
Advanced Cryptography
CS 655

Week 9:
• SCRYPT (wrapup)
• Proof of Sequential Work/Proof of Space

1Spring 2023

Motivation: Online Exams during the Pandemic

2 19

e
r
e
m

a
h
B

o
c
k

S
e
u
n
g
h
o
o
n
L
e
e

S
a
m
s
o
n
Z
h
o
u

O
n
t
h
e
S
e
c
u
r
i
t
y
o
f
P
r
o
o
f
s
o
f
S
e
q
u
e
n
t
i
a
l
W
o
r
k
i
n
a
P
o
s
t
-

2/19

Motivation: Online Exams during the Pandemic

2 19
Jeremiah Blocki, Seunghoon Lee, Samson Zhou

On the Security of Proofs of Sequential Work in a Post-Quantum World

2/19

Motivation: Online Exams during the Pandemic

2 19

e
r
e
m

a
h
B

o
c
k

S
e
u
n
g
h
o
o
n
L
e
e

S
a
m
s
o
n
Z
h
o
u

O
n
t
h
e
S
e
c
u
r
i
t
y
o
f
P
r
o
o
f
s
o
f
S
e
q
u
e
n
t
i
a
l
W
o
r
k
i
n
a
P
o
s
t
-

2/19

Motivation: Online Exams during the Pandemic

2 19

e
r
e
m

a
h
B

o
c
k

S
e
u
n
g
h
o
o
n
L
e
e

S
a
m
s
o
n
Z
h
o
u

O
n
t
h
e
S
e
c
u
r
i
t
y
o
f
P
r
o
o
f
s
o
f
S
e
q
u
e
n
t
i
a
l
W
o
r
k
i
n
a
P
o
s
t
-

2/19

Motivation: Online Exams during the Pandemic

2 19

e
r
e
m

a
h
B

o
c
k

S
e
u
n
g
h
o
o
n
L
e
e

S
a
m
s
o
n
Z
h
o
u

O
n
t
h
e
S
e
c
u
r
i
t
y
o
f
P
r
o
o
f
s
o
f
S
e
q
u
e
n
t
i
a
l
W
o
r
k
i
n
a
P
o
s
t
-

2/19

Motivation: Online Exams during the Pandemic

2 19

e
r
e
m

a
h
B

o
c
k

S
e
u
n
g
h
o
o
n
L
e
e

S
a
m
s
o
n
Z
h
o
u

O
n
t
h
e
S
e
c
u
r
i
t
y
o
f
P
r
o
o
f
s
o
f
S
e
q
u
e
n
t
i
a
l
W
o
r
k
i
n
a
P
o
s
t
-

2/19

Proofs of Sequential Work

aka. Verifiable Delay Algorithm

χ ←
Prover P Verifier V

statement χ
Time T ∈ N

Proofs of Sequential Work
aka. Verifiable Delay Algorithm

verify(χ, T, τ) ∈
accept/reject

Completeness and Soundness in the random oracle model:

HProver P
χ ←

Verifier V
statement χ
Time T ∈ N

τ = τ (χ, T)

Proofs of Sequential Work
aka. Verifiable Delay Algorithm

verify(χ, T, τ) ∈
accept/reject

HProver P
χ ←

Verifier V
statement χ
Time T ∈ N

τ = τ (χ, T)

Completeness and Soundness in the random oracle model:

Completeness: τ (c, T) can be computed making T queries to H
Soundness: Computing any τ l s.t. verify(χ, T, τ l) =accept for
random χ requires almost T sequential queries to H

Proofs of Sequential Work
aka. Verifiable Delay Algorithm

verify(χ, T, τ) ∈
accept/reject

HProver P
χ ←

Verifier V
statement χ
Time T ∈ N

τ = τ (χ, T)

Completeness and Soundness in the random oracle model:

Completeness: τ (c, T) can be computed making T queries to H
Soundness: Computing any τ l s.t. verify(χ, T, τ l) =accept for
random χ requires almost T sequential queries to H

massive parallelism useless to generate valid proof faster ⇒
prover must make almost T sequential queries ∼ T time

x y

H H

x l
yl

queries y = H(x), yl = H(x l) where
y ⊆ xl ⇒ query xl was made after x

Random Oracles are Sequential

depth-robust if after removing any
e nodes a path of length d exists.

1 2 3 4 5 6

Depth-Robust Graphs (only [MMV’13])
DAG G = (V, E) is (e,d)

Graph Labelling

label £i = H(£parents(i)), e.g. £4 = H(£3,£2)

Three Basic Concepts

H-Sequence

13

Random Oracles are Sequential

• Let 𝐻𝐻: 0,1 ≤𝛿𝛿𝛿𝛿 → 0,1 𝛿𝛿 be a random oracle
• Suppose that the attacker may make 𝑠𝑠 − 1 rounds of sequential

queries
• Attacker Goal: output an H-sequence 𝑥𝑥0, … , 𝑥𝑥𝑠𝑠 of length 𝑠𝑠 with each

