Advanced Cryptography CS 655

Week 9:

- SCRYPT (wrapup)
- Proof of Sequential Work/Proof of Space

Motivation: Online Exams during the Pandemic

 CS590 FINAL EXAM

Motivation: Online Exam

C
por ans

Dear Professor,

CS590 FINAL EXAM

My name is Cinseer Goodman who is taking CS590 this semester. hope this email finds you well.
I was not able to submit the final exam to the server on time due to an unexpected internet connectivity loss.
It just went back 5 minutes later so I send you the file via email.
I promise I have not done any extra work after the exam time. I
hope it works.
Thank you.

Cinseer Goodman

Reply
Forward

To: Seunghoon Lee
CS59 Final Exam - Internet Connectivity Issue

Motivatio

사
Liar King
Tue 5/16/2021 9:45 AM
To: Seunghoon Lee

answer_liar.pdf
2 MB

Dear Professor,

You might not believe this, but the internet went down during the final Exam since my cat accidentally chewed out my ethernet cable.
called maintenance, but the repair guy was assassinated on his way Then the severe tornado struck my town.
know it's been 2 weeks since the deadline, but this is the earliest I could send the answer to you. Please understand.
I swear I haven't made any edits since the deadline.
Kind regards,
Liar King

Reply | Forward

Motivation: Online Exams during the Pandemic

[CS590] 5 mins late - having internet issue

Cinseer Goodman
Tue 5/2/2021 9:05 PM
To: Seunghoon Lee
CS59 Final Exam - Internet Connectivity Issue

QC

To: Seunghoon Lee
down during the final thernet cable.
assinated on his way.
this is the earliest I could
Hello Professor,
ne.
le server on time due to
'ou the file via email. Iter the exam time. I

Please believe this, somehow my internet went down!! I swear I haven't touched the file after the deadline. Please receive my submission.
I will upgrade my internet plan if I take your course again.

Best,

Quantom Cheat

Internet problem

[CS590] 5 mins late - having internet issue

[CS590] Help, internet issue!!

CS590 final exam answer

BM
cs590 internet went down

FY
Fool Yoo
Wed 5/3/2021 7:13 PM
To: Seunghoon Lee

Professor,

Finally, I got my internet back. It is already a day after the deadline, but please take my answer sheet.
My mom thought I was playing a game and she cut off my ethernet cable.. I immediately called maintenance but it took one day to fix it I can certainly prove that I haven't done any extra work after the exam deadline. For real.
Thank you for your consideration.
Sincerely,
Fool Yoo

Reply
Forward

CG Cinseer Goodman
Tue 5/2/2021 9:05 PM
To: Seunghoon Lee
Iternet Connectivity Issue

smic

[CS590] Help, internet issue!!

CS590 final exam answer
BM cs590 internet went down

Cinseer Goodman
Tue 5/2/2021 9:05 PM
To: Seunghoon Lee
Iternet Connectivity Issue

Professor,

Finally, I got my internet back. It is already a day after the deadline, but please take my answer sheet.
My mom thought I was playing a game and she cut off my ethernet
My mom thought I was playing a game and she cut off my

I can certainly prove that I haven't dor
exam deadline. For real.
Thank you for your consideration
Sincerely,
Fool Yoo

Which students are telling the truth?

Proofs of Sequential Work

Proofs of Sequential Work

aka. Verifiable Delay Algorithm

Completeness and Soundness in the random oracle model:

Proofs of Sequential Work

aka. Verifiable Delay Algorithm

Completeness and Soundness in the random oracle model:

Completeness: $\tau(c, T)$ can be computed making T queries to H Soundness: Computing any T^{1} s.t. verify $\left(x, T, \tau^{1}\right)=$ accept for random X requires almost T sequential queries to H

Proofs of Sequential Work

 Prover $\mathrm{P} \xrightarrow{\substack{\text { statement } X}} \begin{aligned} & \text { Time } T \in \mathrm{~N} \\ & T=T(x, T)\end{aligned}$
Completeness and Soundness in the random oracle model:

Completeness: $\tau(c, T)$ can be computed making T queries to H Soundness: Computing any τ^{1} s.t. verify $\left(X, T, \tau^{\prime}\right)=$ accept for random X requires almost T sequential queries to H
massive parallelism useless to generate valid proof faster \Rightarrow prover must make almost T sequential queries $\sim T$ time

Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])
DAG $G=(V, E)$ is (e, d)
depth-robust if after removing any
e nodes a path of length d exists.

Graph Labelling

label $£_{i}=H\left(£_{\text {parents }(i)}\right)$, e.g. $£_{4}=H\left(£_{3}, £_{2}\right)$

Random Oracles are Sequential

$$
\left\lvert\, \begin{gathered}
\text { queries } y=\mathrm{H}(x), y^{\prime}=\mathrm{H}\left(x^{\prime}\right) \text { where } \\
x
\end{gathered}\right.
$$

H-Sequence

Definition 3 (H -sequence). An H sequence of length s is a sequence $x_{0}, \ldots, x_{s} \in\{0,1\}^{*}$ where for each $i, 1 \leq i<s, \mathrm{H}\left(x_{i}\right)$ is contained in x_{i+1} as continuous substring, i.e., $x_{i+1}=a\left\|\mathrm{H}\left(x_{i}\right)\right\| b$ for some $a, b \in\{0,1\}^{*}$.
$x_{0}, x_{1}, \ldots, x_{N} \in\{0,1\}^{*}$ s.t.
for each $1 \leq i \leq N$, there
exist $a, b \in\{0,1\}^{*}$ such that
$x_{i}=a\left\|\mathcal{H}\left(x_{i-1}\right)\right\| b$.

Random Oracles are Sequential

- Let $H:\{0,1\}^{\leq \delta \lambda} \rightarrow\{0,1\}^{\lambda}$ be a random oracle
- Suppose that the attacker may make $s-1$ rounds of sequential queries
- Attacker Goal: output an H-sequence x_{0}, \ldots, x_{s} of length s with each $\left|x_{i}\right| \leq \delta \lambda$
- Suppose that attacker makes at most q RO queries

Lemma: The attacker succeeds with probability at most $\frac{q^{2} \delta \lambda+q s \delta \lambda}{2^{\lambda}}$

Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most $\frac{q^{2} \delta \lambda+q s \delta \lambda}{2^{\lambda}}$

Proof Sketch:

Let LuckyGuess denote the event that for some i the string $H\left(x_{i}\right)$ is a substring of x_{i+1} but the attacker never actually made the query $H\left(x_{i}\right)$.
Claim 1: $\operatorname{Pr}[$ LuckyGuess $] \leq \frac{s(\delta-1) \lambda}{2^{\lambda}}$
Proof of Claim 1: Fix any index i and any $j \leq(\delta-1) \lambda$ we have

$$
\operatorname{Pr}\left[H\left(x_{i}\right)=x_{i+1}[j, j+\lambda-1]\right] \leq \frac{1}{2^{\lambda}}
$$

