1 Restricted Strong Convexity

Let \mathbf{w} be a vector and ℓ be a loss function. In general, ℓ_1-norm regularized loss minimization can be written as follows for some $\lambda > 0$:

$$\hat{\mathbf{w}} = \arg \min_{\mathbf{w} \in \mathbb{R}^p} \ell(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$$ \hspace{1cm} (1)

We will also assume that there is an unknown but fixed $\mathbf{w}^* \in \mathbb{R}^p$. Our goal will be to recover a vector $\hat{\mathbf{w}}$ which is close to \mathbf{w}^*.

Next, we define restricted strong convexity [1].

Definition 8.1. Let $\alpha > 0$, $\tau \geq 0$ and $g : \mathbb{N} \times \mathbb{N} \to \mathbb{R}^+$. A loss function $\ell : \mathbb{R}^p \to \mathbb{R}$ is restricted strongly convex around \mathbf{w}^* with parameters (α, τ, g) if and only if:

$$\forall \mathbf{w} \in \mathbb{R}^p$$ \hspace{1cm} \ell(\mathbf{w}) - \ell(\mathbf{w}^*) - \langle \nabla \ell(\mathbf{w}^*), \mathbf{w} - \mathbf{w}^* \rangle \geq \alpha \|\mathbf{w} - \mathbf{w}^*\|_2^2 - \tau g(n, p) \|\mathbf{w} - \mathbf{w}^*\|_1^2$$

For many specific learning problems $g(n, p) = \sqrt{\frac{\log p}{n}}$ or $g(n, p) = \frac{\log p}{n}$. In what follows, we analyze the sufficient number of samples for the problem in eq.(1).

Theorem 8.1. Assume that the convex loss function $\ell : \mathbb{R}^p \to \mathbb{R}$ is restricted strongly convex around \mathbf{w}^* with parameters (α, τ, g) as in Definition 8.1. Let k be the number of nonzero elements in \mathbf{w}^*. For a regularization weight $\lambda \geq 2\|\nabla \ell(\mathbf{w}^*)\|_{\infty}$ and a sufficient number of samples $17\frac{k}{\alpha}kg(n, p) \leq 1$, we have that:

$$\|\hat{\mathbf{w}} - \mathbf{w}^*\|_2 \leq 102 \frac{\sqrt{k}}{\alpha} \lambda$$

$$\|\hat{\mathbf{w}} - \mathbf{w}^*\|_1 \leq 408 \frac{k}{\alpha} \lambda$$

For many specific learning problems $\lambda \in \mathcal{O}(\sqrt{\frac{\log p}{n}})$ and thus, the above theorem establishes consistency as the number of samples n grows.

First, we derive an intermediate lemma needed for the final proof.
Lemma 8.1. Assume that the loss function \(\ell : \mathbb{R}^p \to \mathbb{R} \) is convex. Let \(k \) be the number of nonzero elements in \(w^* \). For a regularization weight \(\lambda \geq 2\|\nabla \ell(w^*)\|_{\infty} \), we have:

\[
\|\hat{w} - w^*\|_1 \leq 4\sqrt{k}\|\hat{w} - w^*\|_2
\]

Proof. Let \(\Delta \equiv \hat{w} - w^* \). Let \(K \) be the set of nonzero elements of \(w^* \) and let \(K^c \) be the complement of \(K \). Note that \(k \equiv |K| \) is the number of nonzero elements in \(w^* \). For an arbitrary vector \(w \), let \(w_K \) denote the original vector \(w \) with zeros on the entries in \(K^c \). Similarly, let \(w_{K^c} \) denote the original vector \(w \) with zeros on the entries in \(K \).

