Advanced Cryptography
CS 655

Week 9:
e SCRYPT (wrapup)
* Proof of Sequential Work/Proof of Space

Spring 2023

(@)

nI@ | I+ 1S

Motivation: Online Exams during the Pandemic
CS590 FINAL EXAM

@10 |0 1T |TIP|0 K I+ =1 |10 |

Onthe Security of Proofs of Sequential Work ina Post-Quantum World

[CS590] 5 mins late - having internet issue

Cinseer Goodman
Tue 5/2/2021 9:05 PM

To: Seunghoon Lee

Motivation: Online Exam & gosems © Nic

Dear Professor,

cs590 FI NAL EXAM Il\ﬂgoggTrﬁsise(riigﬁ?i?]rd(s‘it;gsr&?;lvwho is taking CS590 this semester.

| was not able to submit the final exam to the server on time due to

| promise | have not done any extra work after the exam time. |
hope it works.

an unexpected internet connectivity loss.
Uik ”‘UE It just went back 5 minutes later so | send you the file via email.
- Thank you.

(o) Best,
Cinseer Goodman

SIS O

- -

iy

S [CS590] 5 mins late - having internet issue

e

;g Cinseer Goodman

u Tue 5/2/2021 9:05 PM

‘E To: Seunghoon Lee

|

t cs59 Final Exam - Internet Connectivity Issue

\y L] [] L]
(o} Liar King 3
f O I Va | O | Tue 5/16/2021 9:45 AM I I I I C
)E % To: Seunghoon Lee -
)

p —.| answer_liarpdf g CS590 this semester.

o ﬁ acs > MB Vv

0 o< e server on time due to

f

IS ! Dear Professor, ‘ou the file via email.

0 You might not believe this, but the internet went down during the final fter the exam time. |

)f Exam since my cat accidentally chewed out my ethernet cable.

S | called maintenance, but the repair guy was assassinated on his way.

E (Then the severe tornado struck my town.

= I know it's been 2 weeks since the deadline, but this is the earliest | could

;g ¢ send the answer to you. Please understand.

U U‘U | swear | haven’t made any edits since the deadline.

e v

N ~ Kind regards,

It

. Liar Kin

M g

a

]

W |

o

r

K

i

n

a

P

(¢

S 2

19

SIS O

Motivation: Online Exams during the Pandemic

- -

5
S [CS590] 5 mins late - having internet issue

'e

;9 Cinseer Goodman

C Tue 5/2/2021 9:05 PM

‘[To: Seunghoon Lee

|

t cs59 Final Exam - Internet Connectivity Issue

Y

fg ' o I ‘ n Liar King

P [CS590] Internet issue - for real!!

;E g CS590 this semester.
1% Quantom Cheat _ _ - _

b Tue 5/2/2021 11:36 PM 1e server on time due to
s To: Saunghoon Lee ou the file via email.
0 o down during the final fter the exam time. |

f oa| answer_cheat.pdf sthernet cable.

< % : .

1S =E" 5 MB assinated on his way.

,g this is the earliest | could

u Hello Professor, e,

€

n Please believe this, somehow my internet went down!!

it | swear | haven't touched the file after the deadline.

(] Please receive my submission.

a I will upgrade my internet plan if | take your course

| again.

W

0 Best,

r Quantom Cheat

k

i

n Repl For C

a

P

o

> 2

19

D IVnI@ISI+I5 |0

Nt —

O 15 |OI—h|0 K I+ "= 1 |10 D 1]

—d

PP T P T M P
O InNI=H|O v I=h|O

V"= 1+ S D IS 1O |

el

v |0 |Tw IS5 "= IX15 |b‘|§'—|m"

—

S—

Internet problem

[CS590] Help, internet issue!!

@ CS590 final exam answer

@ ¢s590 internet went down

Fool Yoo
Wed 5/3/2021 7:13 PM

To: Seunghoon Lee

[oar answer_fool pdf v

IO SRV
Professor,

Finally, | got my internet back. It is already a day after the deadline,
but please take my answer sheet.
My mom thought | was playing a game and she cut off my ethernet

cable.. | immediately called maintenance but it took one day to fix it.

| can certainly prove that | haven't done any extra work after the
exam deadline. For real.

Thank you for your consideration.

Sincerely,

Fool Yoo

Reply Forward

[CS590] 5 mins late - having internet issue

Cinseer Goodman
Tue 5/2/2021 9:05 PM
To: Seunghoon Lee

1ternet Connectivity Issue

down during the final

v sthernet cable.
assinated on his way.
this is the earliest | could

ne.

my internet went down!!
le after the deadline.

if | take your course

[]
*MIC
-
g CS590 this semester.

1e server on time due to

'ou the file via email.
fter the exam time. |

19

D IVnI@ISI+I5 |0

Nt —

IS |OI—h|0 K I+ =1 S 10 | 1D

-

IS 1015 1o

..,..,._,uu_,w
c 1O 1D INnI=h|O 1»h 1—h

V) = | S| |

el

v |0 |Tw IS5 "= IX15 |b‘|§'—|m'-

—

S—

Internet problem

[CS590] Help, internet issue!!

[CS590] 5 mins late - having internet issue

Cinseer Goodman
Tue 5/2/2021 9:05 PM

@ CS590 final exam answer To: Seunghoon Lee

1ternet Connectivity Issue

@ ¢s590 internet went down

Fool Yoo _ PR L | | o EmIC

Wed 5/3/2021 7:13 PM

To: Seunghoon Lee g CS590 this semester.
[l answer_fool.pdf o - ' A o 1e server on time due to
uEw 2 MB

'ou the file via email.
fter the exam time. |

down during the final

Professor, N thernet cable.
assinated on his way.

