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Motivation: Online Exams during the Pandemic
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Onthe Security of Proofs of Sequential Work ina Post-Quantum World

[CS590] 5 mins late - having internet issue

Cinseer Goodman
Tue 5/2/2021 9:05 PM

To: Seunghoon Lee

Motivation: Online Exam & gosems © Nic

Dear Professor,

cs590 FI NAL EXAM Il\ﬂgoggTrﬁsise(riigﬁ?i?]rd(s‘it;gsr&?;lvwho is taking CS590 this semester.

| was not able to submit the final exam to the server on time due to

| promise | have not done any extra work after the exam time. |
hope it works.

an unexpected internet connectivity loss.
Uik ”‘UE It just went back 5 minutes later so | send you the file via email.
- Thank you.

(o) Best,
Cinseer Goodman
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S [CS590] 5 mins late - having internet issue

e

;g Cinseer Goodman

u Tue 5/2/2021 9:05 PM

‘E To: Seunghoon Lee

|

t cs59 Final Exam - Internet Connectivity Issue

\y L] [ ] L]
(o} Liar King 3
f O I Va | O | Tue 5/16/2021 9:45 AM I I I I C
)E % To: Seunghoon Lee -
)

p —.| answer_liarpdf g CS590 this semester.

o ﬁ acs > MB Vv

0 o< e server on time due to

f

IS ! Dear Professor, ‘ou the file via email.

0 You might not believe this, but the internet went down during the final fter the exam time. |

)f Exam since my cat accidentally chewed out my ethernet cable.

S | called maintenance, but the repair guy was assassinated on his way.

E ( Then the severe tornado struck my town.

= I know it's been 2 weeks since the deadline, but this is the earliest | could

;g ¢ send the answer to you. Please understand.

U U‘U | swear | haven’t made any edits since the deadline.

e v

N ~ Kind regards,
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Motivation: Online Exams during the Pandemic
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S [CS590] 5 mins late - having internet issue

'e

;9 Cinseer Goodman

C Tue 5/2/2021 9:05 PM

‘[ To: Seunghoon Lee

|

t cs59 Final Exam - Internet Connectivity Issue

Y

fg ' o I ‘ n Liar King

P [CS590] Internet issue - for real!!

;E g CS590 this semester.
1% Quantom Cheat _ _ - _

b Tue 5/2/2021 11:36 PM 1e server on time due to
s To: Saunghoon Lee ou the file via email.
0 o down during the final fter the exam time. |

f oa|  answer_cheat.pdf sthernet cable.

< % : .

1S =E" 5 MB assinated on his way.

,g this is the earliest | could

u Hello Professor, e,

€

n Please believe this, somehow my internet went down!!

it | swear | haven't touched the file after the deadline.

(] Please receive my submission.

a I will upgrade my internet plan if | take your course

| again.

W

0 Best,

r Quantom Cheat

k
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a

P
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Internet problem

[CS590] Help, internet issue!!

@ CS590 final exam answer

@ ¢s590 internet went down

Fool Yoo
Wed 5/3/2021 7:13 PM

To: Seunghoon Lee

[oar  answer_fool pdf v

IO SRV
Professor,

Finally, | got my internet back. It is already a day after the deadline,
but please take my answer sheet.
My mom thought | was playing a game and she cut off my ethernet

cable.. | immediately called maintenance but it took one day to fix it.

| can certainly prove that | haven't done any extra work after the
exam deadline. For real.

Thank you for your consideration.

Sincerely,

Fool Yoo

Reply Forward

[CS590] 5 mins late - having internet issue

Cinseer Goodman
Tue 5/2/2021 9:05 PM
To: Seunghoon Lee

1ternet Connectivity Issue

down during the final

v sthernet cable.
assinated on his way.
this is the earliest | could
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my internet went down!!
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Internet problem

[CS590] Help, internet issue!!

[CS590] 5 mins late - having internet issue

Cinseer Goodman
Tue 5/2/2021 9:05 PM

@ CS590 final exam answer To: Seunghoon Lee

1ternet Connectivity Issue

@ ¢s590 internet went down

Fool Yoo _ PR L | | o EmIC

Wed 5/3/2021 7:13 PM

To: Seunghoon Lee g CS590 this semester.
[l answer_fool.pdf o - ' A o 1e server on time due to
uEw 2 MB

'ou the file via email.
fter the exam time. |

down during the final

Professor, N thernet cable.
assinated on his way.

Finally, | got my internet back. It is already a day after the deadline,
but please take my answer sheet.

My mom thought | was playing a game and she cut off my ethernet ne.
cable.. | immediately called maintenance b1t i *~=' ~na d-

| can certainly prove that | haven't do~

deadiine. For real. s
'?)r:zrk ﬁ:?u fgreyofrrégr?sideratir‘“ Wh Lo h St ,/‘. d 8 V\Its a Ye
Sincerely,

telling the truth?

