Advanced Cryptography CS 655

Week 9:

- SCRYPT (wrapup)
- Proof of Sequential Work/Proof of Space

Motivation: Online Exams during the Pandemic

2 19

CS590 FINAL EXAM

<u>n</u>

Of Pro

Motivation: Online Exam

CS590 FINAL EXAM

[CS590] 5 mins late - having internet issue

Dear Professor,

My name is Cinseer Goodman who is taking CS590 this semester. I hope this email finds you well.

(

² 19

I was not able to submit the final exam to the server on time due to an unexpected internet connectivity loss.

It just went back 5 minutes later so I send you the file via email. I promise I have not done any extra work after the exam time. I hope it works. Thank you.

Best,

Cinseer Goodman

Reply Forward

0		
n		
Ŧ		
<u>h</u>		
- <u>11</u>		
<u>e</u>		
2		
<u>е</u>		
) <u>C</u>		
3 <u>u</u>		
r		
Di		
t		
- V		
1		
Ŧ		
<u>-</u>		
<u>.</u>		
1 <u>0</u>		
1 <u>0</u>		
<u>t</u>		
) <u>S</u>		
<u>0</u>		
۶ <u>f</u>		
ו <u>S</u>		
e		
<u>p</u>		
<u>u</u>		
e		
'n		
t		
n		
a		
)		
ı. W		
0		
<u>ت</u> ۱۲		
)k		
- <u>^</u> 1i		
<u>'!</u> n		
<u> </u>		
<u><u></u></u>		
0		
<u>S</u>		

					[CS590] 5 r	nins late - having internet i	ssue		
	C	250	Tinal	From Internet Court	CG Cinse Tue 5. To: Se	eer Goodman 2/2021 9:05 PM eunghoon Lee			
Motivatio			Final	Exam - Internet Conn Liar King Tue 5/16/2021 9:45 AM To: Seunghoon Lee answer_liar.pdf 2 MB Dear Professor, You might not believe th Exam since my cat accir I called maintenance, bu Then the severe tornado I know it's been 2 weeks send the answer to you. I swear I haven't made a Kind regards, Liar King Reply Forward	is, but the intern dentally chewed at the repair guy o struck my town s since the dead Please underst any edits since the	The twent down during the final out my ethernet cable. was assassinated on his way. n. line, but this is the earliest I could and. he deadline.		g CS590 this semester. ne server on time due to 'ou the file via email. fter the exam time. I	emic

Motivation: Online Exams during the Pandemic

	[CS590] 5 mins la	te - having internet issue	
	Cinseer Goo Tue 5/2/2021 S To: Seunghoo	odman 0:05 PM n Lee	
CS59 Final Exam - Internet Con	nectivity Issue		
Liar King			
[CS590] Internet issue - for real!!			a COEOO this competer
Quantom Cheat Tue 5/2/2021 11:36 PM To: Seunghoon Lee Answer_cheat.pdf 2 MB Hello Professor, Please believe this, somehow my internet	$\ll \rightarrow \cdots$	down during the final ethernet cable. assinated on his way. this is the earliest I could ne.	the server on time due to you the file via email. Ifter the exam time. I
I swear I haven't touched the file after the Please receive my submission. I will upgrade my internet plan if I take you again.	deadline. ur course		
Best, Quantom Cheat			
Reply Forward			

Proofs of Sequential Work

aka. Verifiable Delay Algorithm

Completeness and Soundness in the random oracle model:

Completeness and Soundness *in the random oracle model:*

Completeness: $\tau(c, T)$ can be computed making T queries to H **Soundness:** Computing any τ^{\dagger} s.t. verify(χ, T, τ^{\dagger}) =accept for random χ requires almost T sequential queries to H

Completeness and Soundness in the random oracle model:

Completeness: $\tau(c, T)$ can be computed making T queries to H **Soundness:** Computing any τ^{\dagger} s.t. verify(χ, T, τ^{\dagger}) =accept for random χ requires almost T sequential queries to H

massive parallelism useless to generate valid proof faster \Rightarrow prover must make almost *T* sequential queries ~ *T* time

Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])

DAG G = (V, E) is (e, d)**depth-robust** if after removing any *e* nodes a path of length *d* exists.

Graph Labelling

label $\pounds_i = H(\pounds_{parents(i)})$, e.g. $\pounds_4 = H(\pounds_3, \pounds_2)$

H-Sequence

Definition 3 (H-sequence). An H sequence of length s is a sequence $x_0, \ldots, x_s \in \{0, 1\}^*$ where for each $i, 1 \le i < s, H(x_i)$ is contained in x_{i+1} as continuous substring, i.e., $x_{i+1} = a \|H(x_i)\|b$ for some $a, b \in \{0, 1\}^*$. $x_0, x_1, \ldots, x_N \in \{0, 1\}^*$ s.t. for each $1 \le i \le N$, there exist $a, b \in \{0, 1\}^*$ such that $\delta \lambda \{ \begin{array}{c} \mathcal{H} \\ \mathcal{H}$

- Let $H: \{0,1\}^{\leq \delta \lambda} \to \{0,1\}^{\lambda}$ be a random oracle
- Suppose that the attacker may make s 1 rounds of sequential queries
- Attacker Goal: output an H-sequence x_0, \dots, x_s of length s with each $|x_i| \le \delta \lambda$
- Suppose that attacker makes at most q RO queries

Lemma: The attacker succeeds with probability at most $\frac{q^2\delta\lambda + qs\delta\lambda}{2\lambda}$