Finally, | got my internet back. It is already a day after the deadline,
but please take my answer sheet.

My mom thought | was playing a game and she cut off my ethernet ne.
cable.. | immediately called maintenance b1t i *~=' ~na d-

| can certainly prove that | haven't do~

deadiine. For real. s
'?)r:zrk ﬁ:?u fgreyofrrégr?sideratir‘“ Wh Lo h St ,/‘. d 8 V\Its a Ye
Sincerely,

telling the truth?

Reply Forward

this is the earliest | could

Proofs of Sequential Work

aka. Verifiable Delay Algorithm
Prover P Verifier V

< Statement y ~
Time T € N 3 %

x<—°0

Proofs of Sequential Work
aka. Verifiable Delay Algorithm

Prover P Verifier V ‘
statement y P X Sy

Time T € N g

=10 D) o ‘ ‘ verify(x, T, 7) €
accept/reject

-

Proofs of Sequential Work
aka. Verifiable Delay Algorithm

Prover P Verifier V
statement y

x <@ g
~ Time T €N & %

L= 10T > u verify(x, T, 1) €
accept/reject

Completeness: 1(c, T) can be computed making T queries to H

Soundness: Computing any 1! s.t. verify(x, T, ') =accept for
random x requires almost T sequential queries to H

Proofs of Sequentlal Work

aka. \Verifiable Delay Algorithm

Prover P Verifier V
statement y

x <@ &
~ Time T €N ,;E

L= 10T = u verify(x, T, 1) €
accept/reject

Completeness: 1(c, T) can be computed making T queries to H

Soundness: Computing any 1! s.t. verify(x, T, ') =accept for
random x requires almost T sequential queries to H

massive parallelism useless to generate valid proof faster =
prover must make almost T sequential queries ~ T time

Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])

DAG G = (V,E) is (e, d)
1 2 3 4 5 6 depth-robust if after removing any
e nodes a path of length d exists.

Graph Labelling

Random Oracles are Sequential

H g . Queriesy = H(x), y' = H(x') where
> > v c ¥ |
| y € X' = query x' was made after x

X Yy y

y |
VAN

H-Sequence

Definition 3 (H-sequence). An H sequence of length s is a sequence
20y ..., s €10, 1 where for each i,1 < i < 5, H(z;) is contained tn ;11
as continuous substring, t.e., ;1 = al|H(z;)||b for some a,b € {0, 1}%.

I

: Zo 1 T2 TN-1 IN |

____________________ “~ T~ . RN N\ |
| | | \'N = ‘h'-»\‘ At

20, B1,. .., € {0,1}F st | . . . |

. | e

for each 1 < ¢ < N, there | | H el w e *- |

"exist @, b € {0,1}* such that ! A3 H e v AT w| |

| ? ? | | 7| @ b % | 3 |

i = of|H{ei)|b - . o

___________________ | _ - /// f,-" :

| _#-"f & f,-f r.__.-"'-" |

— — — — — — — — — — — — —— —_— —_— —_— —_— —_— —_ —_— —_ —_— —_ e — e e —_ —_ —_a

Random Oracles are Sequential

e Let H:{0,1}%°* - {0,1}* be a random oracle

e Suppose that the attacker may make s — 1 rounds of sequential
gueries

e Attacker Goal: output an H-sequence x,, ..., X of length s with each

e Suppose that attacker makes at most g RO queries

. . 251 +qsSA
Lemma: The attacker succeeds with probability at most - ;qs

Random Oracles are Sequential

. 1 251 +qsSA
Lemma: The attacker succeeds with probability at most - ;qs

Proof Sketch:

Let LuckyGuess denote the event that for some i the string H(x;) is a
substring of x;,; but the attacker never actually made the query H(x;).

Claim 1: Pr[LuckyGuess] < 5(52_,11)

Proof of Claim 1: Fix any indexiand anyj < (6 — 1)A we have

. " 1
Pr{H(x) = xiy2] + 2~ 1] o

We now union bound over all indicesi < sandallj < (6 — 1)4

Random Oracles are Sequential

: o 252 +qs6A
Lemma: The attacker succeeds with probability at most = ;qu

Proof Sketch:

Let Collision denote the event that forsome 1 < i <j < s — 1 thereis a query a; made in round i
and a query a; made in round j where H(aj) is a substring of a;

2
Claim 2: Pr[Collision] < ? i)l
2

Proof of Claim 2: Fix any pair of queries a; and a; and any indexk < (8§ — 1)A

Observe that H(aj) can be viewed as a random string picked after a; is fixed.

Pr [H(aj) = a;[k, k+ 21— 1]] s%

We now union bound over all (62’) pairs of queriesand all j < (6§ — 1)4

Random Oracles are Sequential

. s 252 +qsSA
Lemma: The attacker succeeds with probability at most - ;qu

Proof Sketch:

o g2 + séA
Pr|LuckyGuess] 4+ Pr[Collision] < 57
If the attacker produces an H-sequence of length s then at least one of
the events LuckyGuess or Collision must occur.

LuckyGuess: for some i the string H(x;) is a substring of Collision: forsome 1 <i<j<s-—1 H(aj) is a substring of q;
Xi+1 although attacker never queried H(x;). where the query a; (resp. a;) is made in round i (resp. j).