We now union bound over all indices $i \leq s$ and all $j \leq(\delta-1) \lambda$

Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most $\frac{q^{2} \delta \lambda+q s \delta \lambda}{2^{\lambda}}$

Proof Sketch:

Let Collision denote the event that for some $1 \leq i<j \leq s-1$ there is a query a_{i} made in round i and a query a_{j} made in round j where $H\left(a_{j}\right)$ is a substring of a_{i}

Claim 2: $\operatorname{Pr}\left[\right.$ Collision] $\leq \frac{q^{2} \delta \lambda}{2^{\lambda}}$
Proof of Claim 2: Fix any pair of queries a_{i} and a_{j} and any index $\mathrm{k} \leq(\delta-1) \lambda$
Observe that $\mathrm{H}\left(\mathrm{a}_{\mathrm{j}}\right)$ can be viewed as a random string picked after a_{i} is fixed.

$$
\operatorname{Pr}\left[H\left(a_{j}\right)=a_{i}[k, k+\lambda-1]\right] \leq \frac{1}{2^{\lambda}}
$$

We now union bound over all $\binom{q}{2}$ pairs of queries and all $j \leq(\delta-1) \lambda$

Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most $\frac{q^{2} \delta \lambda+q s \delta \lambda}{2^{\lambda}}$

Proof Sketch:

$$
\operatorname{Pr}[\text { LuckyGuess }]+\operatorname{Pr}[\text { Collision }] \leq \frac{q^{2} \delta \lambda+s \delta \lambda}{2^{\lambda}}
$$

If the attacker produces an H -sequence of length s then at least one of the events LuckyGuess or Collision must occur.

LuckyGuess: for some ithe string $H\left(x_{i}\right)$ is a substring of x_{i+1} although attacker never queried $H\left(x_{i}\right)$.

Collision: for some $1 \leq i<j \leq s-1 H\left(a_{j}\right)$ is a substring of a_{i} where the query a_{i} (resp. a_{j}) is made in round i (resp. j).

The MMV'13 Construction

- Protocol specifies depth-robust

DAG G on T nodes $\quad E_{1} \rightarrow \Phi_{2} \rightarrow E_{3} \rightarrow E_{4} \rightarrow E_{5} \rightarrow E_{6}$

- Define "fresh" random oracle $\mathrm{H}_{X}(\cdot) \equiv \mathrm{H}(X \cdot)$
- Compute labels of G using H_{X}

The MMV'13 Construction

Proof Sketch

- G is (e, d) depth-robust
- φ commits \tilde{P} to labels $\left\{£_{i}^{1}\right\}_{i \in V}^{\sum_{i}}$
- i is bad if $£_{1}^{1} /=H\left(E_{\text {parents }(i)}^{\prime}\right)$
- Case 1: $\geq e$ bad nodes \Rightarrow will fail opening phase whp.

The MMV'13 Construction

 Verifier V

Proof Sketch

- G is (e, d) depth-robust
- φ commits \tilde{P} to labels $\left\{£_{i}^{1}\right\}_{i \in \mathrm{~V}}^{\notin f}$
- i is bad if $\varepsilon_{i}^{\prime} l=H\left(£_{\text {parents }(i)}^{\prime}\right)$
- Case 1: $\geq e$ bad nodes \Rightarrow will fail opening phase whp.
- Case 2: Less than e bad labels $\Rightarrow \exists$ path of good nodes (by (e, d) depth-robustness) $\Rightarrow \tilde{P}$ made d sequential queries (by sequantality of RO)

The New Construction

The New Construction

Weighted Depth-Robust

Nodes at height h have weight 2^{h}
\#Nodes at height h: 2^{n-h}
Total Weight at Height h: 2^{n}
Total Weight of all Nodes: n^{n}

Weighted Depth-Robust: Let S be any subset of nodes with total weight $\mathrm{wt}(\mathrm{S}) \leq \alpha 2^{n}$

Claim: $G-S$ has a path of length $\mathrm{d} \geq(1-\alpha) 2^{n}$
Intuition: Cannot delete too many nodes close to the root (high weight) Deleting nodes close to the leaf has a small impact on the depth.

Intuition 2: A cheating prover will be caught proportional to the total weight of deleted (inconsistent) nodes

Weighted-Depth-Robustness

- Suppose we delete S. Let D_{S} be the set of nodes which are in S or below some node in S .
- Claim: There is a directed path through all nodes in $V-D_{S}$

Weighted-Depth-Robustness

- Claim: There is a directed path through all nodes in $V-D_{S}$
- Proof Sketch (Induction on height of tree):
- By Inductive Assumption there is a path through all nodes on left (same for right)
- By construction there is a path from left root to every leaf node on right side
\rightarrow Can piece paths together (and then connect right root to leaf node)

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of node on path $i \rightarrow$ root

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of node on path $i \rightarrow$ root

- P computes labelling $£_{i}=H\left(£_{\text {parents }(i)}\right)$ and sends root label $\varphi=£_{\top}$ to V. Can be done storing only $\log (T)$ labels.
- V challenges P to open a subset of leaves and checks consistency (blue and green edges!)

The New Construction

The New Construction

- \tilde{P} committed to all labels L_{i} after sending $\varphi=L_{15}$.
- i is bad if L_{i} is not consistent i.e., i's parents are $x_{1}, \ldots, x_{\delta}$ but $L_{i} \neq H\left(L_{x_{1}}, \ldots, L_{x_{\delta}}\right)$

The New Construction

Proof Sketch

- \tilde{P} committed to labels $£_{i}$ after sending $\varphi=£_{15}$.
- i is bad if L_{i} is not consistent i.e., i's parents are $x_{1}, \ldots, x_{\delta}$ but $L_{i} \neq H\left(L_{x_{1}}, \ldots, L_{x_{\delta}}\right)$
- Let $S \subset V$ denote the bad nodes and all nodes below.

The New Construction

Proof Sketch

- \tilde{P} committed to labels $£_{i}$ after sending $\varphi=£_{15}$.
- i is bad if $\sum_{i}^{1} /=H\left(£_{\text {parents }}^{1}(i)\right.$).
- Let $S \subset V$ denote the bad nodes and all nodes below.
- Claim 1: \exists_{\sim} path going through $V-S$ (of length $\left.T-|S|\right)$.
- Claim 2: P can't open $|S| / T$ fraction of leafs.

Theorem: \tilde{P} made only $T(1-c)$ sequential queries
\Rightarrow will pass opening phase with prob. $\leq(1-c)$ \#of challenges

Wei

Three Problems of the [MMV'13] PoSW

1) Space Complexity : Prover needs massive (linear in T) space to compute proof.
2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
3) Uniqueness : Once an accepting proof is computed, many other valid proofs can be generated (not a problem for time-stamping, but for blockchains).