Reply Forward

this is the earliest | could




Proofs of Sequential Work

aka. Verifiable Delay Algorithm
Prover P Verifier V

< Statement y ~
Time T € N 3 %

x<—°0




Proofs of Sequential Work
aka. Verifiable Delay Algorithm

Prover P Verifier V ‘
statement y P X Sy

Time T € N g

=10 D) o ‘ ‘ verify(x, T, 7) €
accept/reject

-




Proofs of Sequential Work
aka. Verifiable Delay Algorithm

Prover P Verifier V
statement y

x <@ g
~ Time T €N & %

L= 10T > u verify(x, T, 1) €
accept/reject

Completeness: 1(c, T ) can be computed making T queries to H

Soundness: Computing any 1! s.t. verify(x, T, ') =accept for
random x requires almost T sequential queries to H



Proofs of Sequentlal Work

aka. \Verifiable Delay Algorithm

Prover P Verifier V
statement y

x <@ &
~ Time T €N ,;E

L= 10T = u verify(x, T, 1) €
accept/reject

Completeness: 1(c, T ) can be computed making T queries to H

Soundness: Computing any 1! s.t. verify(x, T, ') =accept for
random x requires almost T sequential queries to H

massive parallelism useless to generate valid proof faster =
prover must make almost T sequential queries ~ T time



Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])

DAG G = (V,E) is (e, d)
1 2 3 4 5 6 depth-robust if after removing any
e nodes a path of length d exists.

Graph Labelling

Random Oracles are Sequential

H g . Queriesy = H(x), y' = H(x') where
> > v c ¥ |
| y € X' = query x' was made after x

X Yy y

y |
VAN




H-Sequence

Definition 3 (H-sequence). An H sequence of length s is a sequence
20y ..., s €10, 1 where for each i,1 < i < 5, H(z;) is contained tn ;11
as continuous substring, t.e., ;1 = al|H(z;)||b for some a,b € {0, 1}%.

I

: Zo 1 T2 TN-1 IN |

____________________ “~ T~ . RN N\ |
| | | \'N = ‘h'-»\‘ At

20, B1,. .., € {0,1}F st | . . . |

. | e

for each 1 < ¢ < N, there | | H el w e *- |

"exist @, b € {0,1}* such that ! A3 H e v AT w| |

| ? ? | | 7| @ b % | 3 |

i = of|H{ei)|b - . o

___________________ | _ - /// f,-" :

| _#-"f & f,-f r.__.-"'-" |
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Random Oracles are Sequential

e Let H:{0,1}%°* - {0,1}* be a random oracle

e Suppose that the attacker may make s — 1 rounds of sequential
gueries

e Attacker Goal: output an H-sequence x,, ..., X of length s with each

e Suppose that attacker makes at most g RO queries

. . 251 +qsSA
Lemma: The attacker succeeds with probability at most - ;qs




Random Oracles are Sequential

. 1 251 +qsSA
Lemma: The attacker succeeds with probability at most - ;qs

Proof Sketch:

Let LuckyGuess denote the event that for some i the string H(x;) is a
substring of x;,; but the attacker never actually made the query H(x;).

Claim 1: Pr[LuckyGuess] < 5(52_,11 )

Proof of Claim 1: Fix any indexiand anyj < (6 — 1)A we have

. " 1
Pr{H(x) = xiy2] + 2~ 1] o

We now union bound over all indicesi < sandallj < (6 — 1)4




Random Oracles are Sequential

: o 252 +qs6A
Lemma: The attacker succeeds with probability at most = ;qu

Proof Sketch:

Let Collision denote the event that forsome 1 < i <j < s — 1 thereis a query a; made in round i
and a query a; made in round j where H(aj) is a substring of a;

2
Claim 2: Pr[Collision] < ? i)l
2

Proof of Claim 2: Fix any pair of queries a; and a; and any indexk < (8§ — 1)A

Observe that H(aj) can be viewed as a random string picked after a; is fixed.

Pr [H(aj) = a;[k, k+ 21— 1]] s%

We now union bound over all (62’) pairs of queriesand all j < (6§ — 1)4



Random Oracles are Sequential

. s 252 +qsSA
Lemma: The attacker succeeds with probability at most - ;qu

Proof Sketch:

o g2 + séA
Pr|LuckyGuess] 4+ Pr[Collision] < 57
If the attacker produces an H-sequence of length s then at least one of
the events LuckyGuess or Collision must occur.

LuckyGuess: for some i the string H(x;) is a substring of Collision: forsome 1 <i<j<s-—1 H(aj) is a substring of q;
Xi+1 although attacker never queried H(x;). where the query a; (resp. a;) is made in round i (resp. j).



The MMV’13 Construction

Prover P Verifier V 0
statement y | X gy
-« - ¢ .
Time T =6 : §

e Protocol specifies depth-robust

DAG G on T nodes F—»fy oo k) »f »Fs
e Define “fresh” random oracle

Hy() =H(x ")
o Compute labels of G using H y



The MMV’13 Construction

Prover P Verifier V
statement y

-
Time T = 6 / §
.
v U

Proof Sketch
e G is (e, d) depth-robust £ gyt ——F

e @ commits P to labels {£]}iev
* | Isbad if £II /_H(£Iparents(|))

xe‘@

@
e Case 1: = e bad nodes = will fail opening phase whp.



