
Advanced Cryptography
CS 655

Week 9: 
• SCRYPT (wrapup)
• Proof of Sequential Work/Proof of Space

1Spring 2023



Motivation: Online Exams during the Pandemic
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Proofs of Sequential Work

aka.  Verifiable Delay Algorithm

χ ←
Prover P Verifier V

statement χ
Time T ∈ N



Proofs of Sequential Work
aka.  Verifiable Delay Algorithm

verify(χ, T, τ ) ∈
accept/reject

Completeness and Soundness in the random oracle  model:

HProver P
χ ←

Verifier V
statement χ
Time T ∈ N

τ = τ (χ, T )



Proofs of Sequential Work
aka.  Verifiable Delay Algorithm

verify(χ, T, τ ) ∈
accept/reject

HProver P
χ ←

Verifier V
statement χ
Time T ∈ N

τ = τ (χ, T )

Completeness and Soundness in the random oracle  model:

Completeness: τ (c, T ) can be computed making T queries to H
Soundness: Computing any τ l s.t. verify(χ, T, τ l) =accept for 
random χ requires almost T sequential queries to H



Proofs of Sequential Work
aka.  Verifiable Delay Algorithm

verify(χ, T, τ ) ∈
accept/reject

HProver P
χ ←

Verifier V
statement χ
Time T ∈ N

τ = τ (χ, T )

Completeness and Soundness in the random oracle  model:

Completeness: τ (c, T ) can be computed making T queries to H
Soundness: Computing any τ l s.t. verify(χ, T, τ l) =accept for 
random χ requires almost T sequential queries to H

massive parallelism useless to generate valid proof faster ⇒
prover must make almost T sequential queries ∼ T time



x y

H H

x l
yl

queries y = H(x), yl = H(x l) where
y ⊆ xl ⇒ query xl was made after x

Random Oracles are Sequential

depth-robust if after removing any
e  nodes a path of length d exists.

1 2 3 4 5 6

Depth-Robust Graphs (only [MMV’13])
DAG G = (V, E) is (e,d)

Graph Labelling

label £i = H(£parents(i)), e.g.  £4  = H(£3,£2)

Three Basic Concepts



H-Sequence
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Random Oracles are Sequential

• Let 𝐻𝐻: 0,1 ≤𝛿𝛿𝛿𝛿 → 0,1 𝛿𝛿 be a random oracle
• Suppose that the attacker may make 𝑠𝑠 − 1 rounds of sequential 

queries
• Attacker Goal: output an H-sequence 𝑥𝑥0, … , 𝑥𝑥𝑠𝑠 of length 𝑠𝑠 with each 

𝑥𝑥𝑖𝑖 ≤ 𝛿𝛿𝜆𝜆
• Suppose that attacker makes at most 𝑞𝑞 RO queries

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆
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Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆

Proof Sketch: 
Let LuckyGuess denote the event that for some i the string 𝐻𝐻(𝑥𝑥𝑖𝑖) is a 
substring of 𝑥𝑥𝑖𝑖+1 but the attacker never actually made the query 𝐻𝐻(𝑥𝑥𝑖𝑖).
Claim 1: Pr LuckyGuess ≤ 𝑠𝑠(𝛿𝛿−1)𝛿𝛿

2𝜆𝜆

Proof of Claim 1: Fix any index i and any 𝑗𝑗 ≤ (𝛿𝛿 − 1)𝜆𝜆 we have 

Pr 𝐻𝐻 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖+1 𝑗𝑗, 𝑗𝑗 + 𝜆𝜆 − 1 ≤
1
2𝛿𝛿

We now union bound over all indices 𝑖𝑖 ≤ 𝑠𝑠 and all 𝑗𝑗 ≤ (𝛿𝛿 − 1)𝜆𝜆
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Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆

Proof Sketch: 
Let Collision denote the event that for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑠𝑠 − 1 there is a query 𝑎𝑎𝑖𝑖 made in round i
and a query 𝑎𝑎𝑗𝑗 made in round j where 𝐻𝐻 𝑎𝑎𝑗𝑗 is a substring of 𝑎𝑎𝑖𝑖

Claim 2: Pr Collision ≤ 𝑞𝑞2𝛿𝛿𝛿𝛿
2𝜆𝜆

Proof of Claim 2: Fix any pair of queries ai and aj and any index k ≤ δ − 1 λ
Observe that H aj can be viewed as a random string picked after ai is fixed. 