The MMV’13 Construction

Prover P Verifier V 0
statement y | X gy
-« - ¢ .
Time T =6 : §

e Protocol specifies depth-robust

DAG G on T nodes F—»fy oo k) »f »Fs
e Define “fresh” random oracle

Hy() =H(x ")
o Compute labels of G using H y

The MMV’13 Construction

Prover P Verifier V
statement y

-
Time T = 6 / §
.
v U

Proof Sketch
e G is (e, d) depth-robust £ gyt ——F

e @ commits P to labels {£]}iev
* | Isbad if £II /_H(£Iparents(|))

xe‘@

@
e Case 1: = e bad nodes = will fail opening phase whp.

The MMV’13 Construction

Prover P Verifier V

statement y X <—°@
Time T =6
%

b

G is (e, d) depth-robust %_@_@_m

@ commits P to labels {£; Yiev
i is bad if £ £~H(E!

Proof Sketch

arents(l))

@
e Case 1. = e bad nodes = will fail opening phase whp.

o Case 2: Less than ebad labels = 3 path of good nodes
(by (e, d) depth-robustness) = P made d sequential
gueries (by sequantality of RO)

The New Construction

For every leaf i add all edges (j, 1) wherej is left sibling of
node on path i — root

The New Construction

/
left sibling \
N

For every leaf i add all edges (j, 1) where| Is left sibling of
node on path i — root

right sibling

Weighted Depth-Robust

AN~

Nodes at height h have weight 2"
#Nodes at height h: 2"~
Total Weight at Height h: 2™

Total Weight of all Nodes: n2"

P weight=8, height 3

weight=4, height 2

weight=2, height 1

= weight=1, height O

Weighted Depth-Robust: Let S be any subset of nodes with total weight
wt(S) < a2™

Claim: G — S has a path of lengthd = (1 — a)2"

Intuition: Cannot delete too many nodes close to the root (high weight)
Deleting nodes close to the leaf has a small impact on the depth.

Intuition 2: A cheating prover will be caught proportional to the total
weight of deleted (inconsistent) nodes

Weighted-Depth-Robustness

e Suppose we delete S. Let be the set of nodes which arein S or
below some node in S.

e Claim: There is a directed path through all nodes in V —

Weighted-Depth-Robustness

e Claim: There is a directed path through all nodes in IV —

* Proof Sketch (Induction on height of tree):
e By Inductive Assumption there is a path through all nodes on left (same for right)

e By construction there is a path from left root to every leaf node on right side

=» Can piece paths together (and then connect right root to leaf node)

Left

Right

The New Construction

For every leaf I add all edges (j, 1) where| is left sibling of
node on path i — root

15

The New Construction

1 2

For every leaf i add all edges (j, i) where| is left sibling of
node on path i — root

o P computes labelling £i = H(£parents(i)) and sends root

label ¢ = £7 to V. Can be done storing only log(T) labels.
e V challenges P to open a subset of leaves and checks

consistency (blue and green edges!)

The New Construction
@ T= 15

Proof Sketch

The New Construction
@ T=15

Proof Sketch

« P committed to all labels L; after sending ¢ = Ljs.
e iisbadif L; is not consistent i.e., I's parents are xq, ..., xs but

Li # H(Ly,, -, Ly,

The New Construction
()

ISSENNA

Propf Sketch

e P committed to labels £ after sending ¢ = £35.
e Iisbadif L; is not consistent I.e., I's parents are x4, ..., X

but L; # H(Ly,, ..., Ly,
e Let S c V denote the bad nodes and

The New Construction
)

[SRENERS

Propf Sketch

P committed to labels £ after sending @ = £1s.
i is bad if £ /=H(E

arents I

Claim 1: 3

e Let S c V denote the bad nodes and
e Claim 2: P can't open |S|/T fraction of leafs.

Wel

Three Problems of the [MMV’13] PoSW

1) Space Complexity :
2) Poor/Unclear Parameters

3) Uniqueness :

Three Problems of the [MMV’13] PoSW

1) Space Complexity :

2) Poor/Unclear Parameters
3) Uniqueness :

New Construction

1) Prover needs only O(log(T)) (not O(T)) space, e.g. for
T = 242 (~ aday) that's ~ 10KB vs.~ 1PB.
2) Simple construction and proof with good concrete parameters.

3) Awesome open problem!

Construction and Proof Sketch

7
S
=
(-
O}
ol
O -
O
S
an
=
@)
@)
o
B
.m
=t
M

Mining Bitcoin (Proofs of Work)

3 '..- ".:ll..-- T]
B Kncminer

Can wehave a more “sustainable”
Blockchain?

/ero-Knowledge Proof for all NP

e CLIQUE
e Input: Graph G=(V,E) and integer k>0
e Question: Does G have a clique of size k?

e CLIQUE is NP-Complete
e Any problem in NP reduces to CLIQUE
e A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that form a clique

/ero-Knowledge Proof for all NP

L
Com(O () A) ' Com(l'rA,L)>

Com(l TLA) . COm(b, rlf‘,OL)

x-

/ero-Knowledge Proof for all NP

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that for a clique

Prover commits to a permutation o over V

1

2. Prover commits to the adjacency matrix A4 (s) of o(G)
3. Verifier sends challenge c (either 1 or 0)
4

If c=0 then prover reveals o and adjacency matrix 4,)
1. Verifier confirms that adjacency matrix is correct for o (G)

5. If c=1 then prover reveals the submatrix formed by first
rows/columns of A,) corresponding to o(vy), ..., (V)
1. Verifier confirms that the submatrix forms a clique.