The MMV’13 Construction

Prover P Verifier V

statement y X <—°@
Time T =6
%

b

G is (e, d) depth-robust %_@_@_m

@ commits P to labels {£; Yiev
i is bad if £ £~H(E!

Proof Sketch

arents(l))

@
e Case 1. = e bad nodes = will fail opening phase whp.

o Case 2: Less than ebad labels = 3 path of good nodes
(by (e, d) depth-robustness) = P made d sequential
gueries (by sequantality of RO)



The New Construction

For every leaf i add all edges (j, 1) wherej is left sibling of
node on path i — root



The New Construction

/
left sibling \
N

For every leaf i add all edges (j, 1) where| Is left sibling of
node on path i — root

right sibling



Weighted Depth-Robust

AN~

Nodes at height h have weight 2"
#Nodes at height h: 2"~
Total Weight at Height h: 2™

Total Weight of all Nodes: n2"

P weight=8, height 3

weight=4, height 2

weight=2, height 1

= weight=1, height O

Weighted Depth-Robust: Let S be any subset of nodes with total weight
wt(S) < a2™

Claim: G — S has a path of lengthd = (1 — a)2"

Intuition: Cannot delete too many nodes close to the root (high weight)
Deleting nodes close to the leaf has a small impact on the depth.

Intuition 2: A cheating prover will be caught proportional to the total
weight of deleted (inconsistent) nodes



Weighted-Depth-Robustness

e Suppose we delete S. Let be the set of nodes which arein S or
below some node in S.

e Claim: There is a directed path through all nodes in V —




Weighted-Depth-Robustness

e Claim: There is a directed path through all nodes in IV —

* Proof Sketch (Induction on height of tree):
e By Inductive Assumption there is a path through all nodes on left (same for right)

e By construction there is a path from left root to every leaf node on right side

=» Can piece paths together (and then connect right root to leaf node)

Left

Right




The New Construction

For every leaf I add all edges (j, 1) where| is left sibling of
node on path i — root

15



The New Construction

1 2

For every leaf i add all edges (j, i) where| is left sibling of
node on path i — root

o P computes labelling £i = H(£parents(i)) and sends root

label ¢ = £7 to V. Can be done storing only log(T ) labels.
e V challenges P to open a subset of leaves and checks

consistency (blue and green edges!)



The New Construction
@ T= 15

Proof Sketch



The New Construction
@ T=15

Proof Sketch

« P committed to all labels L; after sending ¢ = Ljs.
e iisbadif L; is not consistent i.e., I's parents are xq, ..., xs but

Li # H(Ly,, -, Ly,



The New Construction
()

ISSENNA

Propf Sketch

e P committed to labels £ after sending ¢ = £35.
e Iisbadif L; is not consistent I.e., I's parents are x4, ..., X

but L; # H(Ly,, ..., Ly,
e Let S c V denote the bad nodes and



The New Construction
)

[SRENERS

Propf Sketch

P committed to labels £ after sending @ = £1s.
i is bad if £ /=H(E

arents I

Claim 1: 3

e Let S c V denote the bad nodes and
e Claim 2: P can't open |S|/T fraction of leafs.




Wel



Three Problems of the [MMV’13] PoSW

1) Space Complexity :
2) Poor/Unclear Parameters

3) Uniqueness :



Three Problems of the [MMV’13] PoSW

1) Space Complexity :

2) Poor/Unclear Parameters
3) Uniqueness :

New Construction

1) Prover needs only O(log(T )) (not O(T )) space, e.g. for
T = 242 (~ aday) that's ~ 10KB vs.~ 1PB.
2) Simple construction and proof with good concrete parameters.

3) Awesome open problem!



Construction and Proof Sketch
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Mining Bitcoin (Proofs of Work)

3 '..- ".:ll..-- T ]
B Kncminer



Can wehave a more “sustainable”
Blockchain?




/ero-Knowledge Proof for all NP

e CLIQUE
e Input: Graph G=(V,E) and integer k>0
e Question: Does G have a clique of size k?

e CLIQUE is NP-Complete
e Any problem in NP reduces to CLIQUE
e A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that form a clique



/ero-Knowledge Proof for all NP

L
Com(O () A) ' Com(l'rA,L)>

Com(l TLA) . COm(b, rlf‘,OL)

x-



/ero-Knowledge Proof for all NP

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that for a clique

Prover commits to a permutation o over V

1

2. Prover commits to the adjacency matrix A4 (s) of o(G)
3. Verifier sends challenge c (either 1 or 0)
4

If c=0 then prover reveals o and adjacency matrix 4, )
1. Verifier confirms that adjacency matrix is correct for o (G)

5. If c=1 then prover reveals the submatrix formed by first
rows/columns of A, ) corresponding to o(vy), ..., (V)
1. Verifier confirms that the submatrix forms a clique.



/ero-Knowledge Proof for all NP

 Completeness: Honest prover can always make honest verifier accept

* Soundness: If prover commits to adjacency matrix 4,4 of 0(G) and
can reveal a clique in submatrix of A, ) then G itself contains a k-
cliqgue. Proof invokes binding property of commitment scheme.

e Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal cligue. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.