𝑥𝑥𝑖𝑖 ≤ 𝛿𝛿𝜆𝜆
• Suppose that attacker makes at most 𝑞𝑞 RO queries

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆

14

Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆

Proof Sketch:
Let LuckyGuess denote the event that for some i the string 𝐻𝐻(𝑥𝑥𝑖𝑖) is a
substring of 𝑥𝑥𝑖𝑖+1 but the attacker never actually made the query 𝐻𝐻(𝑥𝑥𝑖𝑖).
Claim 1: Pr LuckyGuess ≤ 𝑠𝑠(𝛿𝛿−1)𝛿𝛿

2𝜆𝜆

Proof of Claim 1: Fix any index i and any 𝑗𝑗 ≤ (𝛿𝛿 − 1)𝜆𝜆 we have

Pr 𝐻𝐻 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖+1 𝑗𝑗, 𝑗𝑗 + 𝜆𝜆 − 1 ≤
1
2𝛿𝛿

We now union bound over all indices 𝑖𝑖 ≤ 𝑠𝑠 and all 𝑗𝑗 ≤ (𝛿𝛿 − 1)𝜆𝜆

15

Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆

Proof Sketch:
Let Collision denote the event that for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑠𝑠 − 1 there is a query 𝑎𝑎𝑖𝑖 made in round i
and a query 𝑎𝑎𝑗𝑗 made in round j where 𝐻𝐻 𝑎𝑎𝑗𝑗 is a substring of 𝑎𝑎𝑖𝑖

Claim 2: Pr Collision ≤ 𝑞𝑞2𝛿𝛿𝛿𝛿
2𝜆𝜆

Proof of Claim 2: Fix any pair of queries ai and aj and any index k ≤ δ − 1 λ
Observe that H aj can be viewed as a random string picked after ai is fixed.

Pr 𝐻𝐻 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑖𝑖 𝑘𝑘, 𝑘𝑘 + 𝜆𝜆 − 1 ≤
1
2𝛿𝛿

We now union bound over all 𝑞𝑞
2 pairs of queries and all 𝑗𝑗 ≤ (𝛿𝛿 − 1)𝜆𝜆

16

Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆

Proof Sketch:

Pr LuckyGuess + Pr Collision ≤
𝑞𝑞2𝛿𝛿𝜆𝜆 + 𝑠𝑠𝛿𝛿𝜆𝜆

2𝛿𝛿

If the attacker produces an H-sequence of length s then at least one of
the events LuckyGuess or Collision must occur.

17

Collision: for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑠𝑠 − 1 𝐻𝐻 𝑎𝑎𝑗𝑗 is a substring of 𝑎𝑎𝑖𝑖
where the query 𝑎𝑎𝑖𝑖 (resp. 𝑎𝑎𝑗𝑗) is made in round i (resp. j).

LuckyGuess: for some i the string 𝐻𝐻(𝑥𝑥𝑖𝑖) is a substring of
𝑥𝑥𝑖𝑖+1 although attacker never queried 𝐻𝐻(𝑥𝑥𝑖𝑖).

The MMV’13 Construction

HProver P
χ ←

Verifier V
statement χ
Time T = 6

• Protocol specifies depth-robust
DAG G on T nodes

• Define “fresh” random oracle
Hχ(·) ≡ H(χ ·)

• Compute labels of G using Hχ

£1 £2 £3 £4 £5 £6

The MMV’13 Construction
HProver P

χ ←
Verifier V

statement χ

£l l l l l l£2 £3 £4 £5 £6
• G is (e, d) depth-robust

˜ l
i• φ commits P to labels {£ } 1

i∈V

i• i is bad if £l /= H(£l
parents(i))

Time T = 6
φ

Proof Sketch

φ
• Case 1: ≥ e bad nodes ⇒ will fail opening phase whp.

The MMV’13 Construction
HProver P

χ ←
Verifier V

statement χ

£l l l l l l£2 £3 £4 £5 £6
• G is (e, d) depth-robust

˜ l
i• φ commits P to labels {£ } 1

i∈V

i• i is bad if £l /= H(£l
parents(i))

Time T = 6
φ

Proof Sketch

φ
• Case 1: ≥ e bad nodes ⇒ will fail opening phase whp.
• Case 2: Less than e bad labels ⇒ ∃ path of good nodes

(by (e, d) depth-robustness) ⇒ P̃ made d sequential
queries (by sequantality of RO)

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

T = 15

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

right sibling
T = 15

left sibling

Weighted Depth-Robust
φ

Nodes at height h have weight 2ℎ

#Nodes at height h: 2𝑛𝑛−ℎ

Total Weight at Height h: 2𝑛𝑛

Total Weight of all Nodes: n2𝑛𝑛

weight=1, height 0

weight=2, height 1

weight=4, height 2

weight=8, height 3

Weighted Depth-Robust: Let S be any subset of nodes with total weight
wt(S) ≤ 𝛼𝛼2𝑛𝑛

Claim: 𝐺𝐺 − 𝑆𝑆 has a path of length d ≥ (1 − 𝛼𝛼)2𝑛𝑛

Intuition: Cannot delete too many nodes close to the root (high weight)
Deleting nodes close to the leaf has a small impact on the depth.