/ero-Knowledge Proof for all NP

 Completeness: Honest prover can always make honest verifier accept

* Soundness: If prover commits to adjacency matrix 4,4 of 0(G) and
can reveal a clique in submatrix of A,) then G itself contains a k-
cliqgue. Proof invokes binding property of commitment scheme.

e Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal cligue. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.

NIZK Security (Random Oracle Model)

e Simulator is given statement to prove (e.g., G is 3-COLORABLE)
 Simulator must output a proof ', and a random oracle H’

e Distinguisher D
* World 1 (Simulated): Given z, ', and oracle access to H’

e World 2 (Honest): Given z, i, (honest proof) and oracle access to H
e Advantage: ADV, = |Pr[D¥(z,) = 1] — Pr[D"'(z, ') = 1]|

e Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

* NIZK proof m, is transferrable (contrast with interactive ZK proof)

>.-Protocols

e Prover Input: instance/claim x and witness w
e Verifier Input: Instance x

e 2-Protocols: three-message structure
* Prover sends first message m=P,(x,w; r,)
Verifier responds with random challenge c
Prover sends response R=P,(x,w,r,,c; r,)
Verifier outputs decision V(x,m,c,R)
Completeness: If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
Soundness: If the claim x is false then V(x,c,R)=0 with probability at least %
Zero-Knowledge: Simulator can produce computationally indistinguishable transcript

>-Protocols and Fiat-Shamir Transform

e Convert X-Protocols into Non-Interactive ZK Proof
e Prover Input: instance/claim x and witness w
 Verifier Input: Instance x

e Step 1: Prover generates first messages for n instances of the protocol
e m, =P,(x,w; r)foreachi=1ton
e Step 2: Prover uses random oracle to extract random coins zj=H(x,j, m,....,m_) for
j=1ton
e Prover samples challenges c,...,c, using random strings z,,...,z, i.e., c=SampleChallenge(z,)

 Step 3: Prover computes responses R;,...,.R
e R €P,(x,w,r,c)

* Step 4: Prover outputs the proof {(m;, c;, z;)}i<n

>-Protocols and Fiat-Shamir Transform

e Step 1: Prover generates first messages for n instances of the protocol
* m,=P,(x,w; r) foreachi=1ton

 Step 2: Prover uses random oracle to extract random coins z=H(x,i, m,,....,m_) for i=1 to
n

e Prover samples challenges c,,...,c, using random strings z,,...,z, i.e,, c=SampleChallenge(z,)

 Step 3: Prover computes responses R;,...,. R,
e R €P,(x,w,r,c)

o Step 4: Prover outputs the proof m = {(m;,c;, R;)}i<n,
Verifier: V,(x,7) check thatforalli < n

1.V(x, (m;, c;, R;))=1and

2. c=SampleChallenge(z,) where z.=H(x,i, m,,.....m_)

>-Protocols and Fiat-Shamir Transform

e Step 1: Prover generates first messages for n instances of the protocol
* m,=P,(x,w; r) foreachi=1ton

 Step 2: Prover uses random oracle to extract random coins z=H(x,i, m,,....,m_) for i=1 to
n

e Prover samples challenges c,,...,c, using random strings z,,...,z, i.e,, c=SampleChallenge(z,)

 Step 3: Prover computes responses R;,...,. R,
e R €P,(x,w,r,c)

o Step 4: Prover outputs the proof m = {(m;,c;, R;)}i<n,
Zero-Knowledge (Idea):
Step 1: Run simulator for X n-times to obtain n transcripts (m;, ¢;, R;) for each i < n.

Step 2: Program the random oracle so that H(x,i, m,,.....m)=z, where
c.=SampleChallenge(z,)

Non-Interactive Proof of Sequential Work

e Key Idea: Apply Fiat-Shamir Transform!
* Interactive Verifier: Picks uniformly random challenge nodes ¢y, ..., ¢i

* Non Interactive Version: Let i, denote the root of the Merkle-Tree output by the
prover. Define ¢; = H(i, h,). Non-Interactive Proof includes root h, and
responses 1y, ..., Ty

* Non Interactive Verifier: generates the challenges ¢; = H(i, h,.) and verifies the
responses 1y, ..., Ty

 Security Analysis (sketch): If the attacker makes g RO queries over at most T
< N(1 — ¢) sequential rounds then s/he finds a valid PoSW probability at most

21 q%logN
q(1 — &)k + >3

Probability of finding an H-sequence longer than

Probability of finding “lucky” challenges -

49

Dan Boneh, Joe Bonneau,
Benedikt Blinz, Ben Fisch

Crypto 2018

50

What is a VDF?

Function — unique output for every F
Input
Delay — can be evaluated intime T

cannot be evaluated in time (1-€)T
on parallel machine

Verifiable — correctness of output can V-
be verified efficiently v ARE

Verifier

What is a VDF?
e Setup(A, T) — public parameters pp

» pp specify domain X and range Y

 Eval(pp, x) — outputy, proofm

» PRAM runtime T with polylog(T) processors
* Verify(pp, x,y, 1) — {yes, no}
» Time complexity at most polylog(T)

52

Security Properties (Informal)

e Setup(A, T) — public parameters pp

e Eval(pp, X) — outputy, proofrmr (requires T steps)

* Verify(pp, X, y, m) — {yes, no}

“Soundness”: if Verify(pp, x, y,) = Verifylpp, x, y’, ') = yes

then y=y’

“g-Sequentiality”: if A is a PRAM algorithm, time{lA) < o(T),

e.0
=

.
-

T)=(1-¢7 then Prl Alpp, X) =y] <negligible(A)

. 01

Related Crypto Primitives

 Time-lock puzzles [rRsw’96, BN’00, BGIPVW’16]