NIZK Security (Random Oracle Model)

e Simulator is given statement to prove (e.g., G is 3-COLORABLE)
 Simulator must output a proof ', and a random oracle H’

e Distinguisher D
* World 1 (Simulated): Given z, ', and oracle access to H’

e World 2 (Honest): Given z, i, (honest proof) and oracle access to H
e Advantage: ADV, = |Pr[D¥(z, ) = 1] — Pr[D"'(z, ') = 1]|

e Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

* NIZK proof m, is transferrable (contrast with interactive ZK proof)



>.-Protocols

e Prover Input: instance/claim x and witness w
e Verifier Input: Instance x

e 2-Protocols: three-message structure
* Prover sends first message m=P,(x,w; r,)
Verifier responds with random challenge c
Prover sends response R=P,(x,w,r,,c; r,)
Verifier outputs decision V(x,m,c,R)
Completeness: If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
Soundness: If the claim x is false then V(x,c,R)=0 with probability at least %
Zero-Knowledge: Simulator can produce computationally indistinguishable transcript



>-Protocols and Fiat-Shamir Transform

e Convert X-Protocols into Non-Interactive ZK Proof
e Prover Input: instance/claim x and witness w
 Verifier Input: Instance x

e Step 1: Prover generates first messages for n instances of the protocol
e m, =P,(x,w; r)foreachi=1ton
e Step 2: Prover uses random oracle to extract random coins zj=H(x,j, m,....,m_) for
j=1ton
e Prover samples challenges c,...,c, using random strings z,,...,z, i.e., c=SampleChallenge(z,)

 Step 3: Prover computes responses R;,...,.R
e R €P,(x,w,r,c)

* Step 4: Prover outputs the proof {(m;, c;, z;)}i<n



>-Protocols and Fiat-Shamir Transform

e Step 1: Prover generates first messages for n instances of the protocol
* m,=P,(x,w; r) foreachi=1ton

 Step 2: Prover uses random oracle to extract random coins z=H(x,i, m,,....,m_) for i=1 to
n

e Prover samples challenges c,,...,c, using random strings z,,...,z, i.e,, c=SampleChallenge(z,)

 Step 3: Prover computes responses R;,...,. R,
e R €P,(x,w,r,c)

o Step 4: Prover outputs the proof m = {(m;,c;, R;)}i<n,
Verifier: V,(x,7) check thatforalli < n

1.V(x, (m;, c;, R;))=1and

2. c=SampleChallenge(z,) where z.=H(x,i, m,,.....m_)



>-Protocols and Fiat-Shamir Transform

e Step 1: Prover generates first messages for n instances of the protocol
* m,=P,(x,w; r) foreachi=1ton

 Step 2: Prover uses random oracle to extract random coins z=H(x,i, m,,....,m_) for i=1 to
n

e Prover samples challenges c,,...,c, using random strings z,,...,z, i.e,, c=SampleChallenge(z,)

 Step 3: Prover computes responses R;,...,. R,
e R €P,(x,w,r,c)

o Step 4: Prover outputs the proof m = {(m;,c;, R;)}i<n,
Zero-Knowledge (Idea):
Step 1: Run simulator for X n-times to obtain n transcripts (m;, ¢;, R;) for each i < n.

Step 2: Program the random oracle so that H(x,i, m,,.....m )=z, where
c.=SampleChallenge(z,)



Non-Interactive Proof of Sequential Work

e Key Idea: Apply Fiat-Shamir Transform!
* Interactive Verifier: Picks uniformly random challenge nodes ¢y, ..., ¢i

* Non Interactive Version: Let i, denote the root of the Merkle-Tree output by the
prover. Define ¢; = H(i, h, ). Non-Interactive Proof includes root h, and
responses 1y, ..., Ty

* Non Interactive Verifier: generates the challenges ¢; = H(i, h,.) and verifies the
responses 1y, ..., Ty

 Security Analysis (sketch): If the attacker makes g RO queries over at most T
< N(1 — ¢) sequential rounds then s/he finds a valid PoSW probability at most

21 q%logN
q(1 — &)k + >3

Probability of finding an H-sequence longer than

Probability of finding “lucky” challenges -
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Dan Boneh, Joe Bonneau,
Benedikt Blinz, Ben Fisch

Crypto 2018
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What is a VDF?

Function — unique output for every F
Input
Delay — can be evaluated intime T

cannot be evaluated in time (1-€)T
on parallel machine

Verifiable — correctness of output can V-
be verified efficiently v ARE

Verifier




What is a VDF?
e Setup(A, T) — public parameters pp

» pp specify domain X and range Y

 Eval(pp, x) — outputy, proofm

» PRAM runtime T with polylog(T) processors
* Verify(pp, x,y, 1) — {yes, no}
» Time complexity at most polylog(T)



52

Security Properties (Informal)

e Setup(A, T) — public parameters pp

e Eval(pp, X) — outputy, proofrmr (requires T steps)

* Verify(pp, X, y, m) — {yes, no}

“Soundness”: if Verify(pp, x, y, ) = Verifylpp, x, y’, ') = yes

then y=y’