Three Problems of the [MMV'13] PoSW

1) Space Complexity : Prover needs massive (linear in T) space to compute proof.
2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
3) Uniqueness : Once an accepting proof is computed, many other valid proofs can be generated (not a problem for time-stamping, but for blockchains).

New Construction

1) Prover needs only $O(\log (T))$ (not $O(T))$ space, e.g. for $T=2^{42}$ (\approx a day) that's $\approx 10 K B$ vs. $\approx 1 P B$.
2) Simple construction and proof with good concrete parameters.
3) Awesome open problem!

Construction and Proof Sketch

Mining Bitcoin (Proofs of Work)

Mining Bitcoin (Proofs of Work)

Can wehave a more "sustainable"

Blockchain?

Zero-Knowledge Proof for all NP

- CLIQUE

- Input: Graph G=(V,E) and integer k>0
- Question: Does G have a clique of size k ?
- CLIQUE is NP-Complete

- Any problem in NP reduces to CLIQUE
- A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction
- Prover:
- Knows k vertices $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ that form a clique

Zero-Knowledge Proof for all NP

Zero-Knowledge Proof for all NP

- Prover:
- Knows k vertices $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ in $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ that for a clique

1. Prover commits to a permutation σ over V
2. Prover commits to the adjacency matrix $A_{\sigma(G)}$ of $\sigma(\mathrm{G})$
3. Verifier sends challenge c (either 1 or 0)
4. If $\mathrm{c}=0$ then prover reveals σ and adjacency matrix $A_{\sigma(G)}$
5. Verifier confirms that adjacency matrix is correct for $\sigma(\mathrm{G})$
6. If $\mathrm{c}=1$ then prover reveals the submatrix formed by first rows/columns of $A_{\sigma(G)}$ corresponding to $\sigma\left(v_{1}\right), \ldots, \sigma\left(v_{k}\right)$
7. Verifier confirms that the submatrix forms a clique.

Zero-Knowledge Proof for all NP

- Completeness: Honest prover can always make honest verifier accept
- Soundness: If prover commits to adjacency matrix $A_{\sigma(G)}$ of $\sigma(\mathrm{G})$ and can reveal a clique in submatrix of $A_{\sigma(G)}$ then G itself contains a kclique. Proof invokes binding property of commitment scheme.
- Zero-Knowledge: Simulator cheats and either commits to wrong adjacency matrix or cannot reveal clique. Repeat until we produce a successful transcript. Indistinguishability of transcripts follows from hiding property of commitment scheme.

NIZK Security (Random Oracle Model)

- Simulator is given statement to prove (e.g., G is 3-COLORABLE)
- Simulator must output a proof π_{z}^{\prime} and a random oracle H^{\prime}
- Distinguisher D
- World 1 (Simulated): Given $\mathrm{z}, \pi^{\prime}{ }_{z}$ and oracle access to H^{\prime}
- World 2 (Honest): Given z, π_{z} (honest proof) and oracle access to H
- Advantage: $\mathrm{ADV}_{\mathrm{D}}=\left|\operatorname{Pr}\left[D^{H}\left(\mathrm{z}, \pi_{z}\right)=1\right]-\operatorname{Pr}\left[D^{H^{\prime}}\left(\mathrm{z}, \pi^{\prime}{ }_{z}\right)=1\right]\right|$
- Zero-Knowledge: Any PPT distinguisher D should have negligible advantage.
- NIZK proof π_{z} is transferrable (contrast with interactive ZK proof)

Σ-Protocols

- Prover Input: instance/claim x and witness w
- Verifier Input: Instance x
- Σ-Protocols: three-message structure
- Prover sends first message $m=P_{1}\left(x, w ; r_{1}\right)$
- Verifier responds with random challenge c
- Prover sends response $R=P_{2}\left(x, w, r_{1}, c ; r_{2}\right)$
- Verifier outputs decision $V(x, m, c, R)$
- Completeness: If w is a valid witness for instance x then $\operatorname{Pr}[V(x, c, R)=1]=1$
- Soundness: If the claim x is false then $V(x, c, R)=0$ with probability at least $1 / 2$
- Zero-Knowledge: Simulator can produce computationally indistinguishable transcript

Σ-Protocols and Fiat-Shamir Transform

- Convert Σ-Protocols into Non-Interactive ZK Proof
- Prover Input: instance/claim x and witness w
- Verifier Input: Instance x
- Step 1: Prover generates first messages for n instances of the protocol
- $m_{i}=P_{1}\left(x, w ; r_{i}\right)$ for each $i=1$ to n
- Step 2: Prover uses random oracle to extract random coins $\mathrm{z}_{\mathrm{j}}=\mathrm{H}\left(\mathrm{x}, \mathrm{j}, \mathrm{m}_{1}, \ldots ., \mathrm{m}_{\mathrm{n}}\right)$ for $\mathrm{j}=1$ to n
- Prover samples challenges $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ using random strings $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}$ i.e., $\mathrm{c}_{\mathrm{i}}=\operatorname{SampleChallenge}\left(\mathrm{z}_{\mathrm{i}}\right)$
- Step 3: Prover computes responses $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$
- $R_{i} \leftarrow P_{2}\left(x, w, r_{i}, c_{i}\right)$
- Step 4: Prover outputs the proof $\left\{\left(m_{i}, c_{i}, z_{i}\right)\right\}_{i \leq n}$

Σ-Protocols and Fiat-Shamir Transform

- Step 1: Prover generates first messages for n instances of the protocol
- $m_{i}=P_{1}\left(x, w ; r_{i}\right)$ for each $i=1$ to n
- Step 2: Prover uses random oracle to extract random coins $z_{i}=H\left(x, i, m_{1}, \ldots, m_{n}\right)$ for $i=1$ to n
- Prover samples challenges $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ using random strings $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}$ i.e., $\mathrm{c}_{\mathrm{i}}=$ SampleChallenge $\left(\mathrm{z}_{\mathrm{i}}\right)$
- Step 3: Prover computes responses $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$
- $R_{i} \leftarrow P_{2}\left(x, w, r_{i}, c_{i}\right)$
- Step 4: Prover outputs the proof $\pi=\left\{\left(m_{i}, c_{i}, R_{i}\right)\right\}_{i \leq n}$

Verifier: $\mathrm{V}_{\mathrm{NI}}(\mathrm{x}, \pi)$ check that for all $i \leq n$

1. $\mathrm{V}\left(\mathbf{x},\left(m_{i}, c_{i}, R_{i}\right)\right)=1$ and
2. $\mathrm{c}_{\mathrm{i}}=$ SampleChallenge $\left(\mathrm{z}_{\mathrm{i}}\right)$ where $\mathrm{z}_{\mathrm{i}}=\mathrm{H}\left(\mathrm{x}, \mathrm{i}, \mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$