Pr 𝐻𝐻 𝑎𝑎𝑗𝑗 = 𝑎𝑎𝑖𝑖 𝑘𝑘, 𝑘𝑘 + 𝜆𝜆 − 1 ≤
1
2𝛿𝛿

We now union bound over all 𝑞𝑞
2 pairs of queries and all 𝑗𝑗 ≤ (𝛿𝛿 − 1)𝜆𝜆
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Random Oracles are Sequential

Lemma: The attacker succeeds with probability at most 𝑞𝑞
2𝛿𝛿𝛿𝛿 +𝑞𝑞𝑠𝑠𝛿𝛿𝛿𝛿

2𝜆𝜆

Proof Sketch: 

Pr LuckyGuess + Pr Collision ≤
𝑞𝑞2𝛿𝛿𝜆𝜆 + 𝑠𝑠𝛿𝛿𝜆𝜆

2𝛿𝛿

If the attacker produces an H-sequence of length s then at least one of 
the events LuckyGuess or Collision must occur.

17

Collision: for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑠𝑠 − 1 𝐻𝐻 𝑎𝑎𝑗𝑗 is a substring of 𝑎𝑎𝑖𝑖
where the query 𝑎𝑎𝑖𝑖 (resp. 𝑎𝑎𝑗𝑗) is made in round i (resp. j).

LuckyGuess: for some i the string 𝐻𝐻(𝑥𝑥𝑖𝑖) is a substring of 
𝑥𝑥𝑖𝑖+1 although attacker never queried 𝐻𝐻(𝑥𝑥𝑖𝑖). 



The MMV’13 Construction

HProver P
χ ←

Verifier V
statement χ
Time T = 6

• Protocol specifies depth-robust
DAG G on T nodes

• Define “fresh” random oracle
Hχ(·) ≡ H(χ ·)

• Compute labels of G using Hχ

£1 £2 £3 £4 £5 £6



The MMV’13 Construction
HProver P

χ ←
Verifier V

statement χ

£l l l l l l£2 £3 £4 £5 £6
• G is (e, d) depth-robust

˜ l
i• φ commits P to labels {£ } 1

i∈V

i• i  is bad if £l /= H(£l
parents(i))

Time T = 6
φ

Proof Sketch

φ
• Case 1:  ≥  e  bad nodes ⇒  will fail opening phase whp.



The MMV’13 Construction
HProver P

χ ←
Verifier V

statement χ

£l l l l l l£2 £3 £4 £5 £6
• G is (e, d) depth-robust

˜ l
i• φ commits P to labels {£ } 1

i∈V

i• i  is bad if £l /= H(£l
parents(i))

Time T = 6
φ

Proof Sketch

φ
• Case 1:  ≥  e  bad nodes ⇒  will fail opening phase whp.
• Case 2: Less than e bad labels ⇒  ∃ path of good nodes  

(by (e, d) depth-robustness) ⇒  P̃ made d sequential  
queries (by sequantality of RO)



The New Construction

For every leaf i  add all edges ( j, i) where j  is left sibling of  
node on path i  → root

T = 15



The New Construction

For every leaf i  add all edges ( j, i) where j  is left sibling of  
node on path i  → root

right sibling
T = 15

left sibling



Weighted Depth-Robust
φ

Nodes at height h have weight 2ℎ

#Nodes at height h: 2𝑛𝑛−ℎ

Total Weight at Height h: 2𝑛𝑛

Total Weight of all Nodes: n2𝑛𝑛

weight=1, height 0

weight=2, height 1

weight=4, height 2

weight=8, height 3

Weighted Depth-Robust: Let S be any subset of nodes with total weight 
wt(S) ≤ 𝛼𝛼2𝑛𝑛

Claim: 𝐺𝐺 − 𝑆𝑆 has a path of length d ≥ (1 − 𝛼𝛼)2𝑛𝑛

Intuition: Cannot delete too many nodes close to the root (high weight)
Deleting nodes close to the leaf has a small impact on the depth.

Intuition 2: A cheating prover will be caught proportional to the total 
weight of deleted (inconsistent) nodes



Weighted-Depth-Robustness

• Suppose we delete S. Let 𝑫𝑫𝑺𝑺 be the set of nodes which are in S or 
below some node in S. 

• Claim: There is a directed path through all nodes in 𝑉𝑉 − 𝑫𝑫𝑺𝑺

24



Weighted-Depth-Robustness
• Claim: There is a directed path through all nodes in 𝑉𝑉 − 𝑫𝑫𝑺𝑺
• Proof Sketch (Induction on height of tree): 

• By Inductive Assumption there is a path through all nodes on left (same for right)
• By construction there is a path from left root to every leaf node on right side
 Can piece paths together (and then connect right root to leaf node)

25
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The New Construction

For every leaf i  add all edges ( j, i) where j  is left sibling of  
node on path i  → root

T = 15



The New Construction

14

3

1 2

15

For every leaf i  add all edges ( j, i) where j  is left sibling of  
node on path i  → root

• P computes labelling £i = H(£parents(i)) and sends root
label φ = £T to V. Can be done storing only log(T ) labels.

T = 15

• V challenges P to open a subset of leaves and checks 
consistency (blue and green edges!)



Proof Sketch

The New Construction
φ T = 15



Proof Sketch
˜• P committed to all labels 𝐿𝐿𝑖𝑖 after sending φ = L15.