“g-Sequentiality”: if A is a PRAM algorithm, time{lA) < o(T),

e.0
=

.
-

T)=(1-¢7 then Prl Alpp, X) =y ] <negligible(A)

. 01



Related Crypto Primitives

 Time-lock puzzles [rRsw’96, BN’00, BGIPVW’16]

O Trapdoor (secret key) setup per puzzle
O Not publicly verifiable”

* Proof-of-sequential-work [Mmv’13, cp’18]
O Publicly verifiable
O Not a function (output isn’t unique)



VDF minus any property is “easy”

» Not Verifiable — chained one-way function

* No Delay — Many moderately hard functions

with efficient verification, e.g. discrete log
g’ =x

» Not a Function — Proofs of sequential work



RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to others

f(x) = x2 mod N

* Goals:

e Puzzle can be generated quickly in time O(polylog T).

e Other parties can recover secret in sequential time Q(T).

e Secret is hidden from (massively parallel) attackers running in sequential time o(T).
e Assumptions: Factoring N is hard and (without prime factors) it takes

sequential time Q(T) to compute f(x) = x2 mod N



RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
xo=x //xy=x%modN
fori=1to T | | |
X; = x;_1*x;_ymod N //x; =x% x% "mod N = x% mod N
output x7



RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
z=x //z=x%modN
fori=1toT |
z=z+xzmodN //z=x% modN
output z



RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))®secret)
Trapdoor: p, g must not be known to prover

f(x) = x* mod N

Computing f(x) with Trapdoor (Puzzle Generation):
Compute 9(N) = (p — 1)(q — 1) and y = 2T mod ¢(N)
output x¥ mod N

O(log N) < T multiplication queries mod N



RSW Timelock Puzzle (Repeated Squaring)

* Assumptions: Factoring N is hard and (without prime factors) it takes
time Q(T) to compute f(x) = x2 mod N

e |s this a Verifiable Delay Function?

 Answer: Not publicly verifiable!

e Verifier who does not have prime factors (p,q) has to re-compute
T
f(x) =x% modN



Security Properties (Informal)

Setup(A, T) — public parameters pp

Eval(pp, X) — output y,

Verify(pp, X, y, t) — {yes, no}

proof IT  (requires T steps)

“Soundness’”:

if veﬂfy(ppf X, y) n) - ve”fy(pp: X, y,) n,) - \/E’S
then y=y’

“o-Sequentiality”: if A is a PRAM algorithm, time{lA) <o(T),

e 0
=

.
-

{7
. Ot 1

4

£

¥
/J

then Pr{ Alpp, X) =y ] < negligible(A)
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VDF security more formally...
A

pp « Setup(A,T) //lsample setup params

L — Ay(pp,T) /ladversary preprocesses params

x < X //choose a random challenge input X
vi— A (L, pp,x) //ladversary computes output y

A= (A, A;) " "wins” the gameify, = ys.t. Eval(pp,x) = (y,m)

Def: VDF is (p, 0 )-sequential if no (A, A, ) with A, runtime poly{4)
and A; PRAM runtime o (T ) on p(T ) processors wins the game with
prob. > negl{4)



Part |: Applications of VDFs

Tl ~ Y
I : Alice Bob T ‘:d. : I- }ii 1, k,
% fIik
| Vs - | Tl ?
Carol
Randomness Multiparty Timestamping Propf-c?f- Permissionless
beacons randomness replication consensus




Randomness beacon
e Rabin ‘83

An ideal service that reqularly publishes random
value which no party can predict or manipulate
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Many uses for random beacons

Cryptographic proofs Leader election



Randomness beacon

“Public displays”
are easily corrupted

1ROTH

—
4331221 27




Public entropy source

Stock prices

Your Company, Inc. {YCDM]I‘ 26.58 A 5.68

o
- Tl ;]M ?w i
10 ||';‘I'=I!. ;"- i

| |;|'I| .": -,l: I '1}'"" :1i||‘| Ilj|||-l}:l \ IIII,' !1' |II,'I ’|I.-|,|il| '.;FI f :'.] ! ljil-’; | ML

\ II.

5

D |
10am 11am 12pm  1pm 2pm 3pm 4pm

Assumption: (1) unpredictable, (2) adversary cannot fix stock prices



Stock price manipulation

MICHAEL
LEWIS

FREQUENCY

TRADI N G | THE EASY WAY TO GET STARTED |

Everything You Need to Know, Incdluding:

_ TRADING

ODELS

MICHAEL DURBIN,.... - GEWEI! YE. owp




Stock price randomness beacon
Closing prices of 100 stocks: ch(nrice m

* Once prices settle a minute before

closing, attacker executes 20 last- m (seed)

minute trades to influence seed.

pseudorandom

e Attacker can predict outcome of SEINETEET

trades and choose favorable trades _

to bias result




Solution: slow things down with a VDF

e A solution: one hour VDF extractor

e Attacker cannot tell what trades to execute {
before market closes iﬁi’ﬂi

e Uniqueness: ensures no ambiguity about
output

(seed)



Simple Bulletin Board

a rb o I,

ice L eon Jf core IR 7o

Mildly
synchronous
Public Bulletin Board
output seed =Hash(r, || r,|]|--- ]| r,) € {0,1}>%6

Problem: Zoe controls the final seed !