Σ-Protocols and Fiat-Shamir Transform

- Step 1: Prover generates first messages for n instances of the protocol
- $m_{i}=P_{1}\left(x, w ; r_{i}\right)$ for each $i=1$ to n
- Step 2: Prover uses random oracle to extract random coins $\mathrm{z}_{\mathrm{i}}=\mathrm{H}\left(\mathrm{x}, \mathrm{i}, \mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$ for $\mathrm{i}=1$ to n
- Prover samples challenges $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ using random strings $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}$ i.e., $\mathrm{c}_{\mathrm{i}}=$ SampleChallenge $\left(\mathrm{z}_{\mathrm{i}}\right)$
- Step 3: Prover computes responses $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$
- $R_{i} \leftarrow P_{2}\left(x, w, r_{i}, c_{i}\right)$
- Step 4: Prover outputs the proof $\pi=\left\{\left(m_{i}, c_{i}, R_{i}\right)\right\}_{i \leq n}$

Zero-Knowledge (Idea):
Step 1: Run simulator for $\Sigma \mathrm{n}$-times to obtain n transcripts $\left(m_{i}, c_{i}, R_{i}\right)$ for each $i \leq n$. Step 2: Program the random oracle so that $H\left(x, i, m_{1}, \ldots, m_{n}\right)=z_{i}$ where $\mathrm{c}_{\mathrm{i}}=$ SampleChallenge $\left(\mathrm{z}_{\mathrm{i}}\right)$

Non-Interactive Proof of Sequential Work

- Key Idea: Apply Fiat-Shamir Transform!
- Interactive Verifier: Picks uniformly random challenge nodes c_{1}, \ldots, c_{k}
- Non Interactive Version: Let h_{x} denote the root of the Merkle-Tree output by the prover. Define $c_{i}=H\left(i, h_{x}\right)$. Non-Interactive Proof includes root h_{x} and responses r_{1}, \ldots, r_{k}
- Non Interactive Verifier: generates the challenges $c_{i}=H\left(i, h_{x}\right)$ and verifies the responses r_{1}, \ldots, r_{k}
- Security Analysis (sketch): If the attacker makes q RO queries over at most T^{\prime} $<N(1-\varepsilon)$ sequential rounds then s/he finds a valid PoSW probability at most

Verifiable Delay Functions

Dan Boneh, Joe Bonneau, Benedikt Bünz, Ben Fisch

Crypto 2018

What is a VDF?

- Function - unique output for every input
- Delay - can be evaluated in time T
cannot be evaluated in time (1-E)T on parallel machine
- Verifiable - correctness of output can be verified efficiently

What is a VDF?

- $\operatorname{Setup}(\lambda, T) \rightarrow$ public parameters $p p$
$>p p$ specify domain X and range Y
- Eval $(p p, x) \rightarrow$ output y, proof π
\Rightarrow PRAM runtime T with polylog(T) processors
- Verify $(p p, x, y, \pi) \rightarrow$ \{yes, no \}
$>$ Time complexity at most polylog(T)

Security Properties (Informal)

- $\operatorname{Setup}(\lambda, T) \longrightarrow$ public parameters $p p$
- $\operatorname{Eval}(p p, \boldsymbol{x}) \longrightarrow$ output \boldsymbol{y}, \quad proof $\pi \quad$ (requires T steps)
- Verify $(p p, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\pi}) \rightarrow \quad\{$ yes, no $\}$
"Soundness": if $\operatorname{Verify}(p p, x, \boldsymbol{y}, \boldsymbol{\pi})=\operatorname{Verify}\left(p p, x, \boldsymbol{y}^{\prime}, \boldsymbol{\pi}\right.$ ') = yes
then $\boldsymbol{y}=\boldsymbol{y}^{\prime}$
" σ-Sequentiality": if A is a PRAM algorithm, time $(A) \leq \sigma(T)$,
e.g. $\sigma(T)=(1-\epsilon) T$ then $\operatorname{Pr}[\boldsymbol{A}(p p, \boldsymbol{x})=\boldsymbol{y}]<$ negligible (λ)

Related Crypto Primitives

- Time-lock puzzles [Rsw'96, BN'o0, BGJPVw'16]
o Trapdoor (secret key) setup per puzzle
o Not "publicly verifiable"
- Proof-of-sequential-work [MMV'13, CP'18]
o Publicly verifiable
o Not a function (output isn't unique)

VDF minus any property is "easy"

- Not Verifiable - chained one-way function
- No Delay - Many moderately hard functions with efficient verification, e.g. discrete log $g^{y}=x$
- Not a Function - Proofs of sequential work

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$
Trapdoor: p, q must not be known to others

$$
f(x)=x^{2^{T}} \bmod N
$$

- Goals:
- Puzzle can be generated quickly in time O (polylog T).
- Other parties can recover secret in sequential time $\Omega(T)$.
- Secret is hidden from (massively parallel) attackers running in sequential time $o(T)$.
- Assumptions: Factoring N is hard and (without prime factors) it takes sequential time $\Omega(T)$ to compute $f(x)=x^{2^{T}} \bmod N$

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$ Trapdoor: p, q must not be known to prover

$$
f(x)=x^{2^{T}} \bmod N
$$

Computing $\boldsymbol{f}(\boldsymbol{x})$ (Puzzle Solver):

$$
\begin{aligned}
& x_{0}=x / / x_{0}=x^{2^{0}} \bmod N \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{T} \\
& x_{i}=x_{i-1} * x_{i-1} \bmod N / / x_{i}=x^{2^{i-1}} 2^{2^{i-1}} \bmod N=x^{2^{i}} \bmod N
\end{aligned}
$$

output x_{T}

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$ Trapdoor: p, q must not be known to prover

$$
f(x)=x^{2^{T}} \bmod N
$$

Computing $f(x)$ (Puzzle Solver):

$$
\begin{aligned}
& z=x / / z=x^{2^{0}} \bmod N \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{T} \\
& \quad z=z * z \bmod N / / z=x^{2^{i}} \bmod N
\end{aligned}
$$

output Z

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$ Trapdoor: p, q must not be known to prover

$$
f(x)=x^{2^{T}} \bmod N
$$

Computing $\boldsymbol{f}(\boldsymbol{x})$ with Trapdoor (Puzzle Generation):
Compute $\varphi(N)=(p-1)(q-1)$ and $y=2^{T} \bmod \varphi(N)$ output $x^{y} \bmod N$
$O(\log N) \ll T$ multiplication queries $\bmod N$

RSW Timelock Puzzle (Repeated Squaring)

- Assumptions: Factoring N is hard and (without prime factors) it takes time $\Omega(T)$ to compute $f(x)=x^{2^{T}} \bmod N$
- Is this a Verifiable Delay Function?
- Answer: Not publicly verifiable!
- Verifier who does not have prime factors (p, q) has to re-compute

$$
f(x)=x^{2^{T}} \bmod N
$$

Security Properties (Informal)

- $\operatorname{Setup}(\lambda, T) \longrightarrow$ public parameters $p p$
- $\operatorname{Eval}(p p, \boldsymbol{x}) \longrightarrow$ output \boldsymbol{y}, \quad proof $\pi \quad$ (requires T steps)
- $\operatorname{Verify}(p p, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\pi}) \rightarrow \quad\{$ yes, no $\}$
"Soundness": if $\operatorname{Verify}(p p, x, \boldsymbol{y}, \boldsymbol{\pi})=\operatorname{Verify}\left(p p, x, \boldsymbol{y}^{\prime}, \boldsymbol{\pi}\right.$ ') = yes
then $\boldsymbol{y}=\boldsymbol{y}^{\prime}$
" σ-Sequentiality": if A is a PRAM algorithm, time $(A)<\sigma(T)$,
e.g. $\sigma(T)=(1-\epsilon) T$ then $\operatorname{Pr}[\boldsymbol{A}(p p, \boldsymbol{x})=\boldsymbol{y}]<$ negligible (λ)

VDF security more formally...