• i is bad if 𝐿𝐿𝑖𝑖 is not consistent i.e., i’s parents are 𝑥𝑥1, … , 𝑥𝑥𝛿𝛿 but 
𝐿𝐿𝑖𝑖 ≠ 𝐻𝐻 𝐿𝐿𝑥𝑥1 , … , 𝐿𝐿𝑥𝑥𝛿𝛿

The New Construction
φ T = 15



Proof Sketch˜ l
i• P committed to labels £ after sending φ = £15.

• i is bad if 𝐿𝐿𝑖𝑖 is not consistent i.e., i’s parents are 𝑥𝑥1, … , 𝑥𝑥𝛿𝛿
but 𝐿𝐿𝑖𝑖 ≠ 𝐻𝐻 𝐿𝐿𝑥𝑥1 , … , 𝐿𝐿𝑥𝑥𝛿𝛿

• Let S ⊂ V denote the bad nodes and all nodes below.

The New Construction
φ

T = 15



Proof Sketch˜ l
i• P committed to labels £ after sending φ = £15.

i• i  is bad if £l /= H(£l
parents(i)).

• Let S ⊂ V denote the bad nodes and all nodes below.
• Claim 1:  ∃  path going through V −  S  (of length T − |S|).

The New Construction
φ T = 15

• Claim 2:  P̃      can’t open |S|/T fraction of leafs.

Theorem: P̃     made only T (1 −  c) sequential queries
⇒  will pass opening phase with prob. ≤  (1 −  c)#of challenges



Wei

32



Three Problems of the [MMV’13] PoSW

1) Space Complexity : Prover needs massive (linear in T)
space to compute proof.

2) Poor/Unclear Parameters due to usage of sophisticated 
combinatorial objects.

3) Uniqueness : Once an accepting proof is computed, many 
other valid proofs can be generated (not a problem for  
time-stamping, but for blockchains).



Three Problems of the [MMV’13] PoSW
1) Space Complexity : Prover needs massive (linear in T)

space to compute proof.
2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
3) Uniqueness : Once an accepting proof is computed, many other valid proofs can 

be generated (not a problem for  time-stamping, but for blockchains).
New Construction

1) Prover needs only O(log(T )) (not O(T )) space, e.g. for
T = 242 (≈  a day) that’s ≈  10KB vs. ≈  1PB.

2) Simple construction and proof with good concrete  parameters.
3) Awesome open problem!



Construction and Proof Sketch



Mining Bitcoin (Proofs of Work)



Mining Bitcoin (Proofs of Work)

Ecological: Massive  energy & hardware 
waste.

Economical: Requires  high  rewards⇒
inflation and/or high  transaction fees.

Security: E.g. buy  old  ASICs for 51%
attack.



Can we have a more “sustainable”  
Blockchain?



Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique

39



Zero-Knowledge Proof for all NP

40

A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑜𝑜 1, 𝑟𝑟𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑜𝑜 0, 𝑟𝑟𝐿𝐿,𝐿𝐿

A L

L

A



Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first 

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝑣𝑣1 , … , 𝜎𝜎 𝑣𝑣𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.

41
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Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and 

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong 
adjacency matrix or cannot reveal clique. Repeat until we produce a  
successful transcript. Indistinguishability of transcripts follows from 
hiding property of commitment scheme.

42



NIZK Security (Random Oracle Model)

• Simulator is given statement to prove (e.g., 𝐺𝐺 is 3-COLORABLE)
• Simulator must output a proof 𝜋𝜋′𝑧𝑧 and a random oracle H’

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋′𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H 
• Advantage: ADVD = 𝑃𝑃𝑟𝑟 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑟𝑟 𝐷𝐷𝐻𝐻′ z, 𝜋𝜋′𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible 
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)

43



Σ-Protocols

• Prover Input: instance/claim x and witness w 

• Verifier Input: Instance x

• Σ-Protocols: three-message structure
• Prover sends first message m=P1(x,w; r1)
• Verifier responds with random challenge c
• Prover sends response R=P2(x,w,r1,c; r2)
• Verifier outputs decision V(x,m,c,R)
• Completeness: If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
• Soundness: If the claim x is false then V(x,c,R)=0 with probability at least ½
• Zero-Knowledge: Simulator can produce computationally indistinguishable transcript 

44



Σ-Protocols and Fiat-Shamir Transform

• Convert Σ-Protocols into Non-Interactive ZK Proof
• Prover Input: instance/claim x and witness w 
• Verifier Input: Instance x
• Step 1: Prover generates first messages for n instances of the protocol

• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zj=H(x,j, m1,….,mn) for 
j=1 to n 

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)

• Step 3: Prover computes responses R1,…,Rn 
• RiP2(x,w,ri,ci)

• Step 4: Prover outputs the proof  𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑖𝑖 𝑖𝑖≤𝑛𝑛
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Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to 
n 

