric

matrix and the secant equation represents only n conditions.

• Requiring that Hk+1 be positive definite represents n

inequality conditions but there are still degrees of freedom left.

• To determine Hk+1uniquely, I impose the additional condition

that; among all symmetric matrices satisfying the

secant equation, Hk+1 is “closest to” the current

matrix Hk .

• So I need to solve the problem:

min
H

kH-Hkk (6.9a)

subject to H = HT , Hsk = yk (6.9b)

Stopped here 13:00, Wednesday Week 5, 2016
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• I can use any convenient matrix norm — a choice that

simplifies the algebra (reduces the pain) is the “weighted

Frobenius norm”:

kAkW ⌘ kW 1
2AW

1
2 kF, (6.10)

where kCk2F ⌘
Pn

i=1

Pn
j=1 C

2
ij for any square matrix C.

• Any choice of the weight matrix W will do provided it is

positive definite, symmetric and satisfies Wyk = sk.

• The weight matrix W doesn’t play any role in the algorithm to

be discussed below — but I need W to derive the algorithm.

• So I just need to know that a matrix W can be found s.t.

Wyk = sk — as if not, the derivation below is built on sand.
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• For example, I could take W = Hk
-1

, where Hkis the average

Hessian defined by

Hk =

Z1

0

r2 f(xk + ⌧↵kpk)d⌧. (6.11)

• It follows that

yk = Hk↵kpk = Hksk (6.12)

using the definitions of sk & yk and the application of the

Chain Rule.

• Check that this choice of W is positive definite and symmetric.
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I can now state my update formula for the Hessian estimate Hk as

a Theorem:

Theorem 6.1 a solution of (6.9a, 6.9b) is

DFP Hk+1 = (I- �kyks
T
k)Hk(I- �ksky

T
k) + �kyky

T
k , (6.13)

where

�k =
1

yT
ksk

Before I prove the Theorem a couple of points:

• Hk is my current estimate of the Hessian, usually initially the

Identity matrix.

• Hk+1 is my (I hope) improved estimate of the Hessian, using

newly available information, namely the two vectors sk & yk .
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6.2 Inverting the Hessian approximation

It would be very useful if I could calculate an estimate of the the

inverse Hessian r2f — say Jk ⌘ H-1
k . This would allow us to

calculate pk = -Jkgk instead of solving Hkpk = -gk for the search

direction pk — giving a speedup in the algorithm.

But how to transform Eq. 6.13 into an update formula for Jk+1in

terms of Jk ?

I need a formula that gives the inverse of Hk+1in terms of the

inverse of Hk+1.
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The Sherman-Morrison-Woodbury formula is what I need.

It states that if a square non-singular matrix A is updated by

Â = A+ RSTT

where R, T are n⇥ p matrices for 1  p < n and S is p⇥ p then

Â-1 = A-1 -A-1RU-1TTA-1, (6.20)

where U = S-1 + TTA-1R.

See Ex. 3 for hints on proving this result.
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Using the SMW formula, I can derive the following equation for the

update of the inverse Hessian approximation, Hk that corresponds

to the DFP update of Bk in Eq. 6.13;

DFP- Inverse Jk+1 = Jk -
Jkyky

T
kJk

yT
kJkyk

+
sks

T
k

yT
ksk

. (6.21)

(See Exercise 4 for some of the details.)

This is a rank-2 update as the two terms added to Jk are both

rank-1.
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The DFP method has been superseded by the BFGS (Broyden,

Fletcher, Goldfarb & Shanno) method. It can be derived by making

a small change in the derivation that led to Eq. 6.13. Instead of

imposing conditions on the Hessian approximations Hk , I impose

corresponding conditions on their inverses Jk . The updated

approximation Jk+1must be symmetric and positive definite. It

must satisfy the secant equation Eq. 6.6, now written as

Jk+1yk = sk. (6.22)

and also the “closeness” condition

min
J

kJ- Jkk (6.23a)

subject to J = JT , Jyk = sk. (6.23b)

The matrix norm is again the weighted Frobenius norm, where the

weight matrix is now any matrix satisfying Wsk = yk.
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(You can take W to be the “average” Hessian Hk defined in

Eq. 6.11 above — though any matrix satisfying Wsk = yk will do.)

Using the same reasoning as above, a solution to 6.23a is given by

BFGS Jk+1 = (I- �ksky
T
k)Jk(I- �kyks

T
k) + �ksks

T
k . (6.24)

Note the symmetry between this equation and Eq. 6.13 — one

transforms into the other by simply interchanging sk and yk — of

course �k = 1
sk

Tyk
is invariant under this transformation.

J0 is often taken to be just the identity matrix — possibly scaled.

(Again, as the DFP update formula on Slide 210 above and in

Ex. 8, there is a two-parameter family of formulas that solve this

problem. See Ex. 9.)
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Algorithm 6.1 (BFGS)

(1) begin

(2) Given x0, tolerance " > 0 and starting J0
(3) k 0;

(4) while kgk k > " do

(5) pk  -Jkgk

(6) xk+1  xk + ↵kpk(where ↵k satisfies the Wolfe conditions )

(7) Define sk = xk+1 - xk and yk = gk+1 - gk

(8) Compute Jk+1using Eq. 6.24

(9) k k+ 1;

(10) end (while)

(11) end
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This takes O(n^2) time, while solving a linear
system for the Newton method takes O(n^3)
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