Intuition 2: A cheating prover will be caught proportional to the total
weight of deleted (inconsistent) nodes

Weighted-Depth-Robustness

• Suppose we delete S. Let 𝑫𝑫𝑺𝑺 be the set of nodes which are in S or
below some node in S.

• Claim: There is a directed path through all nodes in 𝑉𝑉 − 𝑫𝑫𝑺𝑺

24

Weighted-Depth-Robustness
• Claim: There is a directed path through all nodes in 𝑉𝑉 − 𝑫𝑫𝑺𝑺
• Proof Sketch (Induction on height of tree):

• By Inductive Assumption there is a path through all nodes on left (same for right)
• By construction there is a path from left root to every leaf node on right side
 Can piece paths together (and then connect right root to leaf node)

25

Left Right

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

T = 15

The New Construction

14

3

1 2

15

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

• P computes labelling £i = H(£parents(i)) and sends root
label φ = £T to V. Can be done storing only log(T) labels.

T = 15

• V challenges P to open a subset of leaves and checks
consistency (blue and green edges!)

Proof Sketch

The New Construction
φ T = 15

Proof Sketch
˜• P committed to all labels 𝐿𝐿𝑖𝑖 after sending φ = L15.

• i is bad if 𝐿𝐿𝑖𝑖 is not consistent i.e., i’s parents are 𝑥𝑥1, … , 𝑥𝑥𝛿𝛿 but
𝐿𝐿𝑖𝑖 ≠ 𝐻𝐻 𝐿𝐿𝑥𝑥1 , … , 𝐿𝐿𝑥𝑥𝛿𝛿

The New Construction
φ T = 15

Proof Sketch˜ l
i• P committed to labels £ after sending φ = £15.

• i is bad if 𝐿𝐿𝑖𝑖 is not consistent i.e., i’s parents are 𝑥𝑥1, … , 𝑥𝑥𝛿𝛿
but 𝐿𝐿𝑖𝑖 ≠ 𝐻𝐻 𝐿𝐿𝑥𝑥1 , … , 𝐿𝐿𝑥𝑥𝛿𝛿

• Let S ⊂ V denote the bad nodes and all nodes below.

The New Construction
φ

T = 15

Proof Sketch˜ l
i• P committed to labels £ after sending φ = £15.

i• i is bad if £l /= H(£l
parents(i)).

• Let S ⊂ V denote the bad nodes and all nodes below.
• Claim 1: ∃ path going through V − S (of length T − |S|).

The New Construction
φ T = 15

• Claim 2: P̃ can’t open |S|/T fraction of leafs.

Theorem: P̃ made only T (1 − c) sequential queries
⇒ will pass opening phase with prob. ≤ (1 − c)#of challenges

Wei

32

Three Problems of the [MMV’13] PoSW

1) Space Complexity : Prover needs massive (linear in T)
space to compute proof.

2) Poor/Unclear Parameters due to usage of sophisticated
combinatorial objects.

3) Uniqueness : Once an accepting proof is computed, many
other valid proofs can be generated (not a problem for
time-stamping, but for blockchains).

Three Problems of the [MMV’13] PoSW
1) Space Complexity : Prover needs massive (linear in T)

space to compute proof.
2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
3) Uniqueness : Once an accepting proof is computed, many other valid proofs can

be generated (not a problem for time-stamping, but for blockchains).
New Construction

1) Prover needs only O(log(T)) (not O(T)) space, e.g. for
T = 242 (≈ a day) that’s ≈ 10KB vs. ≈ 1PB.

2) Simple construction and proof with good concrete parameters.
3) Awesome open problem!

Construction and Proof Sketch

Mining Bitcoin (Proofs of Work)

Mining Bitcoin (Proofs of Work)

Ecological: Massive energy & hardware
waste.

Economical: Requires high rewards⇒
inflation and/or high transaction fees.

Security: E.g. buy old ASICs for 51%
attack.

Can we have a more “sustainable”
Blockchain?

Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique

39

Zero-Knowledge Proof for all NP

40

A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐿𝐿,𝐿𝐿

A L

L

A

Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝑣𝑣1 , … , 𝜎𝜎 𝑣𝑣𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.

41

A B

C D

E G
F

H

IJ

K
L

Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal clique. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.

42

NIZK Security (Random Oracle Model)

• Simulator is given statement to prove (e.g., 𝐺𝐺 is 3-COLORABLE)
• Simulator must output a proof 𝜋𝜋′𝑧𝑧 and a random oracle H’

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋′𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H
• Advantage: ADVD = 𝑃𝑃𝑟𝑟 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑟𝑟 𝐷𝐷𝐻𝐻′ z, 𝜋𝜋′𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)

43

Σ-Protocols

• Prover Input: instance/claim x and witness w

• Verifier Input: Instance x

• Σ-Protocols: three-message structure
• Prover sends first message m=P1(x,w; r1)
• Verifier responds with random challenge c
• Prover sends response R=P2(x,w,r1,c; r2)
• Verifier outputs decision V(x,m,c,R)
• Completeness: If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
• Soundness: If the claim x is false then V(x,c,R)=0 with probability at least ½
• Zero-Knowledge: Simulator can produce computationally indistinguishable transcript