Lemma: The attacker succeeds with probability at most $\frac{q^2\delta\lambda + qs\delta\lambda}{2^{\lambda}}$

Proof Sketch:

Let LuckyGuess denote the event that for some i the string $H(x_i)$ is a substring of x_{i+1} but the attacker never actually made the query $H(x_i)$. **Claim 1:** $\Pr[\text{LuckyGuess}] \leq \frac{s(\delta-1)\lambda}{2^{\lambda}}$ **Proof of Claim 1:** Fix any index i and any $j \leq (\delta - 1)\lambda$ we have $\Pr[H(x_i) = x_{i+1}[j, j + \lambda - 1]] \leq \frac{1}{2^{\lambda}}$

We now union bound over all indices $i \leq s$ and all $j \leq (\delta - 1)\lambda$

Lemma: The attacker succeeds with probability at most $\frac{q^2\delta\lambda + qs\delta\lambda}{2^{\lambda}}$

Proof Sketch:

Let Collision denote the event that for some $1 \le i < j \le s - 1$ there is a query a_i made in round i and a query a_j made in round j where $H(a_j)$ is a substring of a_i

Claim 2: $\Pr[\text{Collision}] \leq \frac{q^2 \delta \lambda}{2^{\lambda}}$ **Proof of Claim 2:** Fix any pair of queries a_i and a_j and any index $k \leq (\delta - 1)\lambda$ Observe that $H(a_j)$ can be viewed as a random string picked after a_i is fixed. $\Pr\left[H(a_j) = a_i[k, k + \lambda - 1]\right] \leq \frac{1}{2^{\lambda}}$ We now union bound over all $\binom{q}{2}$ pairs of queries and all $j \leq (\delta - 1)\lambda$

Lemma: The attacker succeeds with probability at most $\frac{q^2\delta\lambda + qs\delta\lambda}{2^{\lambda}}$

Proof Sketch: $Pr[LuckyGuess] + Pr[Collision] \leq \frac{q^2\delta\lambda + s\delta\lambda}{2^{\lambda}}$ If the attacker produces an H-sequence of length s then *at least one* of

the events LuckyGuess or Collision must occur.

LuckyGuess: for some i the string $H(x_i)$ is a substring of x_{i+1} although attacker never queried $H(x_i)$.

Collision: for some $1 \le i < j \le s - 1$ $H(a_j)$ is a substring of a_i where the query a_i (resp. a_j) is made in round i (resp. j).

The MMV'13 Construction

• Compute labels of G using H_X

Proof Sketch

- G is (e, d) depth-robust
 φ commits P to labels {£^l_i} _{i∈V}
- *i* is **bad** if $f_i \neq H(f_{parents(i)})$
- Case 1: \geq e bad nodes \Rightarrow will fail opening phase whp.

(by (*e*, *d*) depth-robustness) $\Rightarrow \tilde{P}$ made *d* sequential queries (by sequantality of RO)

The New Construction

The New Construction

Weighted Depth-Robust

Nodes at height h have weight 2^h

#Nodes at height h: 2^{n-h}

Total Weight at Height h: 2^n

Total Weight of all Nodes: $n2^n$

Weighted Depth-Robust: Let S be any subset of nodes with total weight $wt(S) \le \alpha 2^n$

Claim: G - S has a path of length $d \ge (1 - \alpha)2^n$

Intuition: Cannot delete too many nodes close to the root (high weight) Deleting nodes close to the leaf has a small impact on the depth.

Intuition 2: A cheating prover will be caught proportional to the total weight of deleted (inconsistent) nodes

Weighted-Depth-Robustness

- Suppose we delete S. Let D_S be the set of nodes which are in S or below some node in S.
- Claim: There is a directed path through all nodes in $V D_S$

Weighted-Depth-Robustness

- Claim: There is a directed path through all nodes in $V D_S$
- Proof Sketch (Induction on height of tree):
 - By Inductive Assumption there is a path through all nodes on left (same for right)
 - By construction there is a path from left root to every leaf node on right side
 - → Can piece paths together (and then connect right root to leaf node)

The New Construction

For every leaf *i* add all edges (j, i) where *j* is left sibling of node on path $i \rightarrow root$

For every leaf *i* add all edges (j, i) where *j* is left sibling of node on path $i \rightarrow root$

- P computes labelling $\pounds_i = H(\pounds_{parents(i)})$ and sends root label $\varphi = \pounds_T$ to V. Can be done storing only $\log(T)$ labels.
- V challenges P to open a subset of leaves and checks consistency (blue and green edges!)

The New Construction φ T = 15**Proof Sketch**

- \tilde{P} committed to all labels L_i after sending $\varphi = L_{15}$.
- i is bad if L_i is not consistent i.e., i's parents are x_1, \dots, x_{δ} but $L_i \neq H(L_{x_1}, \dots, L_{x_{\delta}})$

The New Construction

- i is bad if L_i is not consistent i.e., i's parents are x_1, \ldots, x_{δ} but $L_i \neq H(L_{\chi_1}, \dots, L_{\chi_{\delta}})$
- Let $S \subset V$ denote the bad nodes and all nodes below.

The New Construction

- \tilde{P} committed to labels \mathcal{E}_i after sending $\varphi = \mathcal{E}_{15}$.
- *i* is bad if $\mathbf{f}_{i}^{\dagger} = H(\mathbf{f}_{parents(i)}^{\dagger})$.
- Let $S \subset V$ denote the bad nodes and all nodes below.
- Claim 1: \exists path going through V S (of length T |S|).
- Claim 2: P can't open |S|/T fraction of leafs.