O Trapdoor (secret key) setup per puzzle
O Not publicly verifiable”

* Proof-of-sequential-work [Mmv’13, cp’18]
O Publicly verifiable
O Not a function (output isn’t unique)

VDF minus any property is “easy”

» Not Verifiable — chained one-way function

* No Delay — Many moderately hard functions

with efficient verification, e.g. discrete log
g’ =x

» Not a Function — Proofs of sequential work

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to others

f(x) = x2 mod N

* Goals:

e Puzzle can be generated quickly in time O(polylog T).

e Other parties can recover secret in sequential time Q(T).

e Secret is hidden from (massively parallel) attackers running in sequential time o(T).
e Assumptions: Factoring N is hard and (without prime factors) it takes

sequential time Q(T) to compute f(x) = x2 mod N

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
xo=x //xy=x%modN
fori=1to T | | |
X; = x;_1*x;_ymod N //x; =x% x% "mod N = x% mod N
output x7

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
z=x //z=x%modN
fori=1toT |
z=z+xzmodN //z=x% modN
output z

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))®secret)
Trapdoor: p, g must not be known to prover

f(x) = x* mod N

Computing f(x) with Trapdoor (Puzzle Generation):
Compute 9(N) = (p — 1)(q — 1) and y = 2T mod ¢(N)
output x¥ mod N

O(log N) < T multiplication queries mod N

RSW Timelock Puzzle (Repeated Squaring)

* Assumptions: Factoring N is hard and (without prime factors) it takes
time Q(T) to compute f(x) = x2 mod N

e |s this a Verifiable Delay Function?

 Answer: Not publicly verifiable!

e Verifier who does not have prime factors (p,q) has to re-compute
T
f(x) =x% modN

Security Properties (Informal)

Setup(A, T) — public parameters pp

Eval(pp, X) — output y,

Verify(pp, X, y, t) — {yes, no}

proof IT (requires T steps)

“Soundness’”:

if veﬂfy(ppf X, y) n) - ve”fy(pp: X, y,) n,) - \/E’S
then y=y’

“o-Sequentiality”: if A is a PRAM algorithm, time{lA) <o(T),

e 0
=

.
-

{7
. Ot 1

4

£

¥
/J

then Pr{ Alpp, X) =y] < negligible(A)

12

VDF security more formally...
A

pp « Setup(A,T) //lsample setup params

L — Ay(pp,T) /ladversary preprocesses params

x < X //choose a random challenge input X
vi— A (L, pp,x) //ladversary computes output y

A= (A, A;) " "wins” the gameify, = ys.t. Eval(pp,x) = (y,m)

Def: VDF is (p, 0)-sequential if no (A, A,) with A, runtime poly{4)
and A; PRAM runtime o (T) on p(T) processors wins the game with
prob. > negl{4)

Part |: Applications of VDFs

Tl ~ Y
I : Alice Bob T ‘:d. : I- }ii 1, k,
% fIik
| Vs - | Tl ?
Carol
Randomness Multiparty Timestamping Propf-c?f- Permissionless
beacons randomness replication consensus

Randomness beacon
e Rabin ‘83

An ideal service that reqularly publishes random
value which no party can predict or manipulate

16

Many uses for random beacons

Cryptographic proofs Leader election

Randomness beacon

“Public displays”
are easily corrupted

1ROTH

—
4331221 27

Public entropy source

Stock prices

Your Company, Inc. {YCDM]I‘ 26.58 A 5.68

o
- Tl ;]M ?w i
10 ||';‘I'=I!. ;"- i

| |;|'I| .": -,l: I '1}'"" :1i||‘| Ilj|||-l}:l \ IIII,' !1' |II,'I ’|I.-|,|il| '.;FI f :'.] ! ljil-’; | ML

\ II.

5

D |
10am 11am 12pm 1pm 2pm 3pm 4pm

Assumption: (1) unpredictable, (2) adversary cannot fix stock prices

Stock price manipulation

MICHAEL
LEWIS

FREQUENCY

TRADI N G | THE EASY WAY TO GET STARTED |

Everything You Need to Know, Incdluding:

_ TRADING

ODELS

MICHAEL DURBIN,.... - GEWEI! YE. owp

Stock price randomness beacon
Closing prices of 100 stocks: ch(nrice m

* Once prices settle a minute before

closing, attacker executes 20 last- m (seed)

minute trades to influence seed.

pseudorandom

e Attacker can predict outcome of SEINETEET

trades and choose favorable trades _

to bias result

Solution: slow things down with a VDF

e A solution: one hour VDF extractor

e Attacker cannot tell what trades to execute {
before market closes iﬁi’ﬂi

e Uniqueness: ensures no ambiguity about
output

(seed)

Simple Bulletin Board

a rb o I,

ice L eon Jf core IR 7o

Mildly
synchronous
Public Bulletin Board
output seed =Hash(r, || r,|]|---]| r,) € {0,1}>%6

Problem: Zoe controls the final seed !