44

Σ-Protocols and Fiat-Shamir Transform

• Convert Σ-Protocols into Non-Interactive ZK Proof
• Prover Input: instance/claim x and witness w
• Verifier Input: Instance x
• Step 1: Prover generates first messages for n instances of the protocol

• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zj=H(x,j, m1,….,mn) for
j=1 to n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)

• Step 3: Prover computes responses R1,…,Rn
• RiP2(x,w,ri,ci)

• Step 4: Prover outputs the proof 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑖𝑖 𝑖𝑖≤𝑛𝑛

45

Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to
n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof 𝜋𝜋 = 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Verifier: VNI(x,𝜋𝜋) check that for all 𝑖𝑖 ≤ 𝑛𝑛

1. V(x, 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖)=1 and
2. ci=SampleChallenge(zi) where zi=H(x,i, m1,….,mn)

46

Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to
n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof 𝜋𝜋 = 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Zero-Knowledge (Idea):
Step 1: Run simulator for Σ n-times to obtain n transcripts 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖 for each 𝑖𝑖 ≤ 𝑛𝑛.
Step 2: Program the random oracle so that H(x,i, m1,….,mn)=zi where
ci=SampleChallenge(zi)

47

Non-Interactive Proof of Sequential Work

• Key Idea: Apply Fiat-Shamir Transform!
• Interactive Verifier: Picks uniformly random challenge nodes 𝑐𝑐1, … , 𝑐𝑐𝑘𝑘
• Non Interactive Version: Let ℎ𝑥𝑥 denote the root of the Merkle-Tree output by the

prover. Define 𝑐𝑐𝑖𝑖 = 𝐻𝐻 𝑖𝑖, ℎ𝑥𝑥 . Non-Interactive Proof includes root ℎ𝑥𝑥 and
responses 𝑟𝑟1, … , 𝑟𝑟𝑘𝑘

• Non Interactive Verifier: generates the challenges 𝑐𝑐𝑖𝑖 = 𝐻𝐻 𝑖𝑖, ℎ𝑥𝑥 and verifies the
responses 𝑟𝑟1, … , 𝑟𝑟𝑘𝑘

• Security Analysis (sketch): If the attacker makes 𝑞𝑞 RO queries over at most 𝑇𝑇′

< 𝑁𝑁(1 − 𝜀𝜀) sequential rounds then s/he finds a valid PoSW probability at most

q 1 − 𝜀𝜀 𝑘𝑘 +
2 𝜆𝜆 𝑞𝑞2log 𝑁𝑁

2𝛿𝛿

48

Probability of finding an H-sequence longer than
T’

Probability of finding ``lucky” challenges

Dan Boneh, Joe Bonneau,
Benedikt Bünz, Ben Fisch

Crypto 2018

49

Verifiable Delay Functions

What is a VDF?

Verifier

50

What is a VDF?

51

• Setup(λ, T) ⟶ public parameters pp
pp specify domain X and range Y

• Eval(pp, x) ⟶ output y, proof π

PRAM runtime T with polylog(T) processors

• Verify(pp, x, y, π) ⟶ { yes, no }

Time complexity at most polylog(T)

Security Properties (Informal)
• Setup(λ, T) ⟶ public parameters pp

• Eval(pp, x) ⟶ output y, proofπ

52

(requires T steps)

• Verify(pp, x, y, π) ⟶ { yes, no }

Related Crypto Primitives

5
3

• Time-lock puzzles [RSW’96, BN’00, BGJPVW’16]

o Trapdoor (secret key) setup per puzzle
o Not ``publicly verifiable”

• Proof-of-sequential-work [MMV’13, CP’18]

o Publicly verifiable
o Not a function (output isn’t unique)

VDF minus any property is “easy”
54

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to others

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Goals:

• Puzzle can be generated quickly in time 𝑂𝑂(polylog 𝑇𝑇).
• Other parties can recover secret in sequential time Ω(𝑇𝑇).
• Secret is hidden from (massively parallel) attackers running in sequential time 𝑜𝑜(𝑇𝑇).

• Assumptions: Factoring N is hard and (without prime factors) it takes
sequential time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

55

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑥𝑥0 = 𝑥𝑥 // 𝑥𝑥0 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 ∗ 𝑥𝑥𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑥𝑥𝑖𝑖 = 𝑥𝑥2𝑖𝑖−1𝑥𝑥2𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑥𝑥𝑇𝑇

56

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑧𝑧 = 𝑥𝑥 // 𝑧𝑧 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑧𝑧 = 𝑧𝑧 ∗ 𝑧𝑧 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑧𝑧 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑧𝑧

57

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 with Trapdoor (Puzzle Generation):
Compute 𝜑𝜑 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1) and 𝑦𝑦 = 2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝜑𝜑 𝑁𝑁
output 𝑥𝑥𝑦𝑦 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

58

𝑂𝑂(log 𝑁𝑁) ≪ 𝑇𝑇 multiplication queries mod N

RSW Timelock Puzzle (Repeated Squaring)

• Assumptions: Factoring N is hard and (without prime factors) it takes
time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Is this a Verifiable Delay Function?