Theorem: \vec{P} made only T(1 - c) sequential queries \Rightarrow will pass opening phase with prob. $\leq (1 - c)^{\# of challenges}$

Wei

Three Problems of the [MMV'13] PoSW

- 1) Space Complexity : Prover needs massive (linear in T) space to compute proof.
- 2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
- **3)** Uniqueness : Once an accepting proof is computed, many other valid proofs can be generated (not a problem for time-stamping, but for blockchains).

Three Problems of the [MMV'13] PoSW

- 1) Space Complexity : Prover needs massive (linear in T) space to compute proof.
- 2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
- 3) Uniqueness : Once an accepting proof is computed, many other valid proofs can be generated (not a problem for time-stamping, but for blockchains). New Construction
- 1) Prover needs only O(log(T)) (not O(T)) space, e.g. for $T = 2^{42}$ (\approx a day) that's $\approx 10 KB$ vs. $\approx 1PB$.
- 2) Simple construction and proof with good concrete parameters.
- 3) Awesome open problem!

Construction and Proof Sketch

Mining Bitcoin (Proofs of Work)

Mining Bitcoin (Proofs of Work)

Can we have a more "sustainable" Blockchain?

- CLIQUE
 - Input: Graph G=(V,E) and integer k>0
 - Question: Does G have a clique of size k?
- CLIQUE is NP-Complete
 - Any problem in NP reduces to CLIQUE
 - A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction
- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that form a clique

- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that for a clique
- 1. Prover commits to a permutation σ over V
- 2. Prover commits to the adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$
- 3. Verifier sends challenge c (either 1 or 0)
- 4. If c=0 then prover reveals σ and adjacency matrix $A_{\sigma(G)}$
 - 1. Verifier confirms that adjacency matrix is correct for $\sigma(G)$
- 5. If c=1 then prover reveals the submatrix formed by first rows/columns of $A_{\sigma(G)}$ corresponding to $\sigma(v_1), \dots, \sigma(v_k)$
 - 1. Verifier confirms that the submatrix forms a clique.

- Completeness: Honest prover can always make honest verifier accept
- **Soundness**: If prover commits to adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$ and can reveal a clique in submatrix of $A_{\sigma(G)}$ then G itself contains a k-clique. Proof invokes binding property of commitment scheme.
- Zero-Knowledge: Simulator cheats and either commits to wrong adjacency matrix or cannot reveal clique. Repeat until we produce a successful transcript. Indistinguishability of transcripts follows from hiding property of commitment scheme.

NIZK Security (Random Oracle Model)

- Simulator is given statement to prove (e.g., G is 3-COLORABLE)
- Simulator must output a proof π'_z and a random oracle H'
- Distinguisher D
 - World 1 (Simulated): Given z, π'_z and oracle access to H'
 - World 2 (Honest): Given z, π_z (honest proof) and oracle access to H
 - Advantage: $ADV_D = |Pr[D^{H}(z, \pi_z) = 1] Pr[D^{H'}(z, \pi'_z) = 1]|$
- Zero-Knowledge: Any PPT distinguisher D should have negligible advantage.
- NIZK proof π_z is transferrable (contrast with interactive ZK proof)

Σ -Protocols

- Prover Input: instance/claim x and witness w
- Verifier Input: Instance x
- Σ -Protocols: three-message structure
 - Prover sends first message m=P₁(x,w; r₁)
 - Verifier responds with random challenge c
 - Prover sends response R=P₂(x,w,r₁,c; r₂)
 - Verifier outputs decision V(x,m,c,R)
 - **Completeness:** If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
 - **Soundness:** If the claim x is false then V(x,c,R)=0 with probability at least ½
 - Zero-Knowledge: Simulator can produce computationally indistinguishable transcript

$\Sigma\text{-}\mathsf{Protocols}$ and Fiat-Shamir Transform

- Convert Σ -Protocols into Non-Interactive ZK Proof
- Prover Input: instance/claim x and witness w
- Verifier Input: Instance x
- Step 1: Prover generates first messages for n instances of the protocol
 m_i = P₁(x,w; r_i) for each i=1 to n
- Step 2: Prover uses random oracle to extract random coins z_j=H(x,j, m₁,...,m_n) for j=1 to n
 - Prover samples challenges $c_1, ..., c_n$ using random strings $z_1, ..., z_n$ i.e., c_i =SampleChallenge(z_i)
- **Step 3:** Prover computes responses R₁,...,R_n
 - $R_i \leftarrow P_2(x,w,r_i,c_i)$
- **Step 4:** Prover outputs the proof $\{(m_i, c_i, z_i)\}_{i \le n}$

$\Sigma\text{-}\mathsf{Protocols}$ and Fiat-Shamir Transform

- Step 1: Prover generates first messages for n instances of the protocol
 - $m_i = P_1(x,w; r_i)$ for each i=1 to n
- Step 2: Prover uses random oracle to extract random coins z_i=H(x,i, m₁,...,m_n) for i=1 to n
 - Prover samples challenges c₁,...,c_n using random strings z₁,...,z_n i.e., c_i=SampleChallenge(z_i)
- **Step 3:** Prover computes responses R₁,...,R_n
 - $R_i \leftarrow P_2(x,w,r_i,c_i)$
- Step 4: Prover outputs the proof $\pi = \{(m_i, c_i, R_i)\}_{i \le n}$

Verifier: $V_{NI}(\mathbf{x}, \pi)$ check that for all $i \leq n$

1. $V(x, (m_i, c_i, R_i)) = 1$ and

2. c_i =SampleChallenge(z_i) where z_i =H(x,i, m_1 ,..., m_n)