Since by definition \(w^* = w^*_K \) and by the reverse triangle inequality, we have:

\[
\|\hat{w}\|_1 = \|w^* + \Delta\|_1 \\
= \|w^*_K + \Delta_K + \Delta_{K^c}\|_1 \\
= \|w^*_K + \Delta_K\|_1 + \|\Delta_{K^c}\|_1 \\
\geq \|w^*_K\|_1 - \|\Delta_K\|_1 + \|\Delta_{K^c}\|_1 \\
= \|w^*\|_1 - \|\Delta_K\|_1 + \|\Delta_{K^c}\|_1
\]

(2)

By optimality of \(\hat{w} \) in eq.(1), we have:

\[
\ell(\hat{w}) + \lambda\|\hat{w}\|_1 \leq \ell(w^*) + \lambda\|w^*\|_1
\]

and therefore:

\[
\ell(\hat{w}) - \ell(w^*) \leq -\lambda\|\hat{w}\|_1 + \lambda\|w^*\|_1
\]

(3)

By convexity of \(\ell \), the Cauchy-Schwarz inequality \((\forall a, b) \ | \langle a, b \rangle | \leq \|a\|_1 \|b\|_{\infty} \), and since we assume that \(\lambda \geq 2\|\nabla \ell(w^*)\|_{\infty} \), we have:

\[
\ell(\hat{w}) - \ell(w^*) \geq \langle \nabla \ell(w^*), \Delta \rangle \\
\geq -\|\nabla \ell(w^*)\|_{\infty}\|\Delta\|_1 \\
\geq -\frac{1}{2}\lambda\|\Delta\|_1
\]

(4)

By eq.(3) and eq.(4), it follows that \(-\frac{1}{2}\lambda\|\Delta\|_1 \leq -\lambda\|\hat{w}\|_1 + \lambda\|w^*\|_1 \) or equivalently since \(\lambda > 0 \):

\[
0 \geq -\|\Delta\|_1 + 2\|\hat{w}\|_1 - 2\|w^*\|_1 \\
\geq -\|\Delta\|_1 + 2\|w^*\|_1 - 2\|\Delta_K\|_1 + 2\|\Delta_{K^c}\|_1 - 2\|w^*\|_1 \\
= -\|\Delta\|_1 - 2\|\Delta_K\|_1 + 2\|\Delta_{K^c}\|_1 \\
= -\|\Delta_K\|_1 - \|\Delta_{K^c}\|_1 - 2\|\Delta_K\|_1 + 2\|\Delta_{K^c}\|_1 \\
= -3\|\Delta_K\|_1 + \|\Delta_{K^c}\|_1
\]
where the second line follows from eq.(2). Given the above, we have:
\[
\|\Delta\|_1 = \|\Delta_K\|_1 + \|\Delta_{K^c}\|_1 \\
\leq \|\Delta_K\|_1 + 3\|\Delta_K\|_1 \\
= 4\|\Delta_K\|_1 \\
\leq 4\sqrt{k}\|\Delta_K\|_2 \\
\leq 4\sqrt{k}\|\Delta\|_2
\]
which proves our claim.

Next, we provide the final proof.

Proof of Theorem 8.1. Let \(\Delta \equiv \hat{w} - w^* \). First, since we assume that \(\lambda \geq 2\|\nabla \ell(w^*)\|_{\infty} \) we can invoke Lemma 8.1 and therefore:
\[
\|\Delta\|_1 \leq 4\sqrt{k}\|\Delta\|_2
\]
(6)
For \(w = \hat{w} \), by restricted strong convexity of \(\ell \) around \(w^* \) with parameters \((\alpha, \tau, g)\) as in Definition 8.1, by eq.(6) and since \(17\frac{\tau}{\alpha} kg(n, p) \leq 1 \), we have:
\[
\ell(\hat{w}) - \ell(w^*) - \langle \nabla \ell(w^*), \Delta \rangle \geq \alpha\|\Delta\|_2^2 - \tau g(n, p)\|\Delta\|_1^2 \\
\geq (\alpha - 16k\tau g(n, p))\|\Delta\|_2^2 \\
\geq (\alpha - \frac{16}{17}\alpha)\|\Delta\|_2^2 \\
= \frac{1}{17}\alpha\|\Delta\|_2^2
\]
(7)
By eq.(6) and eq.(7), the Cauchy-Schwarz inequality \(\langle a, b \rangle \mid a, b \mid \leq \|a\|_1\|b\|_{\infty} \), and since we assume that \(\lambda \geq 2\|\nabla \ell(w^*)\|_{\infty} \), we have:
\[
\frac{1}{17}\alpha\|\Delta\|_2^2 \leq \ell(\hat{w}) - \ell(w^*) - \langle \nabla \ell(w^*), \Delta \rangle \\
\leq -\lambda\|\hat{w}\|_1 + \lambda\|w^*\|_1 + \|\nabla \ell(w^*)\|_{\infty}\|\Delta\|_1 \\
\leq -\lambda\|\hat{w}\|_1 + \lambda\|w^*\|_1 + \frac{1}{2}\lambda\|\Delta\|_1 \\
\leq -\lambda\|\hat{w}\|_1 + \lambda\|\hat{w}\|_1 + \lambda\|\Delta\|_1 + \frac{1}{2}\lambda\|\Delta\|_1 \\
= \frac{3}{2}\lambda\|\Delta\|_1 \\
\leq 6\sqrt{k}\lambda\|\Delta\|_2
\]
which proves the first claim after canceling \(\|\Delta\|_2 \) on both sides of the inequality. The second claim can be proven by the above and eq.(6).