• Answer: Not publicly verifiable!
• Verifier who does not have prime factors (p,q) has to re-compute

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

59

Security Properties (Informal)
• Setup(λ, T) ⟶ public parameters pp

• Eval(pp, x) ⟶ output y, proofπ

1
1

(requires T steps)

• Verify(pp, x, y, π) ⟶ { yes, no }

VDF security more formally…
Sequentiality Game

12

Part I: Applications of VDFs

Permissionless
consensus

1
4

Randomness beacon

1
5

• Rabin ‘83

An ideal service that regularly publishes random
value which no party can predict or manipulate

Many uses for random beacons
16

Randomness beacon

``Public displays”
are easily corrupted

1
7

Public entropy source

Assumption:

1
8

(1) unpredictable, (2) adversary cannot fix stock prices

Stock price manipulation
1
9

Stock price randomness beacon
Hash(prices)

extractor

128 bits

pseudorandom
generator

Lots of bits

20 bitsClosing prices of 100 stocks:

The problem:
• Once prices settle a minute before

closing, attacker executes 20 last-
minute trades to influence seed.

• Attacker can predict outcome of
trades and choose favorable trades
to bias result

(seed)

Solution: slow things down with a VDF

• A solution: one hour VDF
• Attacker cannot tell what trades to execute

before market closes

• Uniqueness: ensures no ambiguity about
output

VDF

128 bits , π

Hash(prices) 20 bits

extractor

128 bits

(seed)

Simple Bulletin Board
Alice Bob Claire Zoe

Public Bulletin Board

ra rb rc rz

output

2
4

seed = Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

Problem: Zoe controls the final seed !!

Mildly
synchronous

Solution: slow things down with a VDF [LW’15]

Alice Bob Claire Zoe

ra rb rc rz

Public Bulletin Board (blockchain)

Hash(ra || rb || ⋯ || rz) ∈ {0,1}256

VDF H seed, π

2
5

Part II: Constructions
yI. x

(reverse permutation)

II.

This work

Followup:
Pietrzak’18,

Wesolowski’18

2
7

Hash Chain w/ Verifiable Computation

• SNARK = “succinct non-interactive argument of knowledge”
[G’10,GGPR’13, BCIOP’13, BCCT’13]

• STARK = “succinct transparent non-interactive argument of
knowledge” [M’00, BBHR’18]

2
8

Hash Chain w/ Verifiable Computation

Problem
• Proof generation slower than hash chain, without

massive parallelism

2
9

Newer VDFs [P’18, W’18]

• Let G be a finite cyclic group with generator g ∈ G
G = {1, g, g2, g3, … }

• Assumption: the group G has unknown size

pp = (G, H: X ⟶ G)

• Eval(pp, x): output

proof π = (proof of correct exponentiation)

T squarings

4
3

[P’18, W’18]

THE END

https://eprint.iacr.org/2018/601
Survey of VDFs

https://eprint.iacr.org/2018/712.pdf 44

https://eprint.iacr.org/2018/601

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to others

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Goals:

• Puzzle can be generated quickly in time 𝑂𝑂(polylog 𝑇𝑇).
• Other parties can recover secret in sequential time Ω(𝑇𝑇).
• Secret is hidden from (massively parallel) attackers running in sequential time 𝑜𝑜(𝑇𝑇).

• Assumptions: Factoring N is hard and (without prime factors) it takes
sequential time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

91

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑥𝑥0 = 𝑥𝑥 // 𝑥𝑥0 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 ∗ 𝑥𝑥𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑥𝑥𝑖𝑖 = 𝑥𝑥2𝑖𝑖−1𝑥𝑥2𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑥𝑥𝑇𝑇

92

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑧𝑧 = 𝑥𝑥 // 𝑧𝑧 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑧𝑧 = 𝑧𝑧 ∗ 𝑧𝑧 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑧𝑧 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑧𝑧

93

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 with Trapdoor (Puzzle Generation):
Compute 𝜑𝜑 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1) and 𝑦𝑦 = 2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝜑𝜑 𝑁𝑁
output 𝑥𝑥𝑦𝑦 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

94

𝑂𝑂(log 𝑁𝑁) ≪ 𝑇𝑇 multiplication queries mod N

RSW Timelock Puzzle (Repeated Squaring)

• Assumptions: Factoring N is hard and (without prime factors) it takes
time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Is this a Verifiable Delay Function?

• Answer: Not publicly verifiable!
• Verifier who does not have prime factors (p,q) has to re-compute

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

95

Wesolowski’s VDF Construction

• Public Parameter: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 (Generated by trusted party/MPC)
• Trapdoor Discarded: No one knows 𝑝𝑝, 𝑞𝑞

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Prover: Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Verifier: picks random prime B

• Prover: Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends π to the verifier.
• Verifier: Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Soundness: For any number B we have 2𝑇𝑇 = 2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝐵𝐵 + 𝐵𝐵 2𝑇𝑇

𝐵𝐵

96

Wesolowski’s VDF Construction

• Prover: Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Verifier: picks random prime B

• Prover: Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends π to the verifier.