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn 

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof  𝜋𝜋 = 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Verifier: VNI(x,𝜋𝜋) check that for all 𝑖𝑖 ≤ 𝑛𝑛

1. V(x, 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖 )=1 and  
2. ci=SampleChallenge(zi) where zi=H(x,i, m1,….,mn)

46



Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to 
n 

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn 

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof  𝜋𝜋 = 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Zero-Knowledge (Idea): 
Step 1: Run simulator for Σ n-times to obtain n transcripts 𝑜𝑜𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑅𝑅𝑖𝑖 for each 𝑖𝑖 ≤ 𝑛𝑛. 
Step 2: Program the random oracle so that H(x,i, m1,….,mn)=zi where 
ci=SampleChallenge(zi)

47



Non-Interactive Proof of Sequential Work

• Key Idea: Apply Fiat-Shamir Transform!
• Interactive Verifier: Picks uniformly random challenge nodes 𝑐𝑐1, … , 𝑐𝑐𝑘𝑘
• Non Interactive Version: Let ℎ𝑥𝑥 denote the root of the Merkle-Tree output by the 

prover. Define 𝑐𝑐𝑖𝑖 = 𝐻𝐻 𝑖𝑖, ℎ𝑥𝑥 . Non-Interactive Proof includes root ℎ𝑥𝑥 and 
responses 𝑟𝑟1, … , 𝑟𝑟𝑘𝑘

• Non Interactive Verifier: generates the challenges 𝑐𝑐𝑖𝑖 = 𝐻𝐻 𝑖𝑖, ℎ𝑥𝑥 and verifies the 
responses 𝑟𝑟1, … , 𝑟𝑟𝑘𝑘

• Security Analysis (sketch): If the attacker makes 𝑞𝑞 RO queries over at most 𝑇𝑇′

< 𝑁𝑁(1 − 𝜀𝜀) sequential rounds then s/he finds a valid PoSW probability at most 

q 1 − 𝜀𝜀 𝑘𝑘 +
2 𝜆𝜆 𝑞𝑞2log 𝑁𝑁

2𝛿𝛿
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Probability of finding an H-sequence longer than
T’ 

Probability of finding ``lucky” challenges



Dan Boneh, Joe Bonneau,
Benedikt Bünz, Ben Fisch

Crypto 2018
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Verifiable Delay Functions



What is a VDF?

Verifier

50



What is a VDF?

51

• Setup(λ, T) ⟶ public parameters pp
pp specify domain X and range Y

• Eval(pp, x) ⟶ output y, proof π

PRAM runtime T with polylog(T) processors

• Verify(pp, x, y, π) ⟶ { yes, no }

Time complexity at most polylog(T)



Security Properties (Informal)
• Setup(λ, T) ⟶ public parameters pp

• Eval(pp, x) ⟶ output y, proofπ

52

(requires T steps)

• Verify(pp, x, y, π) ⟶ { yes, no }



Related Crypto Primitives

5
3

• Time-lock puzzles [RSW’96, BN’00, BGJPVW’16]

o Trapdoor (secret key) setup per puzzle
o Not ``publicly verifiable”

• Proof-of-sequential-work [MMV’13, CP’18]

o Publicly verifiable
o Not a function (output isn’t unique)



VDF minus any property is “easy”
54



RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to others 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Goals: 

• Puzzle can be generated quickly in time 𝑂𝑂(polylog 𝑇𝑇). 
• Other parties can recover secret in sequential time Ω(𝑇𝑇). 
• Secret is hidden from (massively parallel) attackers running in sequential time 𝑜𝑜(𝑇𝑇).

• Assumptions: Factoring N is hard and (without prime factors) it takes 
sequential time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
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RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑥𝑥0 = 𝑥𝑥 // 𝑥𝑥0 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 ∗ 𝑥𝑥𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑥𝑥𝑖𝑖 = 𝑥𝑥2𝑖𝑖−1𝑥𝑥2𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑥𝑥𝑇𝑇
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RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑧𝑧 = 𝑥𝑥 // 𝑧𝑧 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑧𝑧 = 𝑧𝑧 ∗ 𝑧𝑧 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑧𝑧 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑧𝑧
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RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 with Trapdoor (Puzzle Generation):
Compute 𝜑𝜑 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1) and 𝑦𝑦 = 2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝜑𝜑 𝑁𝑁
output 𝑥𝑥𝑦𝑦 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
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𝑂𝑂(log 𝑁𝑁) ≪ 𝑇𝑇 multiplication queries mod N



RSW Timelock Puzzle (Repeated Squaring)

• Assumptions: Factoring N is hard and (without prime factors) it takes 
time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Is this a Verifiable Delay Function?