2 Application: Compressed Sensing

Assume that there is an unknown but fixed \(w^* \in \mathbb{R}^p \). The only way to access \(w^* \) is through a black box that works as follows. We (somehow) generate an input vector \(x_i \in \{-1, +1\}^p \) and the black box returns an output:
\[
y_i = \langle x_i, w^* \rangle + \varepsilon_i
\]
where $\varepsilon_i \in \{-1, +1\}$ is a Rademacher random variable (see Definition 6.1). In the above, we know that y_i is equal to $\langle x_i, w^* \rangle + \varepsilon_i$, but we do not have access to w^* or ε_i. We only have access to the output y_i, and of course the input x_i.

The question is how many pairs (x_i, y_i) are sufficient in order to recover a vector \hat{w} which is close to w^*. Assume we obtain n pairs. Let $X \in \{-1, +1\}^{n \times p}$, $y \in \mathbb{R}^n$ and $\varepsilon \in \{-1, +1\}^n$. Note that:

$$y = Xw^* + \varepsilon \quad (8)$$

We solve eq.(1) by using the loss function:

$$\ell(w) = \frac{1}{2n} \|Xw - y\|^2_2 \quad (9)$$

For answering our question, we will have to show that the loss function ℓ fulfills the conditions of Theorem 8.1. From eq.(8) and eq.(9), we have:

$$\ell(w) = \frac{1}{2n} \|X(w - w^*) - \varepsilon\|^2_2$$

$$= \frac{1}{2n} (w - w^*)^T X^T X (w - w^*) - \frac{1}{n} \varepsilon^T X (w - w^*) + \frac{1}{2n} \varepsilon^T \varepsilon \quad (10)$$

By the above, we can conclude that:

$$\ell(w^*) = \frac{1}{2n} \varepsilon^T \varepsilon \quad (11)$$

$$\nabla \ell(w) = \frac{1}{n} X^T X (w - w^*) - \frac{1}{n} X^T \varepsilon \quad (12)$$

In what follows we will assume that each entry of X and ε is independent and Rademacher distributed.

First Condition: $\lambda \geq 2\|\nabla \ell(w^*)\|_\infty$. Assume that we set the regularization weight as follows $\lambda = \sqrt{\frac{\log p}{n}}$. Let $x^j \in \{-1, +1\}^n$ be the j-th column of X. Fix j. Note that $\frac{1}{n} \langle x^j, \varepsilon \rangle = \frac{1}{n} \sum_{i=1}^n x_{ij} \varepsilon_i = \frac{1}{n} \sum_{i=1}^n z_i$ where $z_i \equiv x_{ij} \varepsilon_i$ for $i = 1 \ldots n$ are independent random variables. Moreover, $z_i \in [-1, +1]$ and $\mathbb{E}_\varepsilon[\frac{1}{n} \langle x^j, \varepsilon \rangle \mid X] = 0$ since $\mathbb{E}_\varepsilon[\varepsilon \mid X] = 0$. Thus, by Hoeffding’s inequality (Corollary 2.2) and the union bound:

$$\mathbb{P}_\varepsilon \left(\exists j = 1 \ldots p \mid \frac{1}{n} \langle x^j, \varepsilon \rangle \geq \frac{\lambda}{2} \right) X \leq 2p e^{-\frac{\lambda^2}{2n^2}}$$

$$= 2p e^{-\frac{\lambda^2}{8n^2}}$$

$$= 2p e^{-2 \log p}$$

$$= 2/p$$
By eq.(12) and the above, we have:

\[
\begin{align*}
P_{\mathbf{X}, \epsilon} \left[\| \nabla \ell(w^*) \|_\infty \geq \frac{\lambda}{2} \right] &= P_{\mathbf{X}, \epsilon} \left[\left\| \frac{1}{n} \mathbf{X}^T \epsilon \right\|_\infty \geq \frac{\lambda}{2} \right] \\
&= P_{\mathbf{X}, \epsilon} \left[\exists j = 1 \ldots p \left| \frac{1}{n} \langle \mathbf{x}', \epsilon \rangle \right| \geq \frac{\lambda}{2} \right] \\
&= \mathbb{E}_\mathbf{X} \left[P_\epsilon \left[\exists j = 1 \ldots p \left| \frac{1}{n} \langle \mathbf{x}', \epsilon \rangle \right| \geq \frac{\lambda}{2} \right] \right] \\
&\leq \mathbb{E}_\mathbf{X} \left[\frac{2}{p} \right] \\
&= \frac{2}{p}
\end{align*}
\]

Therefore, with probability at least \(1 - \frac{2}{p} \) over the choice of \(\mathbf{X} \) and \(\epsilon \), we have that \(\lambda \geq 2 \| \nabla \ell(w^*) \|_\infty \) when we use the regularization weight \(\lambda = 4 \sqrt{\log \frac{p}{n}} \).

Second Condition: Restricted Strong Convexity. Theorem 8.1 requires that the loss function \(\ell \) in eq.(9) fulfills Definition 8.1. Here, we will show that indeed this is fulfilled. That is:

\[
\langle \forall w \in \mathbb{R}^p \rangle \ell(w) - \ell(w^*) - \langle \nabla \ell(w^*), w - w^* \rangle \geq \alpha \| w - w^* \|_2^2 - \tau g(n, p) \| w - w^* \|_1^2
\]

Note that by eq.(10), eq.(11) and eq.(12), we have:

\[
\ell(w) - \ell(w^*) - \langle \nabla \ell(w^*), w - w^* \rangle = \frac{1}{2n} (w - w^*)^T \mathbf{X}^T \mathbf{X} (w - w^*)
\]

Let \(\mathbf{v} = w - w^* \). Our goal is to show that:

\[
\langle \forall \mathbf{v} \in \mathbb{R}^p \rangle \frac{1}{2n} \| \mathbf{X} \mathbf{v} \|_2^2 \geq \alpha \| \mathbf{v} \|_2^2 - \tau g(n, p) \| \mathbf{v} \|_1^2
\]

Since the above is trivially fulfilled for \(\mathbf{v} = \mathbf{0} \) and since if the above holds for some \(\mathbf{v} \in \mathbb{R}^p \) then it also holds for \(c \mathbf{v} \) for all \(c \in \mathbb{R} \), we will equivalently show that:

\[
\langle \forall \| \mathbf{v} \|_1 = 1 \rangle \frac{1}{2n} \| \mathbf{X} \mathbf{v} \|_2^2 \geq \alpha \| \mathbf{v} \|_2^2 - \tau g(n, p)
\]

Fix \(j \neq k \). Note that \(\frac{1}{n} \sum_{i=1}^n x_{ij} x_{ik} = \frac{1}{n} \sum_{i=1}^n z_i \) where \(z_i \equiv x_{ij} x_{ik} \) for \(i = 1 \ldots n \) are independent random variables. Moreover, \(z_i \in [-1, +1] \) and we also know that \(\mathbb{E}_\mathbf{X} \left[\frac{1}{n} \sum_{i=1}^n x_{ij} x_{ik} \right] = 0 \) since the entries of \(\mathbf{X} \) are independent and zero-mean. Thus, by Hoeffding’s inequality (Corollary 2.2), the union bound and by
assuming $t = \sqrt{\frac{6 \log p}{n}}$.