Solution: slow things down with a VDF

d

) 4

rb C

A 2 v

3 E3 B3 ———— S

y4

\Vi

Public Bulletin Board (blockchain)

l

Hash(r, || 1o [| -+ 1] r,) € {0,1}%°

VU -

seed, TT

Part II; Constructions
. X - I~ @— 0— 0— 0— @— 00— O—y

(reverse permutation) |

<
SNARK/STARK proof 7T This work
____________________ R
_ . 2° A tion:
1. y=g9° €G Ssumption Followup:
the group G Pietrzak’18,
7T = {proof of correct has unknown | Wesolowski’18

exponentiation} size

Hash Chain w/ Verifiable Computation

I[A

SNARK = *succinct non-interactive argument of knowledge”
[G'10,GGPR’13, BCIOP'13, BCCT'13]

STARK = “succinct transparent non-interactive argument of
knowledge” [M'00, BBHR'18]

Hash Chain w/ Verifiable Computation

I[A

Problem

* Proof generation slower than hash chain, without
massive parallelism

Newer VDFs [P'18, W 18]

e Let G be afinite cyclic group with generator g€ G
G={1,g,8%83..}

e Assumption: the group G has unknown size

0= (G, H:X— G) T squarings J

* Eval(pp, x): output Y = H(a:)(QT) - G

proof TU = (proof of correct exponentiation) [p’18, W’18]

https://eprint.iacr.org/2018/601
Survey of VDFs

https://eprint.iacr.org/2018/712.pdf y

https://eprint.iacr.org/2018/601

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to others

f(x) = x2 mod N

* Goals:

e Puzzle can be generated quickly in time O(polylog T).

e Other parties can recover secret in sequential time Q(T).

e Secret is hidden from (massively parallel) attackers running in sequential time o(T).
e Assumptions: Factoring N is hard and (without prime factors) it takes

sequential time Q(T) to compute f(x) = x2 mod N

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
xo=x //xy=x%modN
fori=1to T | | |
X; = x;_1*x;_ymod N //x; =x% x% "mod N = x% mod N
output x7

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
z=x //z=x%modN
fori=1toT |
z=z+xzmodN //z=x% modN
output z

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))®secret)
Trapdoor: p, g must not be known to prover

f(x) = x* mod N

Computing f(x) with Trapdoor (Puzzle Generation):
Compute 9(N) = (p — 1)(q — 1) and y = 2T mod ¢(N)
output x¥ mod N

O(log N) < T multiplication queries mod N

RSW Timelock Puzzle (Repeated Squaring)

* Assumptions: Factoring N is hard and (without prime factors) it takes
time Q(T) to compute f(x) = x2 mod N

e |s this a Verifiable Delay Function?

 Answer: Not publicly verifiable!

e Verifier who does not have prime factors (p,q) has to re-compute
T
f(x) =x% modN

Wesolowski’s VDF Construction

e Public Parameter: N = pq (Generated by trusted party/MPC)
e Trapdoor Discarded: No one knows p, g

f(x) = x2 mod N
* Prover: Computesy = f(x) = x2 mod N and sends y to verifier
* Verifier: picks random prime B

oT
* Prover: Computes T = x\B‘mod N and sends 1 to the verifier.

» Verifier: Checks that y = wBx2 ™04 Binod N

T
e Soundness: For any number B we have 2" = (2"mod B) + B {%‘

Wesolowski’s VDF Construction

* Prover: Computesy = f(x) = x2 mod N and sends y to verifier
* Verifier: picks random prime B

oT
* Prover: Computes T = x\B‘mod N and sends 1 to the verifier.

» Verifier: Checks that y = wBx2 ™04 Binod N
T
» Completeness: For any number B we have 27 = (2"mod B) + B {%‘
2T
B|—=-|+(2" mod B)
mBx2 modB — | P mod N = x2 mod N = f(x)

Wesolowski’s VDF Construction

* Prover: Computesy = f(x) = x2 mod N and sends y to verifier
* Verifier: picks random prime B

oT
* Prover: Computes T = x\B‘mod N and sends 1 to the verifier.

» Verifier: Checks that y = wBx2 ™04 Binod N

e Soundness:

e Assumption for any z # 1 itis hard to find y such that y® = z mod N when
B is random.

Wesolowski’s VDF Construction
(Non-Interactive VDF)

* Prover:

e Computesy = f(x) = x2 mod N and sends y to verifier
e Sets random coins R = H(f(x)) B = GenPrime(R)

7]

e Computest = xBlmod N
* Output (x,y = f(x),)

* Verifier:

e Compute B = GenPrime(H (y))

e Checks thaty = mBx?2 ™04 Bmod N

Weso
(Non-

e Verifier:

owski’s VDF Construction
nteractive VDF)

e Compute B = GenPrime(H(y))
e Checks thaty = mBx?2 ™04 Bmod N

e Efficiency:
* Proof Size: 7 is very short (just O(log N) bits) ©
* Prover Efficiency: extra O(T) multiplications ®
 O(T/logT) multiplications ©
« Verifier Efficiency: O(log T') multiplications ©

Pietrzak’s Construction [ITCS19]

 Safe Prime: prime p = 2p’ + 1 such that p’ is also prime
e Assume N = pg wherep =2p'+1andg=2q +1
e Quadratic Residues: QRy = {z? mod N|z € Z};}
* Signed Quadratic Residues
. N-1 N—-1

* Represent elements of 7 as {— 5 T}

* QRy = {lx| | x € QRy}

 Fact: The map |.| is an isomorphism from QRy to QR

* Fact: QR}, is a cyclic group with operation o defined as

acb:=|abmodN|
* Redefine Notation: x € QR 2 x'Tl:=xox' eg, x? :=xo0x

Pietrzak’s Construction [ITCS19]

o Safe Prime: prime p = 2p’ + 1 such that p’ is also prime
 Assume N = pgwherep =2p'+1andq=2q +1
 Quadratic Residues: QRy = {z?|z € Z}}
e Signed Quadratic Residues
» Represent elements of Zy as {—% %}
QRy = {lx| | x € QRy}
Fact: The map |.| is an isomorphism from QRy to QR
Fact: QRy, is a cyclic group with operation o defined as
aob:=|abmod N|
Fact: Membership in QR can be efficiently tested (unlike QRy)

Fagt: If primes p and q are safe then QR (and QR) has not sub-group of small
order.