Sequentiality Game

```
pp\leftarrow\operatorname{Setup}(\lambda,T) //sample setup params
L \leftarrow A _ { 0 } ( p p , T ) ~ / / a d v e r s a r y ~ p r e p r o c e s s e s ~ p a r a m s
x}\leftarrowX //choose a random challenge input x
yA}\leftarrow\mp@subsup{A}{1}{}(L,pp,x) //adversary computes output y
```

$A=\left(A_{0}, A_{1}\right)$ "wins" the game if $y_{A}=y$ s.t. $\operatorname{Eval}(p p, x)=(y, \pi)$

Def: VDF is (p, σ)-sequential if no $\left(A_{0}, A_{1}\right)$ with A_{0} runtime poly (λ) and A_{1} PRAM runtime $\sigma(T)$ on $p(T)$ processors wins the game with prob. $>\operatorname{neg} \mid(\lambda)$

Part I: Applications of VDFs

Timestamping

Proof-ofreplication

Permissionless consensus

Randomness beacon

- Rabin ‘83

An ideal service that regularly publishes random value which no party can predict or manipulate

Many uses for random beacons

Games

Cryptographic proofs

Lotteries

Leader election

Randomness beacon

"Public displays" are easily corrupted

Public entropy source

Stock prices [Clark, Hengartner 2010]

Assumption: (1) unpredictable, (2) adversary cannot fix stock prices

Stock price manipulation

Stock price randomness beacon

Closing prices of 100 stocks:

The problem:

- Once prices settle a minute before closing, attacker executes 20 lastminute trades to influence seed.
 to bias result

Solution: slow things down with a VDF

Hash(prices)

20 bits

- A solution: one hour VDF
- Attacker cannot tell what trades to execute before market closes
- Uniqueness: ensures no ambiguity about output

extractor

Simple Bulletin Board

Problem: Zoe controls the final seed !!

Solution: slow things down with a VDF

$\operatorname{Hash}\left(r_{a}| | r_{b}| | \cdots| | r_{z}\right) \in\{0,1\}^{256}$

Part II: Constructions

l. $x \rightarrow \Pi \rightarrow y$

This work

II. $y=g^{2^{2^{t}}} \in G \quad$ Assumption: the group G
$\pi=\{$ proof of correct has unknown
Followup:
Pietrzak'18, Wesolowski'18 exponentiation\} size

Hash Chain w/ Verifiable Computation $\mathrm{x} \rightarrow H(x) \rightarrow H(H(x)) \rightarrow \cdots \rightarrow H^{(t)}(x)=y$

π

- SNARK = "succinct non-interactive argument of knowledge" [G'10,GGPR'13, BCIOP'13, BCCT'13]
- STARK = "succinct transparent non-interactive argument of knowledge" [$\mathrm{M}^{\prime} 00, \mathrm{BBHR}{ }^{\prime} 18$]

Hash Chain w/ Verifiable Computation $\mathrm{x} \rightarrow H(x) \rightarrow H(H(x)) \rightarrow \cdots \rightarrow H^{(t)}(x)=y$

π

Problem

- Proof generation slower than hash chain, without massive parallelism

Newer VDFs [P'18, W'18]

- Let G be a finite cyclic group with generator $\mathrm{g} \in \mathrm{G}$

$$
\mathrm{G}=\left\{1, \mathrm{~g}, \mathrm{~g}^{2}, \mathrm{~g}^{3}, \ldots\right\}
$$

- Assumption: the group G has unknown size

$$
p p=(G, \quad H: X \longrightarrow G)
$$

T squarings

- Eval(pp, x): output $y=H(x)^{\left(2^{T}\right)} \in G$ proof $\boldsymbol{\pi}=$ (proof of correct exponentiation) $\quad\left[P^{\prime} 18, W^{\prime} 18\right]$

THE END

https://eprint.iacr.org/2018/601

 Survey of VDFshttps://eprint.iacr.org/2018/712.pdf

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$
Trapdoor: p, q must not be known to others

$$
f(x)=x^{2^{T}} \bmod N
$$

- Goals:
- Puzzle can be generated quickly in time O (polylog T).
- Other parties can recover secret in sequential time $\Omega(T)$.
- Secret is hidden from (massively parallel) attackers running in sequential time $o(T)$.
- Assumptions: Factoring N is hard and (without prime factors) it takes sequential time $\Omega(T)$ to compute $f(x)=x^{2^{T}} \bmod N$

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$ Trapdoor: p, q must not be known to prover

$$
f(x)=x^{2^{T}} \bmod N
$$

Computing $\boldsymbol{f}(\boldsymbol{x})$ (Puzzle Solver):

$$
\begin{aligned}
& x_{0}=x / / x_{0}=x^{2^{0}} \bmod N \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{T} \\
& x_{i}=x_{i-1} * x_{i-1} \bmod N / / x_{i}=x^{2^{i-1}} 2^{2^{i-1}} \bmod N=x^{2^{i}} \bmod N
\end{aligned}
$$

output x_{T}

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$ Trapdoor: p, q must not be known to prover

$$
f(x)=x^{2^{T}} \bmod N
$$

Computing $f(x)$ (Puzzle Solver):

$$
\begin{aligned}
& z=x / / z=x^{2^{0}} \bmod N \\
& \text { for } \mathrm{i}=1 \text { to } \mathrm{T} \\
& \quad z=z * z \bmod N / / z=x^{2^{i}} \bmod N
\end{aligned}
$$

output Z

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: $N=p q$ and sends puzzle $Z=(N, H(f(x)) \oplus$ secret $)$ Trapdoor: p, q must not be known to prover

$$
f(x)=x^{2^{T}} \bmod N
$$

Computing $\boldsymbol{f}(\boldsymbol{x})$ with Trapdoor (Puzzle Generation):
Compute $\varphi(N)=(p-1)(q-1)$ and $y=2^{T} \bmod \varphi(N)$ output $x^{y} \bmod N$
$O(\log N) \ll T$ multiplication queries $\bmod N$