$\Sigma\text{-}\mathsf{Protocols}$ and Fiat-Shamir Transform

- Step 1: Prover generates first messages for n instances of the protocol
 - $m_i = P_1(x,w;r_i)$ for each i=1 to n
- Step 2: Prover uses random oracle to extract random coins z_i=H(x,i, m₁,...,m_n) for i=1 to n
 - Prover samples challenges $c_1, ..., c_n$ using random strings $z_1, ..., z_n$ i.e., c_i =SampleChallenge(z_i)
- **Step 3:** Prover computes responses R₁,...,R_n
 - $R_i \leftarrow P_2(x,w,r_i,c_i)$
- Step 4: Prover outputs the proof $\pi = \{(m_i, c_i, R_i)\}_{i \le n}$ Zero-Knowledge (Idea):

Step 1: Run simulator for Σ n-times to obtain n transcripts (m_i, c_i, R_i) for each $i \leq n$.

Step 2: Program the random oracle so that $H(x,i, m_1,...,m_n)=z_i$ where $c_i=SampleChallenge(z_i)$

Non-Interactive Proof of Sequential Work

- Key Idea: Apply Fiat-Shamir Transform!
- Interactive Verifier: Picks uniformly random challenge nodes c_1, \ldots, c_k
- Non Interactive Version: Let h_x denote the root of the Merkle-Tree output by the prover. Define $c_i = H(i, h_x)$. Non-Interactive Proof includes root h_x and responses r_1, \ldots, r_k
- Non Interactive Verifier: generates the challenges $c_i = H(i, h_x)$ and verifies the responses r_1, \ldots, r_k
- Security Analysis (sketch): If the attacker makes q RO queries over at most $T' < N(1 \varepsilon)$ sequential rounds then s/he finds a valid PoSW probability at most $q(1 \varepsilon)^k + \frac{2\lambda q^2 \log N}{2\lambda}$

Probability of finding ``lucky" challenges

Probability of finding an H-sequence longer than

Verifiable Delay Functions

Dan Boneh, Joe Bonneau, Benedikt Bünz, <u>Ben Fisch</u>

Crypto 2018

What is a VDF? **Function** – unique output for every ٠ input

- **Delay** can be evaluated in time T ٠ cannot be evaluated in time $(1-\epsilon)T$ on parallel machine
- Verifiable correctness of output can be verified efficiently

F

Х

• Setup(λ , T) \rightarrow public parameters pp

pp specify domain X and range Y

• Eval(pp, x) \rightarrow output y, proof π

PRAM runtime T with polylog(T) processors

• Verify(pp, x, y, π) \rightarrow { yes, no }

Time complexity at most polylog(T)

Security Properties (Informal)

- Setup $(\lambda, T) \rightarrow$ public parameters pp
- Eval $(pp, \mathbf{X}) \rightarrow \text{output } \mathbf{Y}$, proof π (requires T steps)
- Verify($pp, \mathbf{X}, \mathbf{y}, \mathbf{\pi}$) \rightarrow { yes, no }

"Soundness": if Verify(pp, x, y, π) = Verify(pp, x, y', π') = yes then y = y'

" σ -Sequentiality": if A is a PRAM algorithm, time(A) $\leq \sigma(T)$, e.g. $\sigma(T) = (1 - \epsilon)T$ then Pr[A(pp, X) = Y] < negligible(λ)

Related Crypto Primitives

• Time-lock puzzles [RSW'96, BN'00, BGJPVW'16]

• Trapdoor (secret key) setup per puzzle

Not ``publicly verifiable"

- Proof-of-sequential-work [MMV'13, CP'18]
 O Publicly verifiable
 - Not a function (output isn't unique)

VDF minus any property is "easy"

- Not Verifiable chained one-way function
- No **Delay** Many moderately hard functions with efficient verification, e.g. discrete log $g^{\gamma} = x$
- Not a **Function** Proofs of sequential work

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to others

$$f(x) = x^{2^T} mod N$$

• Goals:

- Puzzle can be generated quickly in time $O(\operatorname{polylog} T)$.
- Other parties can recover secret in sequential time $\Omega(T)$.
- Secret is hidden from (massively parallel) attackers running in sequential time o(T).
- Assumptions: Factoring N is hard and (without prime factors) it takes sequential time $\Omega(T)$ to compute $f(x) = x^{2^T} mod N$

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to prover

$$f(x) = x^{2^T} mod N$$

Computing f(x) (Puzzle Solver): $x_0 = x //x_0 = x^{2^0} \mod N$ for i=1 to T $x_i = x_{i-1} * x_{i-1} \mod N //x_i = x^{2^{i-1}} x^{2^{i-1}} \mod N = x^{2^i} \mod N$ output x_T

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to prover

$$f(x) = x^{2^T} mod N$$

Computing f(x) (Puzzle Solver): $z = x // z = x^{2^{0}} \mod N$ for i=1 to T $z = z * z \mod N // z = x^{2^{i}} \mod N$ output z

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to prover

$$f(x) = x^{2^T} mod N$$

Computing f(x) with Trapdoor (Puzzle Generation): Compute $\varphi(N) = (p-1)(q-1)$ and $y = 2^T \mod \varphi(N)$ output $x^y \mod N$

 $O(\log N) \ll T$ multiplication queries mod N

RSW Timelock Puzzle (Repeated Squaring)

