K-Anonymity

REU Summer 2007

Advisors: Ryan Williams and Manuel Blum

How do you publicly release a database without compromising individual privacy?

The Wrong Approach:

- Just leave out any unique identifiers like name and SSN and hope that this works.
- The triple (DOB, gender, zip code) suffices to uniquely identify at least 87% of US citizens in publicly available databases (Sweeney).
- Moral: Any real privacy guarantee must be proved and established mathematically.

Definitions

- **Database** – a table with n rows (records) and m columns (attributes)

- **Alphabet of a Database (Σ)** – the range of values that individual cells in the database can take.

- Note that the alphabet of the k-anonymized database is $\Sigma \cup \{^*\}$

- **K-Anonymity**:
 - Attributes are suppressed or generalized until each row is identical with at least $k-1$ other rows. At this point the database is said to be k-anonymous.
 - K-Anonymity thus prevents definite database linkages. At worst, the data released narrows down an individual entry to a group of k individuals.
 - Unlike Output Perturbation models, K-Anonymity guarantees that the data released is accurate.
Methods for Achieving K-Anonymity

- Suppression – can replace individual attributes with a *
- Generalization – replace individual attributes with a broader category
 Example: (Age: 26 => Age: [20-30])
- We will be looking at K-Anonymity with suppression

Examples

The following database:

<table>
<thead>
<tr>
<th>First</th>
<th>Last</th>
<th>Age</th>
<th>Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harry</td>
<td>Stone</td>
<td>34</td>
<td>Ad-Aas</td>
</tr>
</tbody>
</table>
| John | Kroyer | 36 | Col-
| Beatrice| Stone | 34 | Ad-Aas|
| John | Delgado| 22 | May |

Can be 2-Anonymized with suppression as follows:

<table>
<thead>
<tr>
<th>First</th>
<th>Last</th>
<th>Age</th>
<th>Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Stone</td>
<td>34</td>
<td>Ad-Aas</td>
</tr>
<tr>
<td>John</td>
<td>*</td>
<td>34</td>
<td>Ad-Aas</td>
</tr>
<tr>
<td>*</td>
<td>Stone</td>
<td>34</td>
<td>Ad-Aas</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Rows 1 and 3 are identical and Rows 2 and 4 are identical

Minimum Cost K-Anonymity

- Obviously, we can guarantee k-anonymity by replacing every cell with a *, but this renders the database useless.
- The cost of K-Anonymous solution to a database is the number of *'s introduced.
- A minimum cost k-anonymity solution suppresses the fewest number of cells necessary to guarantee k-anonymity.

Results

- Minimum Cost 3-Anonymity is NP-Hard for $|\Sigma| = O(n)$ (Meyerson, Williams 2004)
- Minimum Cost 3-Anonymity is NP-Hard for $|\Sigma| = 3$ (Aggarwal et al. 2005)
- Minimum Cost 3-Anonymity is NP-Hard for $|\Sigma| = 2$ (Dondi et al. July 2007)
- We independently proved the same thing this summer.
Theorem: Minimum Cost 3-Anonymity is NP-Hard even with $|\Sigma| = 2$

- Lemma 1: There is a polynomial time reduction from the Edge Partition into Triangles and 4-stars problem to binary 3-Anonymity

- Lemma 2: Edge Partition into Triangles and 4-stars is NP-Complete

Triangles and 4-Stars

- A 4-Star is a simple graph with three edges, all three of which are incident to a common vertex v. v is called the center of the 4-Star. The other vertices are called the leaves of the 4-Star.

- A triangle is the complete graph with three vertices.

Edge Partition into Triangles And 4-Stars

Given a graph $G=(E,V)$ partition the set E into triples (e_i,e_j,e_k) such that for each triple (e_i,e_j,e_k) is either a triangle or a 4-Star.

Example:

- A 4-Star is a simple graph with three edges, all three of which are incident to a common vertex v. v is called the center of the 4-Star. The other vertices are called the leaves of the 4-Star.