• Answer: Not publicly verifiable! 
• Verifier who does not have prime factors (p,q) has to re-compute 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
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Security Properties (Informal)
• Setup(λ, T) ⟶ public parameters pp

• Eval(pp, x) ⟶ output y, proofπ

1
1

(requires T steps)

• Verify(pp, x, y, π) ⟶ { yes, no }



VDF security more formally…
Sequentiality Game

12



Part I: Applications of VDFs

Permissionless  
consensus

1
4



Randomness beacon

1
5

• Rabin ‘83

An ideal service that regularly publishes random  
value which no party can predict or manipulate



Many uses for random beacons
16



Randomness beacon

``Public displays”  
are easily corrupted

1
7



Public entropy source

Assumption:

1
8

(1) unpredictable, (2) adversary cannot fix stock prices



Stock price manipulation
1
9



Stock price randomness beacon
Hash(prices)

extractor

128 bits

pseudorandom
generator

Lots of bits

20 bitsClosing prices of 100 stocks:

The problem:
• Once prices settle a minute before  

closing, attacker executes 20 last-
minute trades to influence seed.

• Attacker can predict outcome of  
trades and choose favorable trades  
to bias result

(seed)



Solution: slow things down with a VDF

• A solution: one hour VDF
• Attacker cannot tell what trades to execute

before market closes

• Uniqueness: ensures no  ambiguity about
output

VDF

128 bits , π

Hash(prices) 20 bits

extractor

128 bits

(seed)



Simple Bulletin Board
Alice Bob Claire Zoe

Public Bulletin Board

ra rb rc rz

output

2
4

seed = Hash(ra || rb || ⋯ || rz ) ∈ {0,1}256

Problem: Zoe controls the final seed !!

Mildly  
synchronous



Solution: slow things down with a VDF [LW’15]

Alice Bob Claire Zoe

ra rb rc rz

Public Bulletin Board (blockchain)

Hash(ra  || rb  || ⋯ || rz ) ∈ {0,1}256

VDF H seed, π

2
5



Part II: Constructions
yI. x

(reverse permutation)

II.

This work

Followup:
Pietrzak’18,  

Wesolowski’18

2
7



Hash Chain w/ Verifiable Computation

• SNARK = “succinct non-interactive argument of knowledge”
[G’10,GGPR’13, BCIOP’13, BCCT’13]

• STARK = “succinct transparent non-interactive argument of
knowledge” [M’00, BBHR’18]

2
8



Hash Chain w/ Verifiable Computation

Problem
• Proof generation slower than hash chain, without  

massive parallelism

2
9



Newer VDFs [P’18, W’18]

• Let G be a finite cyclic group with generator g ∈ G
G = {1, g, g2, g3, … }

• Assumption: the group G has unknown size

pp = (G, H: X ⟶ G)

• Eval(pp, x): output

proof π = (proof of correct exponentiation)

T squarings

4
3

[P’18, W’18]



THE END

https://eprint.iacr.org/2018/601
Survey of VDFs

https://eprint.iacr.org/2018/712.pdf 44

https://eprint.iacr.org/2018/601


RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to others 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Goals: 

• Puzzle can be generated quickly in time 𝑂𝑂(polylog 𝑇𝑇). 
• Other parties can recover secret in sequential time Ω(𝑇𝑇). 
• Secret is hidden from (massively parallel) attackers running in sequential time 𝑜𝑜(𝑇𝑇).

• Assumptions: Factoring N is hard and (without prime factors) it takes 
sequential time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
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RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑥𝑥0 = 𝑥𝑥 // 𝑥𝑥0 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 ∗ 𝑥𝑥𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑥𝑥𝑖𝑖 = 𝑥𝑥2𝑖𝑖−1𝑥𝑥2𝑖𝑖−1𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑥𝑥𝑇𝑇
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RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 (Puzzle Solver):
𝑧𝑧 = 𝑥𝑥 // 𝑧𝑧 = 𝑥𝑥20𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
for i=1 to T

𝑧𝑧 = 𝑧𝑧 ∗ 𝑧𝑧 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 // 𝑧𝑧 = 𝑥𝑥2𝑖𝑖 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
output 𝑧𝑧
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RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 and sends puzzle 𝑍𝑍 = (𝑁𝑁, 𝐻𝐻(𝑓𝑓(𝑥𝑥))⨁𝑠𝑠𝑠𝑠𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠)
Trapdoor: 𝑝𝑝, 𝑞𝑞 must not be known to prover 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

Computing 𝒇𝒇 𝒙𝒙 with Trapdoor (Puzzle Generation):
Compute 𝜑𝜑 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1) and 𝑦𝑦 = 2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝜑𝜑 𝑁𝑁
output 𝑥𝑥𝑦𝑦 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
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𝑂𝑂(log 𝑁𝑁) ≪ 𝑇𝑇 multiplication queries mod N



RSW Timelock Puzzle (Repeated Squaring)

• Assumptions: Factoring N is hard and (without prime factors) it takes 
time Ω(𝑇𝑇) to compute 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Is this a Verifiable Delay Function?