- Assumptions: Factoring N is hard and (without prime factors) it takes time $\Omega(T)$ to compute $f(x) = x^{2^T} mod N$
- Is this a Verifiable Delay Function?
- Answer: Not publicly verifiable!
 - Verifier who does not have prime factors (p,q) has to re-compute

$$f(x) = x^{2^T} \mod N$$

Security Properties (Informal)

• Setup $(\lambda, T) \rightarrow$ public parameters pp

1 1

- Eval $(pp, \mathbf{X}) \rightarrow \text{output } \mathbf{Y}$, proof π (requires T steps)
- Verify($pp, \mathbf{X}, \mathbf{y}, \mathbf{\pi}$) \rightarrow { yes, no }

"Soundness": if Verify(pp, x, y, π) = Verify(pp, x, y', π') = yes then y = y'

" σ -Sequentiality": if A is a PRAM algorithm, time(A) < $\sigma(T)$, e.g. $\sigma(T) = (1 - \epsilon)T$ then Pr[A(pp, X) = Y] < negligible(λ)

VDF security more formally...

Sequentiality Game

 $pp \leftarrow Setup(\lambda, T) \quad //sample \text{ setup params} \\ L \leftarrow A_0(pp, T) \quad //adversary \text{ preprocesses params} \\ x \leftarrow X \qquad //choose \text{ a random challenge input x} \\ y_A \leftarrow A_1(L, pp, x) \quad //adversary \text{ computes output y} \\ A = (A_0, A_1) \text{ "wins" the game if } y_A = y \text{ s.t. } Eval(pp, x) = (y, \pi)$

Def: VDF is (p, σ) -sequential if no (A_0, A_1) with A_0 runtime poly (λ) and A_1 PRAM runtime $\sigma(T)$ on p(T) processors wins the game with prob. > negl (λ)

Part I: Applications of VDFs

Rabin '83

1 5

An ideal service that regularly publishes random value which no party can predict or manipulate

Many uses for random beacons

Games

Cryptographic proofs

Lotteries

Leader election

Randomness beacon

"Public displays" are easily corrupted

1 7

Public entropy source

Stock prices [Clark, Hengartner 2010]

1 8

<u>Assumption</u>: (1) unpredictable, (2) adversary cannot fix stock prices

Stock price manipulation

1 9

MICHAEL DURBIN

Closing prices of 100 stocks:

The problem:

- Once prices settle a minute before closing, attacker executes 20 lastminute trades to influence seed.
- Attacker can predict outcome of trades and choose favorable trades to bias result

Solution: slow things down with a VDF

- A solution: **one hour VDF**
- Attacker cannot tell what trades to execute before market closes

• Uniqueness: ensures no ambiguity about output

Simple Bulletin Board

Problem: Zoe controls the final seed !!

Solution: slow things down with a VDF

$$y = g^{2^{2^t}} \in G$$

 $\pi = \{ proof of correct exponentiation \}$

Assumption: the group *G* has <u>unknown</u>

size

Followup: Pietrzak'18, Wesolowski'18
Hash Chain w/ Verifiable Computation

$$x \to H(x) \to H(H(x)) \to \dots \to H^{(t)}(x) = y$$

 SNARK = "succinct non-interactive argument of knowledge" [G'10,GGPR'13, BCIOP'13, BCCT'13]

2 8

> STARK = "succinct transparent non-interactive argument of knowledge" [M'00, BBHR'18]

Hash Chain w/ Verifiable Computation

$$x \to H(x) \to H(H(x)) \to \dots \to H^{(t)}(x) = y$$

 π

Problem

2 9

Proof generation slower than hash chain, without massive parallelism

Newer VDFs [P'18, W'18]

- Let G be a finite cyclic group with generator $g \in G$ G = {1, g, g², g³, ... }
- Assumption: the group G has unknown size

3

$$pp = (G, H: X \rightarrow G)$$

Eval(pp, x): output $y = H(x)^{(2^T)} \in G$

proof $\pi = (proof of correct exponentiation)$ [P'18, W'18]

T squarings

https://eprint.iacr.org/2018/601

Survey of VDFs

https://eprint.iacr.org/2018/712.pdf

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to others

$$f(x) = x^{2^T} mod N$$

• Goals:

- Puzzle can be generated quickly in time O(polylog T).
- Other parties can recover secret in sequential time $\Omega(T)$.
- Secret is hidden from (massively parallel) attackers running in sequential time o(T).
- Assumptions: Factoring N is hard and (without prime factors) it takes sequential time $\Omega(T)$ to compute $f(x) = x^{2^T} mod N$

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to prover

$$f(x) = x^{2^T} mod N$$

Computing f(x) (Puzzle Solver): $x_0 = x //x_0 = x^{2^0} \mod N$ for i=1 to T $x_i = x_{i-1} * x_{i-1} \mod N //x_i = x^{2^{i-1}} x^{2^{i-1}} \mod N = x^{2^i} \mod N$ output x_T

RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to prover

$$f(x) = x^{2^T} mod N$$

Computing f(x) (Puzzle Solver): $z = x // z = x^{2^{0}} \mod N$ for i=1 to T $z = z * z \mod N // z = x^{2^{i}} \mod N$ output z

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends $puzzle Z = (N, H(f(x)) \oplus secret)$ **Trapdoor:** p, q must not be known to prover

$$f(x) = x^{2^T} mod N$$

Computing f(x) with Trapdoor (Puzzle Generation): Compute $\varphi(N) = (p-1)(q-1)$ and $y = 2^T \mod \varphi(N)$ output $x^y \mod N$

