3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
Definition

\(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex if \(\text{dom} \ f \) is a convex set and

\[
 f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)
\]

for all \(x, y \in \text{dom} \ f, 0 \leq \theta \leq 1 \)

- \(f \) is concave if \(-f \) is convex
- \(f \) is strictly convex if \(\text{dom} \ f \) is convex and

\[
 f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \ f, x \neq y, 0 < \theta < 1 \)
Examples on R

convex:

• affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
• exponential: \(e^{ax} \), for any \(a \in \mathbb{R} \)
• powers: \(x^\alpha \) on \(\mathbb{R}_{++} \), for \(\alpha \geq 1 \) or \(\alpha \leq 0 \)
• powers of absolute value: \(|x|^p \) on \(\mathbb{R} \), for \(p \geq 1 \)
• negative entropy: \(x \log x \) on \(\mathbb{R}_{++} \)

concave:

• affine: \(ax + b \) on \(\mathbb{R} \), for any \(a, b \in \mathbb{R} \)
• powers: \(x^\alpha \) on \(\mathbb{R}_{++} \), for \(0 \leq \alpha \leq 1 \)
• logarithm: \(\log x \) on \(\mathbb{R}_{++} \)
Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $\|x\|_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p}$ for $p \geq 1$; $\|x\|_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

- affine function

$$f(X) = \text{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

- spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\text{max}}(X) = (\lambda_{\text{max}}(X^T X))^{1/2}$$
Restriction of a convex function to a line

\(f : \mathbb{R}^n \to \mathbb{R} \) is convex if and only if the function \(g : \mathbb{R} \to \mathbb{R} \),

\[
g(t) = f(x + tv), \quad \text{dom } g = \{ t \mid x + tv \in \text{dom } f \}
\]

is convex (in \(t \)) for any \(x \in \text{dom } f, \ v \in \mathbb{R}^n \)

can check convexity of \(f \) by checking convexity of functions of one variable

\textbf{example.} \(f : \mathbb{S}^n \to \mathbb{R} \) with \(f(X) = \log \det X, \ \text{dom } f = \mathbb{S}^n_{++} \)

Note that: \(X+tv = X^{1/2} \left(I + t X^{-1/2} V X^{-1/2} \right) X^{1/2} \) \quad then \quad \det(X+tv) = \det(X) \det(I + t X^{-1/2} V X^{-1/2})

\[
g(t) = \log \det(X + tv) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})
\]

\[
= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)
\]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2}VX^{-1/2} = UDU' \) \quad then \quad \(I + tU DU' = U(I + t D)U' \)

g is concave in \(t \) (for any choice of \(X \succ 0, \ V \)); hence \(f \) is concave
Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \notin \text{dom } f$$

often simplifies notation; for example, the condition

$$0 \leq \theta \leq 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions

- $\text{dom } f$ is convex
- for $x, y \in \text{dom } f$,

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$
First-order condition

f is **differentiable** if $\text{dom } f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \text{dom } f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \text{for all } x, y \in \text{dom } f$$

first-order approximation of f is global underestimator
Second-order conditions

\(f \) is **twice differentiable** if \(\text{dom} \ f \) is open and the Hessian \(\nabla^2 f(x) \in S^n \),

\[
\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,
\]

exists at each \(x \in \text{dom} \ f \)

2nd-order conditions: for twice differentiable \(f \) with convex domain

- \(f \) is convex if and only if

\[
\nabla^2 f(x) \succeq 0 \quad \text{for all} \quad x \in \text{dom} \ f
\]

- if \(\nabla^2 f(x) \succ 0 \) for all \(x \in \text{dom} \ f \), then \(f \) is strictly convex
Examples

quadratic function: \(f(x) = (1/2)x^TPx + q^Tx + r \) (with \(P \in S^n \))

\[
\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P
\]

convex if \(P \succeq 0 \)

least-squares objective: \(f(x) = \|Ax - b\|_2^2 \)

\[
\nabla f(x) = 2A^T(Ax - b), \quad \nabla^2 f(x) = 2A^TA
\]

convex (for any \(A \))

quadratic-over-linear: \(f(x, y) = x^2/y \)

\[
\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0
\]

convex for \(y > 0 \)
log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} z z^T \quad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2)(\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \geq 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

More clearly: $a_k = v_k \sqrt{z_k}$, $b_k = \sqrt{z_k}$, then $\langle a, b \rangle \leq |a|_2 |b|_2$

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}_{++}^n is concave

(similar proof as for log-sum-exp)
Epigraph and sublevel set

\(\alpha \)-sublevel set of \(f : \mathbb{R}^n \to \mathbb{R} \):

\[
C_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}
\]

Sublevel sets of convex functions are convex (converse is false).

Epigraph of \(f : \mathbb{R}^n \to \mathbb{R} \):

\[
epi f = \{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, \ f(x) \leq t \}
\]

\(f \) is convex if and only if \(\text{epi } f \) is a convex set.