• Verifier: Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Completeness: For any number B we have 2𝑇𝑇 = 2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝐵𝐵 + 𝐵𝐵 2𝑇𝑇

𝐵𝐵

π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵 = 𝑥𝑥
𝐵𝐵 2𝑇𝑇

𝐵𝐵 +(2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵)
𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑓𝑓(𝑥𝑥)

97

Wesolowski’s VDF Construction

• Prover: Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Verifier: picks random prime B

• Prover: Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends π to the verifier.

• Verifier: Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Soundness:

• Assumption for any 𝑧𝑧 ≠ 1 it is hard to find 𝑦𝑦 such that 𝑦𝑦𝐵𝐵 = 𝑧𝑧 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 when
𝐵𝐵 is random.

98

Wesolowski’s VDF Construction
(Non-Interactive VDF)
• Prover:

• Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Sets random coins 𝑅𝑅 = 𝐻𝐻 𝑓𝑓 𝑥𝑥 𝐵𝐵 = GenPrime(𝑅𝑅)

• Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Output (𝑥𝑥, 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 , π)

• Verifier:
• Compute 𝐵𝐵 = GenPrime(𝐻𝐻 𝑦𝑦)
• Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

99

Wesolowski’s VDF Construction
(Non-Interactive VDF)
• Verifier:

• Compute 𝐵𝐵 = GenPrime(𝐻𝐻 𝑦𝑦)
• Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Efficiency:
• Proof Size: 𝜋𝜋 is very short (just O(log N) bits)
• Prover Efficiency: extra 𝐎𝐎(𝑇𝑇) multiplications

• 𝐎𝐎(𝑇𝑇/ log 𝑇𝑇) multiplications
• Verifier Efficiency: 𝐎𝐎(log 𝑇𝑇) multiplications

100

Pietrzak’s Construction [ITCS19]

• Safe Prime: prime 𝑝𝑝 = 2𝑝𝑝′ + 1 such that 𝑝𝑝′ is also prime
• Assume 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where 𝑝𝑝 = 2𝑝𝑝′ + 1 and 𝑞𝑞 = 2𝑞𝑞′ + 1
• Quadratic Residues: 𝑄𝑄𝑅𝑅𝑁𝑁 = 𝑧𝑧2 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 𝑧𝑧 ∈ ℤ𝑁𝑁

∗

• Signed Quadratic Residues
• Represent elements of ℤ𝑁𝑁

∗ as − 𝑁𝑁−1
2

, … , 𝑁𝑁−1
2

• 𝑄𝑄𝑅𝑅𝑁𝑁
+ = 𝑥𝑥 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁

• Fact: The map . is an isomorphism from 𝑄𝑄𝑅𝑅𝑁𝑁 to 𝑄𝑄𝑅𝑅𝑁𝑁
+

• Fact: 𝑄𝑄𝑅𝑅𝑁𝑁
+ is a cyclic group with operation ∘defined as

𝑎𝑎 ∘ 𝑏𝑏 ≔ |𝑎𝑎𝑏𝑏 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁|
• Redefine Notation: 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁

+ 𝑥𝑥𝑖𝑖+1 ≔ 𝑥𝑥 ∘ 𝑥𝑥𝑖𝑖 e.g., 𝑥𝑥2 ≔ 𝑥𝑥 ∘ 𝑥𝑥

101

Pietrzak’s Construction [ITCS19]

• Safe Prime: prime 𝑝𝑝 = 2𝑝𝑝′ + 1 such that 𝑝𝑝′ is also prime
• Assume 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where 𝑝𝑝 = 2𝑝𝑝′ + 1 and 𝑞𝑞 = 2𝑞𝑞′ + 1
• Quadratic Residues: 𝑄𝑄𝑅𝑅𝑁𝑁 = 𝑧𝑧2 𝑧𝑧 ∈ ℤ𝑁𝑁

∗

• Signed Quadratic Residues
• Represent elements of ℤ𝑁𝑁

∗ as − 𝑁𝑁−1
2

, … , 𝑁𝑁−1
2

• 𝑄𝑄𝑅𝑅𝑁𝑁
+ = 𝑥𝑥 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁

• Fact: The map . is an isomorphism from 𝑄𝑄𝑅𝑅𝑁𝑁 to 𝑄𝑄𝑅𝑅𝑁𝑁
+

• Fact: 𝑄𝑄𝑅𝑅𝑁𝑁
+ is a cyclic group with operation ∘defined as

𝑎𝑎 ∘ 𝑏𝑏 ≔ |𝑎𝑎𝑏𝑏 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁|
• Fact: Membership in 𝑄𝑄𝑅𝑅𝑁𝑁

+ can be efficiently tested (unlike 𝑄𝑄𝑅𝑅𝑁𝑁)
• Fact: If primes p and q are safe then 𝑄𝑄𝑅𝑅𝑁𝑁

+ (and 𝑄𝑄𝑅𝑅𝑁𝑁) has not sub-group of small
order.