 $O(\log N) \ll T$ multiplication queries mod N

RSW Timelock Puzzle (Repeated Squaring)

- Assumptions: Factoring N is hard and (without prime factors) it takes time $\Omega(T)$ to compute $f(x) = x^{2^T} mod N$
- Is this a Verifiable Delay Function?
- Answer: Not publicly verifiable!
 - Verifier who does not have prime factors (p,q) has to re-compute

$$f(x) = x^{2^T} \mod N$$

Wesolowski's VDF Construction

- **Public Parameter:** N = pq (Generated by trusted party/MPC)
- **Trapdoor Discarded:** No one knows p, q $f(x) = x^{2^T} mod N$

- **Prover:** Computes $y = f(x) = x^{2^T} mod N$ and sends y to verifier
- Verifier: picks random prime B
- **Prover:** Computes $\pi = x^{\left\lfloor \frac{2^T}{B} \right\rfloor} mod N$ and sends π to the verifier.
- Verifier: Checks that $y = \pi^B x^{2^T mod B} mod N$
- Soundness: For any number B we have $2^T = (2^T \mod B) + B \left| \frac{2^T}{R} \right|$

Wesolowski's VDF Construction

- **Prover:** Computes $y = f(x) = x^{2^T} mod N$ and sends y to verifier
- Verifier: picks random prime B
- **Prover:** Computes $\pi = x^{\lfloor \frac{2^T}{B} \rfloor} mod N$ and sends π to the verifier.
- Verifier: Checks that $y = \pi^B x^{2^T mod B} mod N$
- **Completeness:** For any number B we have $2^T = (2^T \mod B) + B \left[\frac{2^T}{B} \right]$ $\pi^B x^{2^T \mod B} = x^B \left[\frac{2^T}{B} \right]^{+(2^T \mod B)} \mod N = x^{2^T} \mod N = f(x)$

Wesolowski's VDF Construction

- **Prover:** Computes $y = f(x) = x^{2^T} mod N$ and sends y to verifier
- Verifier: picks random prime B
- **Prover:** Computes $\pi = x^{\left\lfloor \frac{2^T}{B} \right\rfloor} mod N$ and sends π to the verifier.
- Verifier: Checks that $y = \pi^B x^{2^T mod B} mod N$
- Soundness:
 - Assumption for any $z \neq 1$ it is hard to find y such that $y^B = z \mod N$ when B is random.

Wesolowski's VDF Construction (Non-Interactive VDF)

• Prover:

- Computes $y = f(x) = x^{2^T} mod N$ and sends y to verifier
- Sets random coins R = H(f(x)) B = GenPrime(R)
- Computes $\pi = x^{\left\lfloor \frac{2^T}{B} \right\rfloor} \mod N$
- Output $(x, y = f(x), \pi)$

• Verifier:

- Compute B = GenPrime(H(y))
- Checks that $y = \pi^B x^{2^T mod B} mod N$

Wesolowski's VDF Construction (Non-Interactive VDF)

• Verifier:

- Compute B = GenPrime(H(y))
- Checks that $y = \pi^B x^{2^T mod B} mod N$

• Efficiency:

- **Proof Size:** π is very short (just O(log N) bits) O
- Prover Efficiency: extra O(T) multiplications \otimes
 - $O(T/\log T)$ multiplications \oplus
- Verifier Efficiency: $O(\log T)$ multiplications \bigcirc

- Safe Prime: prime p = 2p' + 1 such that p' is also prime
- Assume N = pq where p = 2p' + 1 and q = 2q' + 1
- Quadratic Residues: $QR_N = \{z^2 \mod N | z \in \mathbb{Z}_N^*\}$
- Signed Quadratic Residues
 - Represent elements of \mathbb{Z}_N^* as $\left\{-\frac{N-1}{2}, \dots, \frac{N-1}{2}\right\}$
 - $QR_N^+ = \{|x| \mid x \in QR_N\}$
 - Fact: The map |.| is an isomorphism from QR_N to QR_N^+
 - Fact: QR_N^+ is a cyclic group with operation \circ defined as $a \circ b \coloneqq |ab \mod N|$
 - Redefine Notation: $x \in QR_N^+ \rightarrow x^{i+1} \coloneqq x \circ x^i$ e.g., $x^2 \coloneqq x \circ x$

- Safe Prime: prime p = 2p' + 1 such that p' is also prime
- Assume N = pq where p = 2p' + 1 and q = 2q' + 1
- Quadratic Residues: $QR_N = \{z^2 | z \in \mathbb{Z}_N^*\}$
- Signed Quadratic Residues
 - Represent elements of \mathbb{Z}_N^* as $\left\{-\frac{N-1}{2}, \dots, \frac{N-1}{2}\right\}$
 - $QR_N^+ = \{ |x| \mid x \in QR_N \}$
 - Fact: The map |.| is an isomorphism from QR_N to QR_N^+
 - Fact: QR_N^+ is a cyclic group with operation \circ defined as $a \circ b \coloneqq |ab \mod N|$
 - Fact: Membership in QR_N^+ can be efficiently tested (unlike QR_N)
 - Fact: If primes p and q are safe then QR_N^+ (and QR_N) has not sub-group of small order.