RSW Timelock Puzzle (Repeated Squaring)

- Assumptions: Factoring N is hard and (without prime factors) it takes time $\Omega(T)$ to compute $f(x)=x^{2^{T}} \bmod N$
- Is this a Verifiable Delay Function?
- Answer: Not publicly verifiable!
- Verifier who does not have prime factors (p, q) has to re-compute

$$
f(x)=x^{2^{T}} \bmod N
$$

Wesolowski's VDF Construction

- Public Parameter: $N=p q$ (Generated by trusted party/MPC)
- Trapdoor Discarded: No one knows p, q

$$
f(x)=x^{2^{T}} \bmod N
$$

- Prover: Computes $\mathrm{y}=f(x)=x^{2^{T}} \bmod N$ and sends y to verifier
- Verifier: picks random prime B
- Prover: Computes $\left.\pi=x^{\left[\frac{2^{T}}{B}\right.}\right]_{\bmod N}$ and sends π to the verifier.
- Verifier: Checks that $y=\pi^{B} x^{2^{T}} \bmod { }^{B} \bmod N$
- Soundness: For any number B we have $2^{T}=\left(2^{T} \bmod B\right)+B\left\lfloor\frac{2^{T}}{B}\right\rfloor$

Wesolowski's VDF Construction

- Prover: Computes $\mathrm{y}=f(x)=x^{2^{T}} \bmod N$ and sends y to verifier
- Verifier: picks random prime B
- Prover: Computes $\pi=x^{\left\lfloor 2^{\frac{2}{B}}\right.}{ }_{\bmod } N$ and sends π to the verifier.
- Verifier: Checks that $y=\pi^{B} x^{2^{T}} \bmod { }^{B} \bmod N$
- Completeness: For any number B we have $2^{T}=\left(2^{T} \bmod B\right)+B\left[\frac{2^{T}}{B}\right\rfloor$

$$
\pi^{B} x^{2^{T} \bmod B}=x^{B\left[\frac{2^{T}}{B}\right]+\left(2^{T} \bmod B\right)} \bmod N=x^{2^{T}} \bmod N=f(x)
$$

Wesolowski's VDF Construction

- Prover: Computes $\mathrm{y}=f(x)=x^{2^{T}} \bmod N$ and sends y to verifier
- Verifier: picks random prime B
- Prover: Computes $\pi=x^{\left\lfloor 2^{\frac{2}{B}}\right.}{ }_{\bmod } N$ and sends π to the verifier.
- Verifier: Checks that $y=\pi^{B} x^{2^{T}} \bmod B \bmod N$
- Soundness:
- Assumption for any $z \neq 1$ it is hard to find y such that $y^{B}=z \bmod N$ when B is random.

Wesolowski's VDF Construction (Non-Interactive VDF)

- Prover:
- Computes $y=f(x)=x^{2^{T}} \bmod N$ and sends y to verifier
- Sets random coins $R=H(f(x)) \quad B=\operatorname{GenPrime}(R)$
- Computes $\left.\pi=x^{\frac{2}{}^{\frac{T}{B}}} \right\rvert\, \bmod N$
- Output $(x, y=f(x), \pi)$
- Verifier:
- Compute $B=$ GenPrime $(H(y))$
- Checks that $y=\pi^{B} x^{2^{T}} \bmod B \bmod N$

Wesolowski's VDF Construction (Non-Interactive VDF)

- Verifier:
- Compute $B=$ GenPrime $(H(y))$
- Checks that $\mathrm{y}=\pi^{B} x^{2^{T} \bmod B} \bmod N$
- Efficiency:
- Proof Size: π is very short (just $\mathrm{O}(\log \mathrm{N})$ bits) $)$
- Prover Efficiency: extra $\mathbf{0}(T)$ multiplications $;$
- $\mathbf{O}(T / \log T)$ multiplications $:$
- Verifier Efficiency: $\mathbf{O}(\log T)$ multiplications $)$

Pietrzak's Construction [ITCS19]

- Safe Prime: prime $p=2 p^{\prime}+1$ such that p^{\prime} is also prime
- Assume $N=p q$ where $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$
- Quadratic Residues: $Q R_{N}=\left\{z^{2} \bmod N \mid z \in \mathbb{Z}_{N}^{*}\right\}$
- Signed Quadratic Residues
- Represent elements of \mathbb{Z}_{N}^{*} as $\left\{-\frac{N-1}{2}, \ldots, \frac{N-1}{2}\right\}$
- $Q R_{N}^{+}=\left\{|x| \mid x \in Q R_{N}\right\}$
- Fact: The map \mid. | is an isomorphism from $Q R_{N}$ to $Q R_{N}^{+}$
- Fact: $Q R_{N}^{+}$is a cyclic group with operation \circ defined as

$$
a \circ b:=|a b \bmod N|
$$

- Redefine Notation: $x \in Q R_{N}^{+} \rightarrow x^{i+1}:=x \circ x^{i}$ e.g., $x^{2}:=x \circ x$

Pietrzak's Construction [ITCS19]

- Safe Prime: prime $p=2 p^{\prime}+1$ such that p^{\prime} is also prime
- Assume $N=p q$ where $p=2 p^{\prime}+1$ and $q=2 q^{\prime}+1$
- Quadratic Residues: $Q R_{N}=\left\{z^{2} \mid z \in \mathbb{Z}_{N}^{*}\right\}$
- Signed Quadratic Residues
- Represent elements of \mathbb{Z}_{N}^{*} as $\left\{-\frac{N-1}{2}, \ldots, \frac{N-1}{2}\right\}$
- $Q R_{N}^{+}=\left\{|x| \mid x \in Q R_{N}\right\}$
- Fact: The map |.| is an isomorphism from $Q R_{N}$ to $Q R_{N}^{+}$
- Fact: $Q R_{N}^{+}$is a cyclic group with operation \circ defined as

$$
a \circ b:=|a b \bmod N|
$$

- Fact: Membership in $Q R_{N}^{+}$can be efficiently tested (unlike $Q R_{N}$)
- Fact: If primes p and q are safe then $Q R_{N}^{+}$(and $Q R_{N}$) has not sub-group of small order.