• Answer: Not publicly verifiable! 
• Verifier who does not have prime factors (p,q) has to re-compute 

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
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Wesolowski’s VDF Construction

• Public Parameter: 𝑁𝑁 = 𝑝𝑝𝑞𝑞 (Generated by trusted party/MPC) 
• Trapdoor Discarded: No one knows 𝑝𝑝, 𝑞𝑞

𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Prover: Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Verifier: picks random prime B

• Prover: Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends π to the verifier.
• Verifier: Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Soundness: For any number B we have 2𝑇𝑇 = 2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝐵𝐵 + 𝐵𝐵 2𝑇𝑇

𝐵𝐵
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Wesolowski’s VDF Construction

• Prover: Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Verifier: picks random prime B

• Prover: Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends π to the verifier.

• Verifier: Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Completeness: For any number B we have 2𝑇𝑇 = 2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝐵𝐵 + 𝐵𝐵 2𝑇𝑇

𝐵𝐵

π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵 = 𝑥𝑥
𝐵𝐵 2𝑇𝑇

𝐵𝐵 +(2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵)
𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 = 𝑓𝑓(𝑥𝑥)
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Wesolowski’s VDF Construction

• Prover: Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Verifier: picks random prime B

• Prover: Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends π to the verifier.

• Verifier: Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Soundness: 

• Assumption for any 𝑧𝑧 ≠ 1 it is hard to find 𝑦𝑦 such that 𝑦𝑦𝐵𝐵 = 𝑧𝑧 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 when 
𝐵𝐵 is random. 
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Wesolowski’s VDF Construction 
(Non-Interactive VDF)
• Prover: 

• Computes y = 𝑓𝑓 𝑥𝑥 = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 and sends y to verifier
• Sets random coins 𝑅𝑅 = 𝐻𝐻 𝑓𝑓 𝑥𝑥 𝐵𝐵 = GenPrime(𝑅𝑅)

• Computes π = 𝑥𝑥
2𝑇𝑇

𝐵𝐵 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Output (𝑥𝑥, 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 , π)

• Verifier: 
• Compute 𝐵𝐵 = GenPrime(𝐻𝐻 𝑦𝑦 )
• Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
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Wesolowski’s VDF Construction 
(Non-Interactive VDF)
• Verifier: 

• Compute 𝐵𝐵 = GenPrime(𝐻𝐻 𝑦𝑦 )
• Checks that y = π𝐵𝐵𝑥𝑥2𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁

• Efficiency:
• Proof Size: 𝜋𝜋 is very short (just O(log N) bits)
• Prover Efficiency: extra 𝐎𝐎(𝑇𝑇) multiplications 

• 𝐎𝐎(𝑇𝑇/ log 𝑇𝑇) multiplications 
• Verifier Efficiency: 𝐎𝐎(log 𝑇𝑇) multiplications 
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Pietrzak’s Construction [ITCS19]

• Safe Prime: prime 𝑝𝑝 = 2𝑝𝑝′ + 1 such that 𝑝𝑝′ is also prime
• Assume 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where 𝑝𝑝 = 2𝑝𝑝′ + 1 and 𝑞𝑞 = 2𝑞𝑞′ + 1
• Quadratic Residues: 𝑄𝑄𝑅𝑅𝑁𝑁 = 𝑧𝑧2 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 𝑧𝑧 ∈ ℤ𝑁𝑁

∗

• Signed Quadratic Residues
• Represent elements of ℤ𝑁𝑁

∗ as  − 𝑁𝑁−1
2

, … , 𝑁𝑁−1
2

• 𝑄𝑄𝑅𝑅𝑁𝑁
+ = 𝑥𝑥 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁

• Fact: The map . is an isomorphism from 𝑄𝑄𝑅𝑅𝑁𝑁 to 𝑄𝑄𝑅𝑅𝑁𝑁
+

• Fact: 𝑄𝑄𝑅𝑅𝑁𝑁
+ is a cyclic group  with operation ∘defined as 

𝑎𝑎 ∘ 𝑏𝑏 ≔ |𝑎𝑎𝑏𝑏 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁|
• Redefine Notation: 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁

+  𝑥𝑥𝑖𝑖+1 ≔ 𝑥𝑥 ∘ 𝑥𝑥𝑖𝑖 e.g., 𝑥𝑥2 ≔ 𝑥𝑥 ∘ 𝑥𝑥
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Pietrzak’s Construction [ITCS19]

• Safe Prime: prime 𝑝𝑝 = 2𝑝𝑝′ + 1 such that 𝑝𝑝′ is also prime
• Assume 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where 𝑝𝑝 = 2𝑝𝑝′ + 1 and 𝑞𝑞 = 2𝑞𝑞′ + 1
• Quadratic Residues: 𝑄𝑄𝑅𝑅𝑁𝑁 = 𝑧𝑧2 𝑧𝑧 ∈ ℤ𝑁𝑁