Solution: slow things down with a VDF

d

) 4

rb C

A 2 v

3 E3 B3 ———— S

y4

\Vi

Public Bulletin Board (blockchain)

l

Hash(r, || 1o [| -+ 1] r,) € {0,1}%°

VU -

seed, TT



Part II; Constructions
. X - I~ @— 0— 0— 0— @— 00— O—y

(reverse permutation) |

<
SNARK/STARK proof 7T This work
____________________ R
_ . 2° A tion:
1. y=g9° €G Ssumption Followup:
the group G Pietrzak’18,
7T = {proof of correct has unknown | Wesolowski’18

exponentiation} size



Hash Chain w/ Verifiable Computation

I[A

SNARK = *succinct non-interactive argument of knowledge”
[G'10,GGPR’13, BCIOP'13, BCCT'13]

STARK = “succinct transparent non-interactive argument of
knowledge” [M'00, BBHR'18]



Hash Chain w/ Verifiable Computation

I[A

Problem

* Proof generation slower than hash chain, without
massive parallelism



Newer VDFs [P'18, W 18]

e Let G be afinite cyclic group with generator g€ G
G={1,g,8%83..}

e Assumption: the group G has unknown size

0= (G, H:X— G) T squarings J

* Eval(pp, x): output Y = H(a:)(QT) - G

proof TU = (proof of correct exponentiation) [p’18, W’18]




https://eprint.iacr.org/2018/601
Survey of VDFs

https://eprint.iacr.org/2018/712.pdf y


https://eprint.iacr.org/2018/601

RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to others

f(x) = x2 mod N

* Goals:

e Puzzle can be generated quickly in time O(polylog T).

e Other parties can recover secret in sequential time Q(T).

e Secret is hidden from (massively parallel) attackers running in sequential time o(T).
e Assumptions: Factoring N is hard and (without prime factors) it takes

sequential time Q(T) to compute f(x) = x2 mod N



RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
xo=x //xy=x%modN
fori=1to T | | |
X; = x;_1*x;_ymod N //x; =x% x% "mod N = x% mod N
output x7



RSW Timelock Puzzle(Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))@secret)
Trapdoor: p, g must not be known to prover

f(x) = x2 mod N

Computing f(x) (Puzzle Solver):
z=x //z=x%modN
fori=1toT |
z=z+xzmodN //z=x% modN
output z



RSW Timelock Puzzle (Repeated Squaring)

Puzzle Generation: N = pq and sends puzzleZ = (N, H(f (x))®secret)
Trapdoor: p, g must not be known to prover

f(x) = x* mod N

Computing f(x) with Trapdoor (Puzzle Generation):
Compute 9(N) = (p — 1)(q — 1) and y = 2T mod ¢(N)
output x¥ mod N

O(log N) < T multiplication queries mod N



RSW Timelock Puzzle (Repeated Squaring)

* Assumptions: Factoring N is hard and (without prime factors) it takes
time Q(T) to compute f(x) = x2 mod N

e |s this a Verifiable Delay Function?

 Answer: Not publicly verifiable!

e Verifier who does not have prime factors (p,q) has to re-compute
T
f(x) =x% modN



Wesolowski’s VDF Construction

e Public Parameter: N = pq (Generated by trusted party/MPC)
e Trapdoor Discarded: No one knows p, g

f(x) = x2 mod N
* Prover: Computesy = f(x) = x2 mod N and sends y to verifier
* Verifier: picks random prime B

oT
* Prover: Computes T = x\B‘mod N and sends 1 to the verifier.

» Verifier: Checks that y = wBx2 ™04 Binod N

T
e Soundness: For any number B we have 2" = (2"mod B) + B {%‘



Wesolowski’s VDF Construction

* Prover: Computesy = f(x) = x2 mod N and sends y to verifier
* Verifier: picks random prime B

oT
* Prover: Computes T = x\B‘mod N and sends 1 to the verifier.

» Verifier: Checks that y = wBx2 ™04 Binod N
T
» Completeness: For any number B we have 27 = (2"mod B) + B {%‘
2T
B|—=-|+(2" mod B)
mBx2 modB — | P mod N = x2 mod N = f(x)



Wesolowski’s VDF Construction

* Prover: Computesy = f(x) = x2 mod N and sends y to verifier
* Verifier: picks random prime B

oT
* Prover: Computes T = x\B‘mod N and sends 1 to the verifier.

» Verifier: Checks that y = wBx2 ™04 Binod N

e Soundness:

e Assumption for any z # 1 itis hard to find y such that y® = z mod N when
B is random.