- **Prover:** Given $x \in QR_N^+$, N, T
 - Computes $f(x) = x^{2^{T}}$ (repeated squaring with operation $y^{2} \coloneqq y \circ y$)
- Question: Does repeated squaring assumption change now that we use QR_N^+ ?
- Answer: Not significantly...
- Observation 1: $|QR_N| \ge \frac{|\mathbb{Z}_N^*|}{4}$ so a random element in \mathbb{Z}_N^* is in QR_N with probability at least $\frac{1}{4}$

An algorithm that can compute $f(x) = x^{2^T} mod N$ correctly with probability at least ε (over the selection of x in QR_N) the same algorithm computes $f(x) = x^{2^T} mod N$ correctly with probability at least $\frac{\varepsilon}{4}$

- **Prover:** Given $x \in QR_N^+$, N, T
 - Computes $f(x) = x^{2^T}$ (repeated squaring with operation $y^2 \coloneqq y \circ y$)
- Does repeated squaring assumption change now that we use QR_N^+ ?
- Observation 2: Computing over (QR_N^+, \circ) is not significantly easier than (QR_N, \times)
 - Suppose x in QR_N and $y = x^{2^T} mod N$
 - Let y' = |y| and x' = |x| be the corresponding group elements in QR_N^+
 - We have $y' = x'^{2^T}$
 - We have $y \in \{y', N y'\}$
 - Flip a coin and output y' or N y' (correct with probability $\frac{1}{2}$)

- Prover: Given x ∈ QR⁺_N, N, T
 Computes f(x) = x^{2^T} (repeated squaring with operation y² ≔ y ∘ y)
- Does repeated squaring assumption change now that we use QR_N^+ ?
- Observation 2: Computing over (QR_N^+, \circ) is not significantly easier than (QR_N, \times)
 - Suppose x in QR_N and $y = x^{2^T} mod N$
 - Let y' = |y| and x' = |x| be the corresponding group elements in QR⁺_N
 We have y' = x'^{2^T}

 - We have $y \in \{y', N y'\}$
 - Flip a coin and output y' or N y' (correct with probability $\frac{1}{2}$)
 - An algorithm that computes $f(x) = x^{2^{T}}$ over QR_{N}^{+} with probability δ (over the random choice of x in QR_{N}^{+}) yields equally efficient (essentially) algorithm which computes $x^{2^{T}} \mod N$ with probability $\frac{\delta}{2}$ (over the random choice of x in QR_{N})

- Prover: Given x ∈ QR⁺_N, N, T
 Computes f(x) = x^{2^T} (repeated squaring with operation y² ≔ y ∘ y)
- Does repeated squaring assumption change now that we use QR_N^+ ?
- Observation 2: Computing over (QR_N⁺, •) is not significantly easier than (QR_N, ×)
 An algorithm that computes f(x) = x^{2^T} over QR_N⁺ with probability δ (over the random choice of x in QR_N⁺) yields equally efficient (essentially) algorithm which computes x^{2^T} mod N with probability δ/2 (over the random choice of x in QR_N)
- **Combining Observations:** An algorithm that computes computes $f(x) = x^{2^{T}}$ over QR_{N}^{+} with probability δ (over the random choice of x in QR_{N}^{+}) yields equally efficient (essentially) algorithm which computes $x^{2^{T}} \mod N$ with probability $\frac{\delta}{8}$ (over the random choice of x in \mathbb{Z}_{M}^{*})

- HalvingProtocol(N,x,T,y) // Honest Prover: $y = x^{2^{T}}$
 - If T=1 then Verifier outputs **accept** if $x \circ x = y$; otherwise **reject**
 - Prover sends $\mu = x^{2^{T/2}}$ to verifier
 - If $\mu \notin QR_N^+$ then verifier outputs **reject**; otherwise verifier picks a random integer $r \in \mathbb{Z}_{2^{\lambda}}$ and sends it to the prover
 - Sender/Prover compute $x' \coloneqq x^r \circ \mu$ $(= x^{r+2^{r/2}})$
 - The sender/prover compute $y' = \mu^r \circ y$ $(= x^{r2^{T/2}+2^T})$
 - If prover is honest then $x' = x^{r+2^{T/2}}$ and $y' = x'^{2^{T/2}}$ and $y' \circ y' = x'^{2^{2^{(1+\frac{T}{2})}}}$

 - If T/2 is even the sender/prover run HalvingProtocol(N, x', ^T/₂, y')
 If T/2 is odd the sender/prover run HalvingProtocol(N, x', ^T/₂ + 1, y' o y')

- Non-Interactive version via Fiat-Shamir
- Efficiency of Halving Protocol
 - Terminates after *at most O*(log *T*) rounds
 - T replaced by T/2 or (T+1)/2 at each level of recursion
 - Naïve implementation:
 - Prover requires $\frac{T}{2^i} + \log \lambda$ queries to \circ at ith level of recursion
 - Total work $\sum_{i=1}^{\log \tilde{T}} \left(\frac{T}{2^i} + \log \lambda \right) = O(T + \log T \log \lambda)$
 - Optimized Prover requires just $O(\sqrt{T} \log T)$ additional queries to group operations \circ
 - Assume $T = 2^t$ for simplicity
 - **Key idea:** Store $\mu_i = x^{2^{\binom{T}{2^i}}}$ for each $i \le t$ to avoid re-computation

Theorem 1. If the input (N, x, T) to the protocol satisfies

 N = p ⋅ q is the product of safe primes, i.e., p = 2p' + 1, q = 2q' + 1 for primes p', q'.
 ⟨x⟩ = QR_N⁺.³
 2^λ ≤ min{p', q'}

Then for any malicious prover $\widetilde{\mathcal{P}}$ who sends as first message y anything else than the solution to the RSW time-lock puzzle, i.e.,

$$y \neq x^{2^T}$$

 \mathcal{V} will finally output accept with probability at most

$$\frac{3\log(T)}{2^{\lambda}}$$

Proof

It will be convenient to define the language

$$\mathcal{L} = \{(N, x, T, y) \; : y
eq x^{2^T} ext{ mod } N ext{ and } \langle x
angle = QR_N \}$$

We'll establish the following lemma.