Lemma 1: Edge Partition into Triangles and 4-Stars \leq_p Minimum Cost binary 3-Anonymity

Example 1:

Claim: Database can be 3-Anonymized using exactly 3 *'s per column \iff G can be edge partitioned into triangles and 4-Stars.
Lemma 1: Edge Partition into Triangles and 4-Stars \leq_p Minimum Cost binary 3-Anonymity

Example 2:

<table>
<thead>
<tr>
<th>(v_3, v_6)</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>(v_4, v_5)</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Lemma 2: Exactly One In Three SAT \leq_p Edge Partition into Triangles And 4-Stars

- Exactly One In Three Sat: Given a formula ϕ whose clauses each contain 3 variables, is there an assignment such that each clause contains exactly one true variable?
- Exactly One In Three SAT is known to be NP-Complete.
- Given a formula ϕ we construct a triangle free graph G_ϕ such that $E(G_\phi)$ can be partitioned into 4-Stars $\iff \phi$ is satisfiable.
- G_ϕ is constructed from clause gadgets and variable gadgets.

Clause Gadget

- A 5-Star is a simple graph with 4 edges all incident with a common vertex v (the center).

In our usage, v and p are considered private, while the other vertices are considered shared.

Note: In any 4-Star edge partition of a graph G which contains the clause gadget, v must be the center of exactly one 4-Star since v is the only vertex adjacent to p and has $\text{deg}(v) = 4$. Hence, the 4-Star must use exactly two of the shared edges.

Variable Gadget

- Let $d \in \mathbb{N}$ be given, a 3-Binary Tree of depth d is a complete tree of depth d where the root has three children and all other nodes have two children.

- Let $d \in \mathbb{N}$ be given, G_d is the graph formed by taking two 3-Binary trees of depth d, deleting 3 leaf nodes from each and adding 3 edges between the parents of the deleted leaf nodes so that each parent node still has degree 3.
Lemma 2: Exactly One In Three SAT \leq_p Edge Partition into Triangles And 4-Stars

- G_d is a gadget corresponding to each variable, the leaf vertices are considered shared, while all other vertices are considered private.

Proof Motivation:
Given a formula ϕ with variables x_1, \ldots, x_n and clauses c_1, \ldots, c_n, we can build a graph G using clause and variable gadgets such that any partition of G into 4-Stars corresponds to a satisfying assignment of ϕ and vice versa.

Is Minimum Cost 2-Anonymity NP-Hard?

- Without loss of generality, a 2-Anonymization partitions the rows into doubles and triples. Larger groups of rows could be split into smaller subgroups.

- Intuition 1: Minimum Weight Matching is easy and triples can only increase the number of stars per row.

- Problem: In some cases it is actually beneficial to use groups of three. Example:
Theorem: 2-Anonymity is in P

- We can reduce a 2-Anonymity instance to the Simplex Matching Problem
- Anshelevich and Karagiozova just showed that there is a polynomial time algorithm to solve Simplex Matching (STOC, 2007)

Simplex Matching

Given a hypergraph H with hyperedges of size 2 and 3, and a cost function $C(e)$ such that:
1. $(u,v,w) \in E(H) \rightarrow (u,v),(v,w),(u,w) \in E(H)$
2. $C(u,v) + C(u,w) + C(v,w) \leq 2 C(u,v,w)$

Find the minimum cost node partition into hyperedges

2-Anonymity \leq_p Simplex Matching

- Given a database D, build a hypergraph H with a node v_i for each row r_i.
- Let $C_{i,j}$ denote the number of *'s needed to anonymize the rows r_i, r_j. Similarly, define $C_{i,j,k}$.
- For every pair of rows (r_i, r_j) add a hyperedge $e_{i,j}$ with cost $C(e_{i,j}) = C_{i,j}$
- For every triple (r_i, r_j, r_k) add a hyperedge $e_{i,j,k}$ with $C(e_{i,j,k}) = C_{i,j,k}$

Do the Simplex Conditions Apply?

- $(u,v,w) \in E(H) \rightarrow (u,v),(v,w),(u,w) \in E(H)$
- Because $E(H)$ contains every pair.
- Note that adding an extra row to a double can only increase the number of *'s per row.

\[
\frac{1}{3}C_{i,j,k} \geq \frac{1}{2}C_{i,j}, \frac{1}{2}C_{j,k}, \frac{1}{2}C_{i,k}
\]

Therefore,

\[
2C_{i,j,k} \geq C_{i,j} + C_{j,k} + C_{i,k}
\]
2-Anonymity \leq_p Simplex Matching

- Recall that the optimal 2-Anonymity solution partitions the rows into groups of size 2 and 3. Larger groups can be split into smaller groups of size 2 and 3.
- Therefore, the optimal 2-Anonymity solution corresponds to the minimum cost partition of $V(H)$ into hyperedges.
- Because the Simplex Conditions apply we can find the minimum cost partition of $V(H)$ into hyperedges in polynomial time.