Pietrzak’s Construction [ITCS19]

* Prover: Given x € QR;,, N, T
e Computes f(x) = xZT (repeated squaring with operation y2 =y oY)

* Question: Does repeated squaring assumption change now that we
use QR;;?

 Answer: Not significantly...
e Observation 1: |QRy| = 2y
with probability at Ieasti

so a random element in Zy is in QRy

=>» An algorithm that can compute f(x) = x2 mod N correctly with probability
at least € (over the selection of x in QRy) the same algorithm computes f(x)

= x2 ' mod N correctly with probability at Ieast%

Pietrzak’s Construction [ITCS19]

* Prover: Given x € QRY,,N, T
e Computes f(x) = xZT (repeated squaring with operation yz =y oY)

* Does repeated squaring assumption change now that we use QR};?

* Observation 2: Computing over (QRy;, o) is not significantly easier than
(QRy, X)

Suppose x in QRy and y = x2 mod N

Let y' = |y| and x" = |x| be the corresponding group elements in QR

We have y’ = x'2

We havey € {y',N —y'}

Flip a coin and output y' or N — y' (correct with probability %)

Pietrzak’s Construction [ITCS19]

e Prover: Given x € QRTJJ{,,N,T
« Computes f(x) = x? (repeated squaring with operation y* := y o y)

* Does repeated squaring assumption change now that we use QR},?

* Observation 2: Computing over (QR}y, °) is not significantly easier than (QRy , X)
e Suppose xin QRy andy = x2 ' mod N
e Lety’ = |y| and x’ = |x| be the corresponding group elements in QR};
« We havey' = x'2"
e Wehavey € {y',N —y'}
 Flip a coin and output y' or N — y' (correct with probability %)

* An algorithm that computes f(x) = x2' over QRj; with probability § (over the random
cth)ice of x in QRy;) yields e%ually efficient (essentially) algorithm which computes

x? mod N with probability > (over the random choice of x in QR)

Pietrzak’s Construction [ITCS19]

* Prover: Given x € QRY,, N, T
« Computes f(x) = x? (repeated squaring with operation y* := y o y)

* Does repeated squaring assumption change now that we use QR},?

e Observation 2: Computing over (QR+ o) is not significantly easier than (QRy , X)
* An algorithm that computes f(x) = x%" over QR with probability & (over the random
cth>|ce of x in QR},) yields e%ually efficient (essentlally) algorithm which computes

x? mod N with probablllty (over the random choice of x in QR)

. Comblnlng Observations: An algorithm that computes computes f(x) = x? 2"

over QRy; with probability § (over the random ch0|ce of x in QR};) yields equéally
efficient (essentially) algorithm which computes x? "mod N with probablllty —
(over the random choice of x in Zy)

Pietrzak’s Construction [ITCS19]

e HalvingProtocol(N,x,T,y) // Honest Prover: y = x2'

e If T=1 then Verifier outputs accept if x o x = y; otherwise reject

2T /2 -
* Prover sends u = x to verifier
* If u & QRj; then verifier outputs reject; otherwise verifier picks a random
integerr € Z,; and sends it to the prover

T
e Sender/Prover compute x’ := x" o (= xTt2 /2)

* The sender/prover computey’ =p" oy (= XTZT/2+2T)

r+27/2

e If proveris honest then x’ = x andy’ = x'

e If T/2 is even the sender/prover run HalvingProtocol(N, X’,g,y')

e If T/2 is odd the sender/prover run HalvingProtocol(N, X',g +1,y" oy")

Pietrzak’s Construction [ITCS19]

* Non-Interactive version via Fiat-Shamir

e Efficiency of Halving Protocol
e Terminates after at most O (log T') rounds
* Treplaced by T/2 or (T+1)/2 at each level of recursion
* Naive implementation:

. T . . .
* Prover requires i log A queries to o at ith level of recursion

 Total work Zﬁng (; + log A) = O(T +1logT logAl)

e Optimized Prover requires just O (v/T log T) additional queries to group
operations o
e Assume T = 2! for simpI;city

* Key idea: Store p; = x? 2’ for each i < t to avoid re-computation

Pietrzak’s Construction [ITCS19]

Theorem 1. If the input (N, z,T) to the protocol satisfies

1. N =p g is the product of safe primes, i.e., p =29 + 1,0 = 2¢ + 1
for primes p', ¢'.

2. (=) = QR
2. 2 < min{p’, ¢'}

Then for any malictous prover P who sends as first message y anything
else than the solution to the RSW time-lock puzze, i.e.,

y#a’

V' owill finally output accept with probability at most

3 log (1)
24 '

Proof

It will be convenient to define the language
L={(N,z,T,y) 19y # 22" mod N and (z) = QRp}

We'll establish the following lemma.

Lemma 1. For N, A as in Thm. 1, and any malicious p?“ﬂﬂ&?";g the fol-
lowing holds. If the input to the halving protocol in §3.1 satisfies

(N,z,T,y) e L

then with probability > 1 —3/2* {over the choice of r) Vs output is either
reject or satisfies

(N, &', [T/2],y) € L

Proof of Theorem 1 (assuming Lemma 1)

Proof (Proof of Theorem 1). In every iteration of the halving protocol
the time parameter decreases from T to |1/2| and it stops once T' = 1,
this means we iterate for at most [log(T')| rounds. By assumption, the
input (N, z,T,%) to the first iteration is in £, and by construction, the
only case where V outputs accept is on an input (N, x,1,y) where y =
22" = 22 mod N, in particular, this input is net in L.