∗

• Signed Quadratic Residues
• Represent elements of ℤ𝑁𝑁

∗ as  − 𝑁𝑁−1
2

, … , 𝑁𝑁−1
2

• 𝑄𝑄𝑅𝑅𝑁𝑁
+ = 𝑥𝑥 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁

• Fact: The map . is an isomorphism from 𝑄𝑄𝑅𝑅𝑁𝑁 to 𝑄𝑄𝑅𝑅𝑁𝑁
+

• Fact: 𝑄𝑄𝑅𝑅𝑁𝑁
+ is a cyclic group  with operation ∘defined as 

𝑎𝑎 ∘ 𝑏𝑏 ≔ |𝑎𝑎𝑏𝑏 𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁|
• Fact: Membership in 𝑄𝑄𝑅𝑅𝑁𝑁

+ can be efficiently tested (unlike 𝑄𝑄𝑅𝑅𝑁𝑁)
• Fact: If primes p and q are safe then 𝑄𝑄𝑅𝑅𝑁𝑁

+ (and 𝑄𝑄𝑅𝑅𝑁𝑁 ) has not sub-group of small 
order.
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Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes  f x = 𝑥𝑥2𝑇𝑇 (repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)
• Question: Does repeated squaring assumption change now that we 

use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Answer: Not significantly…

• Observation 1: 𝑄𝑄𝑅𝑅𝑁𝑁 ≥ |ℤ𝑁𝑁
∗ |

4
so a random element in ℤ𝑁𝑁

∗ is in 𝑄𝑄𝑅𝑅𝑁𝑁
with probability at least 1

4
 An algorithm that can compute f x = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 correctly with probability 
at least 𝜀𝜀 (over the selection of x in 𝑄𝑄𝑅𝑅𝑁𝑁) the same algorithm computes f x
= 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 correctly with probability at least 𝜀𝜀

4
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Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes  f x = 𝑥𝑥2𝑇𝑇
(repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)

• Does repeated squaring assumption change now that we use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Observation 2: Computing over (𝑄𝑄𝑅𝑅𝑁𝑁
+, ∘) is not significantly easier than 

(𝑄𝑄𝑅𝑅𝑁𝑁 , ×) 
• Suppose x in 𝑄𝑄𝑅𝑅𝑁𝑁 and y = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Let y′ = y and 𝑥𝑥′ = |𝑥𝑥| be the corresponding group elements in 𝑄𝑄𝑅𝑅𝑁𝑁

+

• We have 𝑦𝑦′ = 𝑥𝑥′2𝑇𝑇

• We have 𝑦𝑦 ∈ {𝑦𝑦′, 𝑁𝑁 − 𝑦𝑦′}
• Flip a coin and output  𝑦𝑦′ or 𝑁𝑁 − 𝑦𝑦′ (correct with probability 1

2
)
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Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes  f x = 𝑥𝑥2𝑇𝑇
(repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)

• Does repeated squaring assumption change now that we use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Observation 2: Computing over (𝑄𝑄𝑅𝑅𝑁𝑁
+, ∘) is not significantly easier than (𝑄𝑄𝑅𝑅𝑁𝑁 , ×) 

• Suppose x in 𝑄𝑄𝑅𝑅𝑁𝑁 and y = 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁
• Let y′ = y and 𝑥𝑥′ = |𝑥𝑥| be the corresponding group elements in 𝑄𝑄𝑅𝑅𝑁𝑁

+

• We have 𝑦𝑦′ = 𝑥𝑥′2𝑇𝑇

• We have 𝑦𝑦 ∈ {𝑦𝑦′, 𝑁𝑁 − 𝑦𝑦′}
• Flip a coin and output  𝑦𝑦′ or 𝑁𝑁 − 𝑦𝑦′ (correct with probability 1

2
)

• An algorithm that computes  f x = 𝑥𝑥2𝑇𝑇
over 𝑄𝑄𝑅𝑅𝑁𝑁

+ with probability 𝛿𝛿 (over the random 
choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁

+) yields equally efficient (essentially) algorithm which computes 
𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 with probability 𝛿𝛿

2
(over the random choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁 ) 
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Pietrzak’s Construction [ITCS19]

• Prover: Given 𝑥𝑥 ∈ 𝑄𝑄𝑅𝑅𝑁𝑁
+, 𝑁𝑁, 𝑇𝑇

• Computes  f x = 𝑥𝑥2𝑇𝑇
(repeated squaring with operation 𝑦𝑦2 ≔ 𝑦𝑦 ∘ 𝑦𝑦)

• Does repeated squaring assumption change now that we use 𝑄𝑄𝑅𝑅𝑁𝑁
+?