Pietrzak's Construction [ITCS19]

- Prover: Given $x \in Q R_{N}^{+}, N, T$
- Computes $\mathrm{f}(\mathrm{x})=x^{2^{T}}$ (repeated squaring with operation $y^{2}:=y \circ y$)
- Question: Does repeated squaring assumption change now that we use $Q R_{N}^{+}$?
- Answer: Not significantly...
- Observation 1: $\left|Q R_{N}\right| \geq \frac{\left|\mathbb{Z}_{N}^{*}\right|}{4}$ so a random element in \mathbb{Z}_{N}^{*} is in $Q R_{N}$ with probability at least $\frac{1}{4}$
\rightarrow An algorithm that can compute $\mathrm{f}(\mathrm{x})=x^{2^{T}} \bmod N$ correctly with probability at least ε (over the selection of x in $Q R_{N}$) the same algorithm computes $\mathrm{f}(\mathrm{x})$ $=x^{2^{T}} \bmod N$ correctly with probability at least $\frac{\varepsilon}{4}$

Pietrzak's Construction [ITCS19]

- Prover: Given $x \in Q R_{N}^{+}, N, T$
- Computes $\mathrm{f}(\mathrm{x})=x^{2^{T}}$ (repeated squaring with operation $y^{2}:=y \circ y$)
- Does repeated squaring assumption change now that we use $Q R_{N}^{+}$?
- Observation 2: Computing over $\left(Q R_{N}^{+}\right.$, o) is not significantly easier than $\left(Q R_{N}, \times\right)$
- Suppose x in $Q R_{N}$ and $\mathrm{y}=x^{2^{T}} \bmod N$
- Let $y^{\prime}=|y|$ and $x^{\prime}=|x|$ be the corresponding group elements in $Q R_{N}^{+}$
- We have $y^{\prime}=x^{\prime 2^{T}}$
- We have $y \in\left\{y^{\prime}, N-y^{\prime}\right\}$
- Flip a coin and output y^{\prime} or $N-y^{\prime}$ (correct with probability $\frac{1}{2}$)

Pietrzak's Construction [ITCS19]

- Prover: Given $x \in Q R_{N}^{+}, N, T$
- Computes $\mathrm{f}(\mathrm{x})=x^{2^{T}}$ (repeated squaring with operation $y^{2}:=y \circ y$)
- Does repeated squaring assumption change now that we use $Q R_{N}^{+}$?
- Observation 2: Computing over $\left(Q R_{N}^{+}, \circ\right)$ is not significantly easier than $\left(Q R_{N}, \times\right)$
- Suppose x in $Q R_{N}$ and $\mathrm{y}=x^{2^{T}} \bmod N$
- Let $\mathrm{y}^{\prime}=|\mathrm{y}|$ and $x^{\prime}=|x|$ be the corresponding group elements in $Q R_{N}^{+}$
- We have $y^{\prime}=x^{\prime 2^{T}}$
- We have $y \in\left\{y^{\prime}, N-y^{\prime}\right\}$
- Flip a coin and output y^{\prime} or $N-y^{\prime}$ (correct with probability $\frac{1}{2}$)
- An algorithm that computes $\mathrm{f}(\mathrm{x})=x^{2^{T}}$ over $Q R_{N}^{+}$with probability δ (over the random choice of x in $Q R_{N}^{+}$) yields equally efficient (essentially) algorithm which computes $x^{2^{T}} \bmod N$ with probability $\frac{~}{2}$ (over the random choice of x in $Q R_{N}$)

Pietrzak's Construction [ITCS19]

- Prover: Given $x \in Q R_{N}^{+}, N, T$
- Computes $\mathrm{f}(\mathrm{x})=x^{2^{T}}$ (repeated squaring with operation $y^{2}:=y \circ y$)
- Does repeated squaring assumption change now that we use $Q R_{N}^{+}$?
- Observation 2: Computing over $\left(Q R_{N}^{+}, \circ\right)$ is not significantly easier than $\left(Q R_{N}, \times\right)$
- An algorithm that computes $\mathrm{f}(\mathrm{x})=x^{2}$ over $Q R_{N}^{+}$with probability δ (over the random choice of x in $Q R_{N}^{+}$) yields equally efficient (essentially) algorithm which computes $x^{2^{T}} \bmod N$ with probability $\frac{8}{2}$ (over the random choice of x in $Q R_{N}$)
- Combining Observations: An algorithm that computes computes $\mathrm{f}(\mathrm{x})=x^{2^{T}}$ over $Q R_{N}^{+}$with probability δ (over the random choice of x in $Q R_{N}^{+}$) yields equally efficient (essentially) algorithm which computes $x^{2^{T}} \bmod N$ with probability $\frac{\delta}{8}$ (over the random choice of x in \mathbb{Z}_{N}^{*})

Pietrzak's Construction [ITCS19]

- HalvingProtocol($\mathrm{N}, \mathrm{x}, \mathrm{T}, \mathrm{y}) / /$ Honest Prover: $y=x^{2^{T}}$
- If T=1 then Verifier outputs accept if $x \circ x=y$; otherwise reject
- Prover sends $\mu=x^{2^{T / 2}}$ to verifier
- If $\mu \notin Q R_{N}^{+}$then verifier outputs reject; otherwise verifier picks a random integer $r \in \mathbb{Z}_{2^{\lambda}}$ and sends it to the prover
- Sender/Prover compute $x^{\prime}:=x^{r} \circ \mu \quad\left(=x^{r+2^{T / 2}}\right)$
- The sender/prover compute $y^{\prime}=\mu^{r} \circ y \quad\left(=x^{r 2^{T / 2}+2^{T}}\right)$
- If prover is honest then $x^{\prime}=x^{r+2^{T / 2}}$ and $y^{\prime}=x^{\prime 2^{T / 2}}$ and $y^{\prime} \circ y^{\prime}=x^{\prime 2^{\left.2^{\left(1+\frac{T}{2}\right.}\right)}}$
- If $\mathrm{T} / 2$ is even the sender/prover run HalvingProtocol $\left(\mathrm{N}, \mathrm{x}^{\prime}, \frac{T}{2}, y^{\prime}\right)$
- If $\mathrm{T} / 2$ is odd the sender/prover run HalvingProtocol $\left(\mathrm{N}, \mathrm{x}^{\prime}, \frac{T}{2}+1, y^{\prime} \circ y^{\prime}\right)$

Pietrzak's Construction [ITCS19]

- Non-Interactive version via Fiat-Shamir
- Efficiency of Halving Protocol
- Terminates after at most $O(\log T)$ rounds
- T replaced by $\mathrm{T} / 2$ or $(\mathrm{T}+1) / 2$ at each level of recursion
- Naïve implementation:
- Prover requires $\frac{T}{2^{i}}+\log \lambda$ queries to \circ at ith level of recursion
- Total work $\sum_{i=1}^{\log T}\left(\frac{T}{2^{i}}+\log \lambda\right)=O(T+\log T \log \lambda)$
- Optimized Prover requires just $O(\sqrt{T} \log T)$ additional queries to group operations o
- Assume $T=2^{t}$ for simplicity
- Key idea: Store $\mu_{i}=x^{2\left(\frac{T}{2^{i}}\right)}$ for each $i \leq t$ to avoid re-computation

Pietrzak's Construction [ITCS19]

Theorem 1. If the input (N, x, T) to the protocol satisfies

1. $N=p \cdot q$ is the product of safe primes, i.e., $p=2 p^{\prime}+1, q=2 q^{\prime}+1$ for primes p^{\prime}, q^{\prime}.
2. $\langle x\rangle=Q R_{N}^{+}{ }^{3}$
3. $2^{\lambda} \leq \min \left\{p^{\prime}, q^{\prime}\right\}$