So, if V' outputs accept, there must be one iteration of the halving
protocol where the input is in £ but the output is not. By Lemma 1,
for any particular iteration this happens with probability < 3/2*. By the
union bound, the probability of this happening in any of the [log(1)] —1
rounds can be upper bounded by 3log(T) /2" as claimed.

It will be convenient to define the language
L={(N,z,T y) 1y z2" mod N and (z} = QRn}
We'll establish the following lemma.

Lemma 1. For N, A as in Thm. I, and any malicious p*mwe&“’ﬁ the fol-
lowing holds. If the input to the halving protocol in §3.1 satisfies

(N,z,T,y) € L

then with probability > 1 —3/2* (over the choice of r) V’s output is either
reject or satisfies

(N, &, [T/2],y) € L

Proof (Proof of Lemma 1). We just consider the case where T is even,
the odd T case is almost identical.
Assuming the input to the halving protocol satisfies (N, z,7,y) €

L, we must bound the probability that VV outputs reject or the output
(N, o, T/2,') & L.

Lemma 1. For N, A as in Thm. 1, and any malicious p?“ﬂﬂ&?";g the fol-
lowing holds. If the input to the halving protocol in §3.1 satisfies

(N,z,T,y) e L

then with probability > 1 —3/2* {over the choice of r) Vs output is either
reject or satisfies

(V= [T/2],y) € £

Proof (Proof of Lemma 1). We just consider the case where T is even,
the odd T case is almost identical.
Assuming the input to the halving protocol satisfies (N, z,T,y) €

L, we must bound the probability that V' outputs reject or the output
(N, &, T/2,/) & L.

If T =1 then)V outputs reject and we’re done. Otherwise, if P sends

a & QHp in step 2. then V' outputs reject in step 3. and we're done. So
from now we assume py € Ry, We must bound

Prlly' =) v (') # QRy)] <3/2"

If 7"=1 then) outputs reject and we’re done. Otherwise, if P sends
a i & QR in step 2. then V outputs reject in step 3. and we’re done. So
from now we assume y € Ry, We must bound
T/
Pri(y' =«) Vv (@) # QRN)] < 3/2"

using Pr[a Vv b] = Prla A 8] + Pr[b] we rewrite this as

Prly' = =" A (=) = QRw| + Pr[(@) # QRN < 3/2" (3)

Eq.(3) follows by the two claims below.
Claim. Pr,[{z'y £ QRy] < 2/2* .

2'1"’

Claim. Pr,[y’ = 2 " mod N A (z'y = QRy] < 1/2* .

Comparison for VDFs

* Non-Interactive version via Fiat-Shamir

e Pietrzak’s prover requires just O(v/T log T) additional o queries ©
e Betterthan O(T'/logT) [Wesolowski]

e Pietrzak’s proof size is O (log? T log N)
e Worse than O(log N) 'Wesolowski]

e Verifier Efficiency is O((A + 1) log T) queries to group operation o
e Slightly worse than [Wesolowski] ©

Thanks for Listening

g %
"W

	Advanced Cryptography�CS 655
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Motivation: Online Exams during the Pandemic
	Proofs of Sequential Work
	Proofs of Sequential Work
	Proofs of Sequential Work
	Proofs of Sequential Work
	Three Basic Concepts
	H-Sequence
	Random Oracles are Sequential
	Random Oracles are Sequential
	Random Oracles are Sequential
	Random Oracles are Sequential
	The MMV’13 Construction
	The MMV’13 Construction
	The MMV’13 Construction
	The New Construction
	The New Construction
	Weighted Depth-Robust
φ
	Weighted-Depth-Robustness
	Weighted-Depth-Robustness
	The New Construction
	The New Construction
	The New Construction
φ
	The New Construction
φ
	The New Construction
φ
	The New Construction
φ
	Wei
	Three Problems of the [MMV’13] PoSW
	Three Problems of the [MMV’13] PoSW
	Construction and Proof Sketch
	Mining Bitcoin (Proofs of Work)
	Slide Number 37
	Can we have a more “sustainable” Blockchain?
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	NIZK Security (Random Oracle Model)
	Σ-Protocols
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Non-Interactive Proof of Sequential Work
	Verifiable Delay Functions
	What is a VDF?
	What is a VDF?
	Security Properties (Informal)
	Related Crypto Primitives
	VDF minus any property is “easy”
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle(Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	Security Properties (Informal)
	VDF security more formally…
	Part I: Applications of VDFs
	Randomness beacon
	Many uses for random beacons
	Randomness beacon
	Public entropy source
	Stock price manipulation
	Stock price randomness beacon
	Solution:	slow things down with a VDF
	Simple Bulletin Board
	Solution:	slow things down with a VDF
	Part II: Constructions
	Hash Chain w/ Verifiable Computation
	Hash Chain w/ Verifiable Computation
	Newer VDFs [P’18, W’18]
	THE	END
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle(Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	RSW Timelock Puzzle (Repeated Squaring)
	Wesolowski’s VDF Construction
	Wesolowski’s VDF Construction
	Wesolowski’s VDF Construction
	Wesolowski’s VDF Construction �(Non-Interactive VDF)
	Wesolowski’s VDF Construction �(Non-Interactive VDF)
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Pietrzak’s Construction [ITCS19]
	Proof
	Proof of Theorem 1 (assuming Lemma 1)
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Comparison for VDFs
	Thanks for Listening