Lemma 1. For N, λ as in Thm. 1, and any malicious prover $\widetilde{\mathcal{P}}$ the following holds. If the input to the halving protocol in §3.1 satisfies

$$(N, x, T, y) \in \mathcal{L}$$

then with probability $\geq 1-3/2^\lambda$ (over the choice of r) V's output is either reject or satisfies

$$(N, x', \lceil T/2 \rceil, y') \in \mathcal{L}$$

Proof of Theorem 1 (assuming Lemma 1)

Proof (Proof of Theorem 1). In every iteration of the halving protocol the time parameter decreases from T to $\lceil T/2 \rceil$ and it stops once T = 1, this means we iterate for at most $\lceil \log(T) \rceil$ rounds. By assumption, the input (N, x, T, y) to the first iteration is in \mathcal{L} , and by construction, the only case where \mathcal{V} outputs **accept** is on an input (N, x, 1, y) where $y = x^{2^T} = x^2 \mod N$, in particular, this input is not in \mathcal{L} .

So, if \mathcal{V} outputs **accept**, there must be one iteration of the halving protocol where the input is in \mathcal{L} but the output is not. By Lemma 1, for any particular iteration this happens with probability $\leq 3/2^{\lambda}$. By the union bound, the probability of this happening in any of the $\lceil \log(T) \rceil - 1$ rounds can be upper bounded by $3\log(T)/2^{\lambda}$ as claimed.

It will be convenient to define the language

$$\mathcal{L} = \{(N, x, T, y) \; : y
eq x^{2^T} ext{ mod } N ext{ and } \langle x
angle = QR_N \}$$

We'll establish the following lemma.

Lemma 1. For N, λ as in Thm. 1, and any malicious prover $\widetilde{\mathcal{P}}$ the following holds. If the input to the halving protocol in §3.1 satisfies

 $(N, x, T, y) \in \mathcal{L}$

then with probability $\geq 1-3/2^\lambda$ (over the choice of r) V's output is either reject or satisfies

 $(N, x', \lceil T/2 \rceil, y') \in \mathcal{L}$

Proof (Proof of Lemma 1). We just consider the case where T is even, the odd T case is almost identical.

Assuming the input to the halving protocol satisfies $(N, x, T, y) \in \mathcal{L}$, we must bound the probability that \mathcal{V} outputs reject or the output $(N, x', T/2, y') \notin \mathcal{L}$.

Lemma 1. For N, λ as in Thm. 1, and any malicious prover $\widetilde{\mathcal{P}}$ the following holds. If the input to the halving protocol in §3.1 satisfies

 $(N, x, T, y) \in \mathcal{L}$

then with probability $\geq 1-3/2^\lambda$ (over the choice of r) V's output is either reject or satisfies

 $(N,x',\lceil T/2
ceil,y')\in\mathcal{L}$

Proof (Proof of Lemma 1). We just consider the case where T is even, the odd T case is almost identical.

Assuming the input to the halving protocol satisfies $(N, x, T, y) \in \mathcal{L}$, we must bound the probability that \mathcal{V} outputs reject or the output $(N, x', T/2, y') \notin \mathcal{L}$.

If T = 1 then \mathcal{V} outputs reject and we're done. Otherwise, if \mathcal{P} sends a $\mu \notin QR_N$ in step 2. then \mathcal{V} outputs reject in step 3. and we're done. So from now we assume $\mu \in QR_N$. We must bound

$$\Pr_r[(y'={x'}^{2^{T/2}}) ~\lor~ (\langle x'
angle
eq QR_N)] \leq 3/2^\lambda$$

If T = 1 then \mathcal{V} outputs reject and we're done. Otherwise, if $\widetilde{\mathcal{P}}$ sends a $\mu \notin QR_N$ in step 2. then \mathcal{V} outputs reject in step 3. and we're done. So from now we assume $\mu \in QR_N$. We must bound

$$\Pr_r[(y'={x'}^{2^{T/2}}) ~ee~ (\langle x'
angle
eq QR_N)] \leq 3/2^\lambda$$

using $\Pr[a \lor b] = \Pr[a \land \overline{b}] + \Pr[b]$ we rewrite this as

$$\Pr_{r}[y' = {x'}^{2^{T/2}} \wedge \langle x' \rangle = QR_{N}] + \Pr_{r}[\langle x' \rangle \neq QR_{N}] \le 3/2^{\lambda}$$
(3)

Eq.(3) follows by the two claims below.

Claim. $\Pr_r[\langle x' \rangle \neq QR_N] \leq 2/2^{\lambda}$.

Claim. $\Pr_r[y'={x'}^{2^{T/2}} \mod N \wedge \langle x'
angle = QR_N] \leq 1/2^{\lambda}$.

Comparison for VDFs

- Non-Interactive version via Fiat-Shamir
- Pietrzak's prover requires just $O(\sqrt{T} \log T)$ additional \circ queries \bigcirc
 - Better than $O(T/\log T)$ [Wesolowski]
- Pietrzak's proof size is $O(\log^2 T \log N)$
 - Worse than $O(\log N)$ [Wesolowski]
- Verifier Efficiency is $O((\lambda + 1) \log T)$ queries to group operation \circ
 - Slightly worse than [Wesolowski] ⊖