102

Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes f x = 𝑥𝑥2𝑇𝑇 (repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)
• Question: Does repeated squaring assumption change now that we

use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Answer: Not significantly…

• Observation 1: 𝑄𝑄𝑅𝑅𝑁𝑁 ≥ |ℤ𝑁𝑁
∗ |

4
so a random element in ℤ𝑁𝑁

∗ is in 𝑄𝑄𝑅𝑅𝑁𝑁
with probability at least 1

4
 An algorithm that can compute f x = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 correctly with probability
at least 𝜀𝜀 (over the selection of x in 𝑄𝑄𝑅𝑅𝑁𝑁) the same algorithm computes f x
= 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 correctly with probability at least 𝜀𝜀

4

103

Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes f x = 𝑥𝑥2𝑇𝑇
(repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)

• Does repeated squaring assumption change now that we use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Observation 2: Computing over (𝑄𝑄𝑅𝑅𝑁𝑁
+, ∘) is not significantly easier than

(𝑄𝑄𝑅𝑅𝑁𝑁 , ×)
• Suppose x in 𝑄𝑄𝑅𝑅𝑁𝑁 and y = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Let y′ = y and 𝑥𝑥′ = |𝑥𝑥| be the corresponding group elements in 𝑄𝑄𝑅𝑅𝑁𝑁

+

• We have 𝑦𝑦′ = 𝑥𝑥′2𝑇𝑇

• We have 𝑦𝑦 ∈ {𝑦𝑦′, 𝑁𝑁 − 𝑦𝑦′}
• Flip a coin and output 𝑦𝑦′ or 𝑁𝑁 − 𝑦𝑦′ (correct with probability 1

2
)

104

Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes f x = 𝑥𝑥2𝑇𝑇
(repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)

• Does repeated squaring assumption change now that we use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Observation 2: Computing over (𝑄𝑄𝑅𝑅𝑁𝑁
+, ∘) is not significantly easier than (𝑄𝑄𝑅𝑅𝑁𝑁 , ×)

• Suppose x in 𝑄𝑄𝑅𝑅𝑁𝑁 and y = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Let y′ = y and 𝑥𝑥′ = |𝑥𝑥| be the corresponding group elements in 𝑄𝑄𝑅𝑅𝑁𝑁

+

• We have 𝑦𝑦′ = 𝑥𝑥′2𝑇𝑇

• We have 𝑦𝑦 ∈ {𝑦𝑦′, 𝑁𝑁 − 𝑦𝑦′}
• Flip a coin and output 𝑦𝑦′ or 𝑁𝑁 − 𝑦𝑦′ (correct with probability 1

2
)

• An algorithm that computes f x = 𝑥𝑥2𝑇𝑇
over 𝑄𝑄𝑅𝑅𝑁𝑁

+ with probability 𝛿𝛿 (over the random
choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁

+) yields equally efficient (essentially) algorithm which computes
𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 with probability 𝛿𝛿

2
(over the random choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁)

105

Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes f x = 𝑥𝑥2𝑇𝑇
(repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)

• Does repeated squaring assumption change now that we use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Observation 2: Computing over (𝑄𝑄𝑅𝑅𝑁𝑁
+, ∘) is not significantly easier than (𝑄𝑄𝑅𝑅𝑁𝑁 , ×)

• An algorithm that computes f x = 𝑥𝑥2𝑇𝑇
over 𝑄𝑄𝑅𝑅𝑁𝑁

+ with probability 𝛿𝛿 (over the random
choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁

+) yields equally efficient (essentially) algorithm which computes
𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 with probability 𝛿𝛿

2
(over the random choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁)

• Combining Observations: An algorithm that computes computes f x = 𝑥𝑥2𝑇𝑇

over 𝑄𝑄𝑅𝑅𝑁𝑁
+ with probability 𝛿𝛿 (over the random choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁

+) yields equally
efficient (essentially) algorithm which computes 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 with probability 𝛿𝛿

8(over the random choice of 𝑥𝑥 in ℤ𝑁𝑁
∗)

106

Pietrzak’s Construction [ITCS19]

• HalvingProtocol(N,x,T,y) // Honest Prover: 𝑦𝑦 = 𝑥𝑥2𝑇𝑇

• If T=1 then Verifier outputs accept if 𝑥𝑥 ∘ 𝑥𝑥 = 𝑦𝑦; otherwise reject
• Prover sends μ = 𝑥𝑥2𝑇𝑇/2 to verifier
• If μ ∉ 𝑄𝑄𝑅𝑅𝑁𝑁

+ then verifier outputs reject; otherwise verifier picks a random
integer 𝑟𝑟 ∈ ℤ2𝜆𝜆 and sends it to the prover

• Sender/Prover compute 𝑥𝑥′ ≔ 𝑥𝑥𝑟𝑟 ∘ μ (= 𝑥𝑥𝑟𝑟+2𝑇𝑇/2)
• The sender/prover compute 𝑦𝑦′ = μ𝑟𝑟 ∘ 𝑦𝑦 (= 𝑥𝑥𝑟𝑟2𝑇𝑇/2+2𝑇𝑇)