\[
P_X \left[\max_{j \neq k} \left| \frac{1}{n} \sum_{i=1}^{n} x_{ij}x_{ik} \right| \geq t \right] = P_X \left[(\exists j \neq k) \left| \frac{1}{n} \sum_{i=1}^{n} x_{ij}x_{ik} \right| \geq t \right] \\
\leq 2 \left(\frac{p}{2} \right) e^{-2 \frac{t^2}{n^2}} \\
\leq p^2 e^{-\frac{t^2}{n^2}} \\
= p^2 e^{-3 \log p} \\
= \frac{1}{p}
\]

Therefore, with probability at least $1 - 1/p$ over the choice of X, we have that:

\[
\max_{j \neq k} \left| \frac{1}{n} \sum_{i=1}^{n} x_{ij}x_{ik} \right| \leq \sqrt{\frac{6 \log p}{n}} \tag{13}
\]

Note that since $\|v\|_1 = 1$, then:

\[
\sum_{j \neq k} |v_j v_k| \leq \sum_{j=1}^{p} \sum_{k=1}^{p} |v_j v_k| \\
= \sum_{j=1}^{p} \sum_{k=1}^{p} |v_j| |v_k| \\
= \|v\|_1^2 \\
= 1 \tag{14}
\]

Since $(\forall i,j) x_{ij}^2 = 1$ and the above, we have:

\[
\frac{1}{2n} \|Xv\|_2^2 = \frac{1}{2n} \sum_{i=1}^{n} (Xv)_i^2 \\
= \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} x_{ij}v_j \right)^2 \\
= \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} x_{ij}^2 v_j^2 + \sum_{j \neq k} x_{ij}x_{ik}v_j v_k \right) \\
= \frac{1}{2n} \sum_{i=1}^{n} \left(\sum_{j=1}^{p} v_j^2 + \sum_{j \neq k} x_{ij}x_{ik}v_j v_k \right) \\
= \frac{1}{2} \|v\|_2^2 + \frac{1}{2} \sum_{j \neq k} \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij}x_{ik} \right) v_j v_k
\]
\[
\geq \frac{1}{2} \|v\|_2^2 - \frac{1}{2} \max_{j \neq k} \left| \frac{1}{n} \sum_{i=1}^{n} x_{ij} x_{ik} \right| \sum_{j \neq k} |v_j v_k|
\]

\[
\geq \frac{1}{2} \|v\|_2^2 - \frac{1}{2} \sqrt{6 \log \frac{p}{n}}
\]

where the previous-to-the-last step follows from the Cauchy-Schwarz inequality \((\forall a, b) \ | \langle a, b \rangle | \leq \|a\|_1 \|b\|_\infty\). The last step follows from eq.(13) and eq.(14).

Note that given our brief introduction at the beginning of the proof, we have shown that:

\[
(\forall w \in \mathbb{R}^p) \ell(w) - \ell(w^*) - \langle \nabla \ell(w^*), w - w^* \rangle \geq \frac{1}{2} ||w - w^*||_2^2 - \frac{1}{2} \sqrt{6 \log \frac{p}{n}} ||w - w^*||_1
\]

Therefore, we conclude that the loss function \(\ell\) in eq.(9) fulfills Definition 8.1 with \(\alpha = 1/2\), \(\tau = \sqrt{6}/2\) and \(g(n, p) = \sqrt{\log \frac{p}{n}}\).

Third Condition: Sufficient Number of Samples. Theorem 8.1 also requires that \(17^{\frac{\tau}{\alpha}} kg(n, p) \leq 1\). That is:

\[
17^{\frac{\tau}{\alpha}} kg(n, p) = 17^{\sqrt{6}} k \sqrt{\log \frac{p}{n}} \leq 1
\]

Thus, we require \(n \geq 17^2 6 k^2 \log p\).

A proof for possibly correlated Gaussian random variables can be found in [2] where they obtained results with \(g(n, p) = \frac{\log p}{n}\), which is better for the required number of samples in the Third Condition.

References