Wesolowski’s VDF Construction
(Non-Interactive VDF)

* Prover:

e Computesy = f(x) = x2 mod N and sends y to verifier
e Sets random coins R = H(f(x)) B = GenPrime(R)

7]

e Computest = xBlmod N
* Output (x,y = f(x), )

* Verifier:

e Compute B = GenPrime(H (y))

e Checks thaty = mBx?2 ™04 Bmod N



Weso
(Non-

e Verifier:

owski’s VDF Construction
nteractive VDF)

e Compute B = GenPrime(H(y))
e Checks thaty = mBx?2 ™04 Bmod N

e Efficiency:
* Proof Size: 7 is very short (just O(log N) bits) ©
* Prover Efficiency: extra O(T) multiplications ®
 O(T/logT) multiplications ©
« Verifier Efficiency: O(log T') multiplications ©



Pietrzak’s Construction [ITCS19]

 Safe Prime: prime p = 2p’ + 1 such that p’ is also prime
e Assume N = pg wherep =2p'+1andg=2q +1
e Quadratic Residues: QRy = {z? mod N|z € Z};}
* Signed Quadratic Residues
. N-1 N—-1

* Represent elements of 7 as {— 5 T}

* QRy = {lx| | x € QRy}

 Fact: The map |.| is an isomorphism from QRy to QR

* Fact: QR}, is a cyclic group with operation o defined as

acb:=|abmodN|
* Redefine Notation: x € QR 2 x'Tl:=xox' eg, x? :=xo0x



Pietrzak’s Construction [ITCS19]

o Safe Prime: prime p = 2p’ + 1 such that p’ is also prime
 Assume N = pgwherep =2p'+1andq=2q +1
 Quadratic Residues: QRy = {z?|z € Z}}
e Signed Quadratic Residues
» Represent elements of Zy as {—% %}
QRy = {lx| | x € QRy}
Fact: The map |.| is an isomorphism from QRy to QR
Fact: QRy, is a cyclic group with operation o defined as
aob:=|abmod N|
Fact: Membership in QR can be efficiently tested (unlike QRy)

Fagt: If primes p and q are safe then QR (and QR ) has not sub-group of small
order.



Pietrzak’s Construction [ITCS19]

* Prover: Given x € QR;,, N, T
e Computes f(x) = xZT (repeated squaring with operation y2 =y oY)

* Question: Does repeated squaring assumption change now that we
use QR;;?

 Answer: Not significantly...
e Observation 1: |QRy| = 2y
with probability at Ieasti

so a random element in Zy is in QRy

=>» An algorithm that can compute f(x) = x2 mod N correctly with probability
at least € (over the selection of x in QRy) the same algorithm computes f(x)

= x2 ' mod N correctly with probability at Ieast%



Pietrzak’s Construction [ITCS19]

* Prover: Given x € QRY,,N, T
e Computes f(x) = xZT (repeated squaring with operation yz =y oY)

* Does repeated squaring assumption change now that we use QR};?

* Observation 2: Computing over (QRy;, o) is not significantly easier than
(QRy, X)

Suppose x in QRy and y = x2 mod N

Let y' = |y| and x" = |x| be the corresponding group elements in QR

We have y’ = x'2

We havey € {y',N —y'}

Flip a coin and output y' or N — y' (correct with probability %)



Pietrzak’s Construction [ITCS19]

e Prover: Given x € QRTJJ{,,N,T
« Computes f(x) = x? (repeated squaring with operation y* := y o y)

* Does repeated squaring assumption change now that we use QR},?

* Observation 2: Computing over (QR}y, °) is not significantly easier than (QRy , X)
e Suppose xin QRy andy = x2 ' mod N
e Lety’ = |y| and x’ = |x| be the corresponding group elements in QR};
« We havey' = x'2"
e Wehavey € {y',N —y'}
 Flip a coin and output y' or N — y' (correct with probability %)

* An algorithm that computes f(x) = x2' over QRj; with probability § (over the random
cth)ice of x in QRy;) yields e%ually efficient (essentially) algorithm which computes

x? mod N with probability > (over the random choice of x in QR )



Pietrzak’s Construction [ITCS19]

* Prover: Given x € QRY,, N, T
« Computes f(x) = x? (repeated squaring with operation y* := y o y)

* Does repeated squaring assumption change now that we use QR},?

e Observation 2: Computing over (QR+ o) is not significantly easier than (QRy , X)
* An algorithm that computes f(x) = x%" over QR with probability & (over the random
cth>|ce of x in QR},) yields e%ually efficient (essentlally) algorithm which computes

x? mod N with probablllty (over the random choice of x in QR )

. Comblnlng Observations: An algorithm that computes computes f(x) = x? 2"

over QRy; with probability § (over the random ch0|ce of x in QR};) yields equéally
efficient (essentially) algorithm which computes x? "mod N with probablllty —
(over the random choice of x in Zy)



Pietrzak’s Construction [ITCS19]

e HalvingProtocol(N,x,T,y) // Honest Prover: y = x2'

e If T=1 then Verifier outputs accept if x o x = y; otherwise reject

2T /2 -
* Prover sends u = x to verifier
* If u & QRj; then verifier outputs reject; otherwise verifier picks a random
integerr € Z,; and sends it to the prover

T
e Sender/Prover compute x’ := x" o (= xTt2 /2)

* The sender/prover computey’ =p" oy (= XTZT/2+2T)

r+27/2

e If proveris honest then x’ = x andy’ = x'

e If T/2 is even the sender/prover run HalvingProtocol(N, X’,g,y')

e If T/2 is odd the sender/prover run HalvingProtocol(N, X',g +1,y" oy")