Then for any malicious prover $\widetilde{\mathcal{P}}$ who sends as first message y anything else than the solution to the RSW time-lock puzzle, i.e.,

$$
y \neq x^{2^{T}}
$$

\mathcal{V} will finally output accept with probability at most

$$
\frac{3 \log (T)}{2^{\lambda}}
$$

Proof

It will be convenient to define the language

$$
\mathcal{L}=\left\{(N, x, T, y): y \neq x^{2^{T}} \bmod N \text { and }\langle x\rangle=Q R_{N}\right\}
$$

We'll establish the following lemma.
Lemma 1. For N, λ as in Thm. 1, and any malicious prover $\widetilde{\mathcal{P}}$ the following holds. If the input to the halving protocol in $\S 3.1$ satisfies

$$
(N, x, T, y) \in \mathcal{L}
$$

then with probability $\geq 1-3 / 2^{\lambda}$ (over the choice of r) V's output is either reject or satisfies

$$
\left(N, x^{\prime},\lceil T / 2\rceil, y^{\prime}\right) \in \mathcal{L}
$$

Proof of Theorem 1 (assuming Lemma 1)

Proof (Proof of Theorem 1). In every iteration of the halving protocol the time parameter decreases from T to $\lceil T / 2\rceil$ and it stops once $T=1$, this means we iterate for at most $\lceil\log (T)\rceil$ rounds. By assumption, the input (N, x, T, y) to the first iteration is in \mathcal{L}, and by construction, the only case where \mathcal{V} outputs accept is on an input ($N, x, 1, y$) where $y=$ $x^{2^{T}}=x^{2} \bmod N$, in particular, this input is not in \mathcal{L}.

So, if \mathcal{V} outputs accept, there must be one iteration of the halving protocol where the input is in \mathcal{L} but the output is not. By Lemma 1, for any particular iteration this happens with probability $\leq 3 / 2^{\lambda}$. By the union bound, the probability of this happening in any of the $\lceil\log (T)\rceil-1$ rounds can be upper bounded by $3 \log (T) / 2^{\lambda}$ as claimed.

It will be convenient to define the language

$$
\mathcal{L}=\left\{(N, x, T, y): y \neq x^{2^{T}} \bmod N \text { and }\langle x\rangle=Q R_{N}\right\}
$$

We'll establish the following lemma.
Lemma 1. For N, λ as in Thm. 1, and any malicious prover $\widetilde{\mathcal{P}}$ the following holds. If the input to the halving protocol in §9.1 satisfies

$$
(N, x, T, y) \in \mathcal{L}
$$

then with probability $\geq 1-3 / 2^{\lambda}$ (over the choice of r) \mathcal{V} 's output is either reject or satisfies

$$
\left(N, x^{\prime},\lceil T / 2\rceil, y^{\prime}\right) \in \mathcal{L}
$$

Proof (Proof of Lemma 1). We just consider the case where T is even, the odd T case is almost identical.

Assuming the input to the halving protocol satisfies $(N, x, T, y) \in$ \mathcal{L}, we must bound the probability that \mathcal{V} outputs reject or the output $\left(N, x^{\prime}, T / 2, y^{\prime}\right) \notin \mathcal{L}$.

Lemma 1. For N, λ as in Thm. 1, and any malicious prover $\widetilde{\mathcal{P}}$ the following holds. If the input to the halving protocol in §3.1 satisfies

$$
(N, x, T, y) \in \mathcal{L}
$$

then with probability $\geq 1-3 / 2^{\lambda}$ (over the choice of r) V's output is either reject or satisfies

$$
\left(N, x^{\prime},\lceil T / 2\rceil, y^{\prime}\right) \in \mathcal{L}
$$

Proof (Proof of Lemma 1). We just consider the case where T is even, the odd T case is almost identical.

Assuming the input to the halving protocol satisfies (N, x, T, y) \in \mathcal{L}, we must bound the probability that \mathcal{V} outputs reject or the output $\left(N, x^{\prime}, T / 2, y^{\prime}\right) \notin \mathcal{L}$.

If $T=1$ then \mathcal{V} outputs reject and we're done. Otherwise, if $\widetilde{\mathcal{P}}$ sends a $\mu \notin Q R_{N}$ in step 2 . then \mathcal{V} outputs reject in step 3 . and we're done. So from now we assume $\mu \in Q R_{N}$. We must bound

$$
\operatorname{Pr}_{r}\left[\left(y^{\prime}=x^{\prime 2^{T / 2}}\right) \vee\left(\left\langle x^{\prime}\right\rangle \neq Q R_{N}\right)\right] \leq 3 / 2^{\lambda}
$$

If $T=1$ then \mathcal{V} outputs reject and we're done. Otherwise, if $\widetilde{\mathcal{P}}$ sends a $\mu \notin Q R_{N}$ in step 2 . then \mathcal{V} outputs reject in step 3 . and we're done. So from now we assume $\mu \in Q R_{N}$. We must bound

$$
\operatorname{Pr}_{r}\left[\left(y^{\prime}=x^{\prime 2^{T / 2}}\right) \vee\left(\left\langle x^{\prime}\right\rangle \neq Q R_{N}\right)\right] \leq 3 / 2^{\lambda}
$$

using $\operatorname{Pr}[a \vee b]=\operatorname{Pr}[a \wedge \bar{b}]+\operatorname{Pr}[b]$ we rewrite this as

$$
\begin{equation*}
\operatorname{Pr}_{r}\left[y^{\prime}=x^{\prime 2^{T / 2}} \wedge\left\langle x^{\prime}\right\rangle=Q R_{N}\right]+\operatorname{Pr}_{r}\left[\left\langle x^{\prime}\right\rangle \neq Q R_{N}\right] \leq 3 / 2^{\lambda} \tag{3}
\end{equation*}
$$

Eq.(3) follows by the two claims below.
Claim. $\operatorname{Pr}_{r}\left[\left\langle x^{\prime}\right\rangle \neq Q R_{N}\right] \leq 2 / 2^{\lambda}$.
Claim. $\operatorname{Pr}_{r}\left[y^{\prime}=x^{2^{T / 2}} \bmod N \wedge\left\langle x^{\prime}\right\rangle=Q R_{N}\right] \leq 1 / 2^{\lambda}$.

Comparison for VDFs

- Non-Interactive version via Fiat-Shamir
- Pietrzak's prover requires just $O(\sqrt{T} \log T)$ additional \circ queries $:$
- Better than $O(T / \log T)$ [Wesolowski]
- Pietrzak's proof size is $O\left(\log ^{2} T \log N\right)$
- Worse than $O(\log N) \quad[$ Wesolowski]
- Verifier Efficiency is $O((\lambda+1) \log T)$ queries to group operation。
- Slightly worse than [Wesolowski] ${ }^{*}$

Thanks for Listening