Convex functions
Jensen’s inequality

basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbb{E} z) \leq \mathbb{E} f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\text{prob}(z = x) = \theta, \quad \text{prob}(z = y) = 1 - \theta$$
Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective
Positive weighted sum & composition with affine function

nonnegative multiple: \(\alpha f \) is convex if \(f \) is convex, \(\alpha \geq 0 \)

sum: \(f_1 + f_2 \) convex if \(f_1, f_2 \) convex (extends to infinite sums, integrals)

composition with affine function: \(f(Ax + b) \) is convex if \(f \) is convex

examples

- log barrier for linear inequalities

\[
f(x) = - \sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{ x \mid a_i^T x < b_i, i = 1, \ldots, m \}
\]

- (any) norm of affine function: \(f(x) = \|Ax + b\| \)
Pointwise maximum

if \(f_1, \ldots, f_m \) are convex, then \(f(x) = \max\{f_1(x), \ldots, f_m(x)\} \) is convex

examples

- piecewise-linear function: \(f(x) = \max_{i=1,\ldots,m}(a_i^T x + b_i) \) is convex
- sum of \(r \) largest components of \(x \in \mathbb{R}^n \):

\[
f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}
\]

is convex (\(x_{[i]} \) is \(i \)th largest component of \(x \))

proof:

\[
f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} \mid 1 \leq i_1 < i_2 < \cdots < i_r \leq n\}
\]
Pointwise supremum

if \(f(x, y) \) is convex in \(x \) for each \(y \in A \), then

\[
g(x) = \sup_{y \in A} f(x, y)
\]

is convex

examples

• support function of a set \(C \): \(S_C(x) = \sup_{y \in C} y^T x \) is convex
• distance to farthest point in a set \(C \):

\[
f(x) = \sup_{y \in C} \|x - y\|
\]

• maximum eigenvalue of symmetric matrix: for \(X \in \mathbf{S}^n \),

\[
\lambda_{\text{max}}(X) = \sup_{\|y\|_2 = 1} y^T X y
\]

(Example: definition of dual norm)
Composition with scalar functions

composition of \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) and \(h : \mathbb{R} \rightarrow \mathbb{R} \):

\[
f(x) = h(g(x))
\]

\(f \) is convex if

- \(g \) convex, \(h \) convex nondecreasing
- \(g \) concave, \(h \) convex nonincreasing

• proof (for \(n = 1 \), differentiable \(g, h \))

\[
f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)
\]

examples

• \(\exp g(x) \) is convex if \(g \) is convex

• \(1/g(x) \) is convex if \(g \) is concave and positive
Vector composition

composition of $g : \mathbb{R}^n \rightarrow \mathbb{R}^k$ and $h : \mathbb{R}^k \rightarrow \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))$$

f is convex if g_i convex, h convex
g_i concave, h convex

proof (for $n = 1$, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x))g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex
Minimization

if \(f(x, y) \) is convex in \((x, y)\) and \(C \) is a convex set, then

\[
g(x) = \inf_{y \in C} f(x, y)
\]

is convex

examples

• \(f(x, y) = x^T A x + 2x^T B y + y^T C y \) with

\[
\begin{bmatrix}
A & B \\
B^T & C
\end{bmatrix} \succeq 0, \quad C \succ 0
\]

minimizing over \(y \) gives \(g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x \)

\(g \) is convex, hence Schur complement \(A - BC^{-1}B^T \succeq 0 \) (iff \([A B; B^T C] \succeq 0\))

• distance to a set: \(\text{dist}(x, S) = \inf_{y \in S} \|x - y\| \) is convex if \(S \) is convex

(Example: Lagrange dual, we will see it next week)
the perspective of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the function $g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x, t) = tf(x/t), \quad \text{dom } g = \{(x, t) | x/t \in \text{dom } f, \ t > 0\}$$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x, t) = x^T x/t$ is convex for $t > 0$
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x, t) = t \log t - t \log x$ is convex on \mathbb{R}^2_{++}
- if f is convex, then

$$g(x) = (c^T x + d) f \left((Ax + b)/(c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom } f\}$
The conjugate function

The conjugate of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

Properties:

- f^* is convex (even if f is not):

 $y x - f(x)$ is convex in y
 conjugate is pointwise supremum

- $f^{**} = f$, if f is convex and epi f is a closed set

For differentiable f, f^* is also called Fenchel conjugate or Legendre transform
examples

• negative logarithm \(f(x) = -\log x \)

\[
f^*(y) = \sup_{x>0} (xy + \log x)
\]

\[
= \begin{cases}
-1 - \log(-y) & y < 0 \\
\infty & \text{otherwise}
\end{cases}
\]

• strictly convex quadratic \(f(x) = (1/2)x^TQx \) with \(Q \in S^n_{++} \)

\[
f^*(y) = \sup_x (y^Tx - (1/2)x^TQx)
\]

\[
= \frac{1}{2}y^TQ^{-1}y
\]
Quasiconvex functions

$f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\text{dom } f$ is convex and the sublevel sets

$$S_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave
Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\text{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^2_{++}
- linear-fractional function
 \[
 f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom} \ f = \{x \mid c^T x + d > 0\}
 \]
 is quasilinear
- distance ratio
 \[
 f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom} \ f = \{x \mid \|x - a\|_2 \leq \|x - b\|_2\}
 \]
 is quasiconvex
Properties

modified Jensen inequality: for quasiconvex f

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \leq f(x) \implies \nabla f(x)^T(y - x) \leq 0$$

values smaller than $f(x)$
level sets for different alpha

sums of quasiconvex functions are not necessarily quasiconvex