Pietrzak’s Construction [ITCS19]

* Non-Interactive version via Fiat-Shamir

e Efficiency of Halving Protocol
e Terminates after at most O (log T') rounds
* Treplaced by T/2 or (T+1)/2 at each level of recursion
* Naive implementation:

. T . . .
* Prover requires i log A queries to o at ith level of recursion

 Total work Zﬁng (; + log A) = O(T +1logT logAl)

e Optimized Prover requires just O (v/T log T) additional queries to group
operations o
e Assume T = 2! for simpI;city

* Key idea: Store p; = x? 2’ for each i < t to avoid re-computation



Pietrzak’s Construction [ITCS19]

Theorem 1. If the input (N, z,T) to the protocol satisfies

1. N =p g is the product of safe primes, i.e., p =29 + 1,0 = 2¢ + 1
for primes p', ¢'.

2. (=) = QR
2. 2 < min{p’, ¢'}

Then for any malictous prover P who sends as first message y anything
else than the solution to the RSW time-lock puzze, i.e.,

y#a’

V' owill finally output accept with probability at most

3 log (1)
24 '



Proof

It will be convenient to define the language
L={(N,z,T,y) 19y # 22" mod N and (z) = QRp}

We'll establish the following lemma.

Lemma 1. For N, A as in Thm. 1, and any malicious p?“ﬂﬂ&?";g the fol-
lowing holds. If the input to the halving protocol in §3.1 satisfies

(N,z,T,y) e L

then with probability > 1 —3/2* {over the choice of r) Vs output is either
reject or satisfies

(N, &', [T/2],y) € L



Proof of Theorem 1 (assuming Lemma 1)

Proof (Proof of Theorem 1). In every iteration of the halving protocol
the time parameter decreases from T to |1/2| and it stops once T' = 1,
this means we iterate for at most [log(T')| rounds. By assumption, the
input (N, z,T,%) to the first iteration is in £, and by construction, the
only case where V outputs accept is on an input (N, x,1,y) where y =
22" = 22 mod N, in particular, this input is net in L.

So, if V' outputs accept, there must be one iteration of the halving
protocol where the input is in £ but the output is not. By Lemma 1,
for any particular iteration this happens with probability < 3/2*. By the
union bound, the probability of this happening in any of the [log( 1) ] —1
rounds can be upper bounded by 3log(T) /2" as claimed.



It will be convenient to define the language
L={(N,z,T y) 1y z2" mod N and (z} = QRn}
We'll establish the following lemma.

Lemma 1. For N, A as in Thm. I, and any malicious p*mwe&“’ﬁ the fol-
lowing holds. If the input to the halving protocol in §3.1 satisfies

(N,z,T,y) € L

then with probability > 1 —3/2* (over the choice of r) V’s output is either
reject or satisfies

(N, &, [T/2],y) € L

Proof (Proof of Lemma 1). We just consider the case where T is even,
the odd T case is almost identical.
Assuming the input to the halving protocol satisfies (N, z,7,y) €

L, we must bound the probability that VV outputs reject or the output
(N, o, T/2,') & L.



Lemma 1. For N, A as in Thm. 1, and any malicious p?“ﬂﬂ&?";g the fol-
lowing holds. If the input to the halving protocol in §3.1 satisfies

(N,z,T,y) e L

then with probability > 1 —3/2* {over the choice of r) Vs output is either
reject or satisfies

(V= [T/2],y) € £

Proof (Proof of Lemma 1). We just consider the case where T is even,
the odd T case is almost identical.
Assuming the input to the halving protocol satisfies (N, z,T,y) €

L, we must bound the probability that V' outputs reject or the output
(N, &, T/2,/) & L.

If T =1 then )V outputs reject and we’re done. Otherwise, if P sends

a & QHp in step 2. then V' outputs reject in step 3. and we're done. So
from now we assume py € Ry, We must bound

Prlly' =) v (') # QRy)] <3/2"



If 7"=1 then ) outputs reject and we’re done. Otherwise, if P sends
a i & QR in step 2. then V outputs reject in step 3. and we’re done. So
from now we assume y € Ry, We must bound
T/
Pri(y' =« ) Vv (@) # QRN)] < 3/2"

using Pr[a Vv b] = Prla A 8] + Pr[b] we rewrite this as

Prly' = =" A (=) = QRw| + Pr[(@) # QRN < 3/2"  (3)

Eq.(3) follows by the two claims below.
Claim. Pr,[{z'y £ QRy] < 2/2* .

2'1"’

Claim. Pr,[y’ = 2 " mod N A (z'y = QRy] < 1/2* .



Comparison for VDFs

* Non-Interactive version via Fiat-Shamir

e Pietrzak’s prover requires just O(v/T log T) additional o queries ©
e Betterthan O(T'/logT) [Wesolowski]

e Pietrzak’s proof size is O (log? T log N)
e Worse than O(log N) 'Wesolowski]

e Verifier Efficiency is O((A + 1) log T) queries to group operation o
e Slightly worse than [Wesolowski] ©




Thanks for Listening

g %
"W
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