• If prover is honest then 𝑥𝑥′ = 𝑥𝑥𝑟𝑟+2𝑇𝑇/2
and 𝑦𝑦′ = 𝑥𝑥′2𝑇𝑇/2

and 𝑦𝑦′ ∘ 𝑦𝑦′ = 𝑥𝑥′22(1+𝑇𝑇
2)

• If T/2 is even the sender/prover run HalvingProtocol(N, x′, 𝑇𝑇
2

, 𝑦𝑦′)
• If T/2 is odd the sender/prover run HalvingProtocol(N, x′, 𝑇𝑇

2
+ 1, 𝑦𝑦′ ∘ 𝑦𝑦′)

107

Pietrzak’s Construction [ITCS19]

• Non-Interactive version via Fiat-Shamir
• Efficiency of Halving Protocol

• Terminates after at most 𝑂𝑂(log 𝑇𝑇) rounds
• T replaced by T/2 or (T+1)/2 at each level of recursion

• Naïve implementation:
• Prover requires 𝑇𝑇

2𝑖𝑖 + log 𝜆𝜆 queries to ∘ at ith level of recursion

• Total work ∑𝑖𝑖=1
log 𝑇𝑇 𝑇𝑇

2𝑖𝑖 + log 𝜆𝜆 = 𝑂𝑂(𝑇𝑇 + log 𝑇𝑇 log 𝜆𝜆)
• Optimized Prover requires just 𝑂𝑂(𝑇𝑇 log 𝑇𝑇) additional queries to group

operations ∘
• Assume 𝑇𝑇 = 2𝑡𝑡 for simplicity

• Key idea: Store μ𝑖𝑖 = 𝑥𝑥2
𝑇𝑇

2𝑖𝑖 for each 𝑖𝑖 ≤ 𝑠𝑠 to avoid re-computation

108

Pietrzak’s Construction [ITCS19]

109

Proof

110

Proof of Theorem 1 (assuming Lemma 1)

111

112

113

114

Comparison for VDFs

• Non-Interactive version via Fiat-Shamir
• Pietrzak’s prover requires just 𝑂𝑂(𝑇𝑇 log 𝑇𝑇) additional ∘ queries

• Better than 𝑂𝑂(𝑇𝑇/ log 𝑇𝑇) [Wesolowski]

• Pietrzak’s proof size is 𝑂𝑂(log2 𝑇𝑇 log 𝑁𝑁)
• Worse than 𝑂𝑂(log 𝑁𝑁) [Wesolowski]

• Verifier Efficiency is 𝑂𝑂((𝜆𝜆 + 1) log 𝑇𝑇) queries to group operation ∘
• Slightly worse than [Wesolowski]

115

Thanks for Listening

116

	Advanced Cryptography�CS 655
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Proofs of Sequential Work
	Proofs of Sequential Work
	Proofs of Sequential Work
	Proofs of Sequential Work
	Three Basic Concepts
	H-Sequence
	Random Oracles are Sequential
	Random Oracles are Sequential
	Random Oracles are Sequential
	Random Oracles are Sequential
	The MMV’13 Construction
	The MMV’13 Construction
	The MMV’13 Construction
	The New Construction
	The New Construction
	Weighted Depth-Robustφ
	Weighted-Depth-Robustness
	Weighted-Depth-Robustness
	The New Construction
	The New Construction
	The New Constructionφ
	The New Constructionφ
	The New Constructionφ
	The New Constructionφ
	Wei
	Three Problems of the [MMV’13] PoSW
	Three Problems of the [MMV’13] PoSW
	Construction and Proof Sketch
	Mining Bitcoin (Proofs of Work)
	Slide Number 37
	Can we have a more “sustainable” Blockchain?
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	NIZK Security (Random Oracle Model)
	Σ-Protocols
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Non-Interactive Proof of Sequential Work
	Verifiable Delay Functions
	What is a VDF?
	What is a VDF?
	Security Properties (Informal)
	Related Crypto Primitives
	VDF minus any property is “easy”
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle(Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	Security Properties (Informal)
	VDF security more formally…
	Part I: Applications of VDFs
	Randomness beacon
	Many uses for random beacons
	Randomness beacon
	Public entropy source
	Stock price manipulation
	Stock price randomness beacon
	Solution:	slow things down with a VDF
	Simple Bulletin Board
	Solution:	slow things down with a VDF
	Part II: Constructions
	Hash Chain w/ Verifiable Computation
	Hash Chain w/ Verifiable Computation
	Newer VDFs [P’18, W’18]
	THE	END
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle(Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	Wesolowski’s VDF Construction
	Wesolowski’s VDF Construction
	Wesolowski’s VDF Construction
	Wesolowski’s VDF Construction �(Non-Interactive VDF)
	Wesolowski’s VDF Construction �(Non-Interactive VDF)
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Proof
	Proof of Theorem 1 (assuming Lemma 1)
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Comparison for VDFs
	Thanks for Listening