• Observation 2: Computing over (𝑄𝑄𝑅𝑅𝑁𝑁
+, ∘) is not significantly easier than (𝑄𝑄𝑅𝑅𝑁𝑁 , ×) 

• An algorithm that computes  f x = 𝑥𝑥2𝑇𝑇
over 𝑄𝑄𝑅𝑅𝑁𝑁

+ with probability 𝛿𝛿 (over the random 
choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁

+) yields equally efficient (essentially) algorithm which computes 
𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 with probability 𝛿𝛿

2
(over the random choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁 ) 

• Combining Observations: An algorithm that computes computes  f x = 𝑥𝑥2𝑇𝑇

over 𝑄𝑄𝑅𝑅𝑁𝑁
+ with probability 𝛿𝛿 (over the random choice of 𝑥𝑥 in 𝑄𝑄𝑅𝑅𝑁𝑁

+) yields equally 
efficient (essentially) algorithm which computes 𝑥𝑥2𝑇𝑇𝑜𝑜𝑜𝑜𝑚𝑚 𝑁𝑁 with probability 𝛿𝛿

8(over the random choice of 𝑥𝑥 in ℤ𝑁𝑁
∗ ) 
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Pietrzak’s Construction [ITCS19]

• HalvingProtocol(N,x,T,y)   // Honest Prover:  𝑦𝑦 = 𝑥𝑥2𝑇𝑇

• If T=1 then Verifier outputs accept if 𝑥𝑥 ∘ 𝑥𝑥 = 𝑦𝑦; otherwise reject
• Prover sends μ = 𝑥𝑥2𝑇𝑇/2 to verifier
• If μ ∉ 𝑄𝑄𝑅𝑅𝑁𝑁

+ then verifier outputs reject; otherwise verifier picks a random 
integer 𝑟𝑟 ∈ ℤ2𝜆𝜆 and sends it to the prover

• Sender/Prover compute 𝑥𝑥′ ≔ 𝑥𝑥𝑟𝑟 ∘ μ (= 𝑥𝑥𝑟𝑟+2𝑇𝑇/2)
• The sender/prover compute 𝑦𝑦′ = μ𝑟𝑟 ∘ 𝑦𝑦 (= 𝑥𝑥𝑟𝑟2𝑇𝑇/2+2𝑇𝑇)

• If prover is honest then 𝑥𝑥′ = 𝑥𝑥𝑟𝑟+2𝑇𝑇/2
and 𝑦𝑦′ = 𝑥𝑥′2𝑇𝑇/2

and 𝑦𝑦′ ∘ 𝑦𝑦′ = 𝑥𝑥′22(1+𝑇𝑇
2)

• If T/2 is even the sender/prover run HalvingProtocol(N, x′, 𝑇𝑇
2

, 𝑦𝑦′)
• If T/2 is odd the sender/prover run HalvingProtocol(N, x′, 𝑇𝑇

2
+ 1, 𝑦𝑦′ ∘ 𝑦𝑦′ )
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Pietrzak’s Construction [ITCS19]

• Non-Interactive version via Fiat-Shamir
• Efficiency of Halving Protocol

• Terminates after at most 𝑂𝑂(log 𝑇𝑇) rounds
• T replaced by T/2 or (T+1)/2 at each level of recursion

• Naïve implementation: 
• Prover requires 𝑇𝑇

2𝑖𝑖 + log 𝜆𝜆 queries to ∘ at ith level of recursion 

• Total work ∑𝑖𝑖=1
log 𝑇𝑇 𝑇𝑇

2𝑖𝑖 + log 𝜆𝜆 = 𝑂𝑂(𝑇𝑇 + log 𝑇𝑇 log 𝜆𝜆 )
• Optimized Prover requires just 𝑂𝑂( 𝑇𝑇 log 𝑇𝑇) additional queries to group 

operations ∘
• Assume 𝑇𝑇 = 2𝑡𝑡 for simplicity

• Key idea: Store μ𝑖𝑖 = 𝑥𝑥2
𝑇𝑇

2𝑖𝑖 for each 𝑖𝑖 ≤ 𝑠𝑠 to avoid re-computation

108



Pietrzak’s Construction [ITCS19]
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Proof
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Proof of Theorem 1 (assuming Lemma 1)
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Comparison for VDFs

• Non-Interactive version via Fiat-Shamir
• Pietrzak’s prover requires just 𝑂𝑂( 𝑇𝑇 log 𝑇𝑇) additional ∘ queries 

• Better than 𝑂𝑂(𝑇𝑇/ log 𝑇𝑇) [Wesolowski]

• Pietrzak’s proof size is 𝑂𝑂(log2 𝑇𝑇 log 𝑁𝑁)
• Worse than 𝑂𝑂(log 𝑁𝑁) [Wesolowski]

• Verifier Efficiency is 𝑂𝑂((𝜆𝜆 + 1) log 𝑇𝑇) queries to group operation ∘
• Slightly worse than [Wesolowski] 
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Thanks for Listening
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