 Take Home Midterm (Released Thursday)
* No Class on Thursday
e Office Hours moved to 3-5PM

Advanced Cryptography
CS 655

Week 8:
e SCRYPT (wrapup)
* Proof of Sequential Work/Proof of Space

Spring 2023

Joél
Alwen
IST Austria

Scrypt is maximally
memory-hard

Binyi Krzysztof Leonid Stefano
Chen Pietrzak Reyzin Tessaro
UCSB IST Austria Boston U. UCSB

(work done at
IST Austria)

[Percival 2009]: scrypt

IO oS

H: {0,1} — {0,1}* random oracle

InpUt: Xo Data-Dependent Memory Access
i =>» Pebbling Attacks Don’t apply
Repeat n times: x.=H(x ,)

50=Xy
Repeat n times: s;=H(s; ;®x;) for j=s;; mod n
Output: s,

Our Result

H: {0,1} — {0,1}* random oracle

e ORCaY

Theorem: in the parallel RO model, cc(scrypt) = Q (n?)

The first ever construction works!

How quickly can you play this game?

E === O=>O—=>O—=>O>O—>O—>O—=>0O0O—0O—%)
You have x, and whatever storage you want

| give you uniform challenge ¢ from 1 to n

You return X,

If you store nothing but x,: n/2 H-queries per challenge

How quickly can you play this game?
O @ = @O =@ —(—%)

You have x, and whatever storage you want

| give you uniform challenge ¢ from 1 to n

You return X,

If you store nothing but x,: n/2 H-queries per challenge

If you store p hash values: n/(2p) H-queries per challenge

If you store something other than hash values?

Extracting labels from A's memory
Fos OO OO OOt

Imagine: run A on every possible challenge and record queries

c=23 c=24 c=25 c=26
X5 X4 X5 X4 X21 X12 X30 Xs
o l | l | o
Xe Xis Xe Xis X372 X3 X31 Xg
Xe Xig Xe Xis X13 X726
l | U |
X7 Xi6 X7 Xi6 X14
X2 1‘22 1‘7
X3 X33 Xg
X3 X4
| |

Xo4 X35

memory pw = time > n/(2p)

OnaOns 2O Op O OnOn o M OnOn SO D

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xig X21 X1 X30 X5
U U l | o
Xe Xis Xe Xis X772 Xq3 X31 Xg
Xe Xis Xe X5 X13 X526
l | l | |

X7 Xi6 X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < p)

Lemma 2: Time to answer ¢ > distance from nearest blue
Conclusion: storage pw = time > n/(2p)

How to go from this...

H: {0,1} — {0,1}* random oracle

(=0 g = 0 s (=)

nw 1

Single random challenge: memory > ,
2 time

. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

T =

Single random challenge: memory >

2 time

Know only that
/(\ j/orange is inversely
I o
proportional to red
A /\ ' \ —1

2mory

Prior work [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
“potential” argument to get (1(n?/ log?n)

|4 = \ S
e

t. to compute s; | time

... to cc(n challenges)

H: {0,1} — {0,1}* random oracle
o

Single random chall > w1
ingle random challenge: memory > .
& & Y 2 ° time
Know erly that

Idea: apply bound k =
orange is inversely

steps before s, is _
proportional to red

|

known: purple |

is inversely proportic%l\ |
A

to re5|+k | |

/ L R}
| £, to compute s, [t. to compute s, | time

.. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

@ =

Single random challenge: memory >

time

Know erly that

orange is inversely
proportional to red

memory

W

[t,, to compute s, | t to compute s, | time

.. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

@ =

Single random challenge: memory >

time

Know erly that

orange is inversely
proportional to red

memory

T

[t,, to compute s, | t to compute s, | time

. to cc(n challenges)

Adding up memory used during previous challenge:

nwW 1 1
+ (NN] —
—— _ti t_i+1 + o+ t +t > T (In(t+t ;) —Int)

Single random chall > w1
ingle random challenge: memory > .
& & Y 2 ° time
Know erly that

orange is inversely
proportional to red

memory

1{VARYIVA

| t,., to compute s, | t to compute s, | time

.. to cc(n challenges)

Adding up memory used during previous challenge:

nwW 1 1
+ eee —
—— _ti t_i+1 + o+ t +t > T (In(t+t ;) —Int)

Adding up over all challenges i from 1 to n:
anw (In (t;+t) —Int, + In (t,+t) —Inte+ .. +In (t _+t) —Int)
> Ynw (n In 2) > Q(n?w)

memory

% //

| | | time

Mining Bitcoin (Proofs of Work)

e - J.' e e S L SAN N
S Kncminer,

Proofs of Space

* Proof of Work
* Energy Intensive
* Non-Egalitarian

* Original Vision for Bitcoin: anyone can
mine with idle cycles on PC

e Alternatives:
* Proof of Stake (Democratic?)
* Proof of Space

* Proof of Space Applications:
* Distributed Consensus
* Proofs of (Replicated Storage)

Bitcoin electricity consumption,

annualized (TWh)

500
Maximum

400

30 |

200

Estimate

- _M
0 Minimum

2016 2017 2018 2019 2020 2021 2022

Country
equivalent:

UK: 300 TWh
Spain: 242 TWh

Sweden: 131 TWh
Argentina: 125 TWh

Israel: 56 TWh

Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

* [NEW] g-extremely depth robust DAG D;with indegree O(log (n))
* Construction: similar to [EGS75]
» Many technical details to work out (see paper)

Useful Observation: Any subgraph of D5[S] of size |S| > en must contain a
path of length |S| — en

Proof: Otherwise DAG Dj is not (e, d)-depth robust ford = |S| —enand e =
IV \ S| = n — |S]. Contradiction, D} is e-extremely depth robust and

e+d=n—en<(1-¢e)n.

Let’s Play an (Extreme) Pebbling Game

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

Let G be a e-extremely depth robust graph with 4N nodes.
You can place S pebbles on the graph (anywhere)

ChaIIAe,nger asks you to place a pebble on node 3N + c for a random challenge 1 <
c < N.

How fast can you respond to the challenge (in expectation)?

Let’s Play a (Pebbling) Game

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

Observation 1: there is a directed path P of length 4N — S — 4¢&N.

Observation 2: At least N — S — 4&N nodes in [3N + 1,4N] have depth at
least SN — S —4eN = N (assume S < Nand4e < 1)

Observation 3: With probability at least 1 — % — 4& we will take N rounds to
respond to the challenge.

Non-Pebbling Game

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

Let G be a e-extremely depth robust graph with 4N nodes.

Let L4,, L4y denote the labels of the graph G using random oracle H(.)
e.g., if parents(v) = (u,w) thenL, = H(Lu,L,)

You can store SA bits in memory
Challenger picks a random challenge 1 < ¢ < N and asks you for label Ly, . for.

How fast can you respond to the challenge (in expectation)?

Non-Pebbling Game

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

Let Ly,, L,y denote the labels of the graph G using random oracle H(.)
e.g., if parents(v) = (u,w) thenL, = H(Lu,L,)

You can store SA bits in memory

Challenger picks a random challenge 1 < ¢ < N and asks you for label L3y . for.

Extractor Argument: Can PROM algorithm into an equivalent pebbling strategy with S(1 + 0(1)) pebbles.

Proof of Space

* Prover wants to convince verify that s/he has allocated N blocks of space
e.g., storing labels L3pn41, «o.., Lay

* Cheating prover may try to store S < NA(1 — 4¢) bits
* Pebbling Reduction: Cheating prover cannot respond to

* Verifier can periodically challenge prover for label L35 . and the expects
response quickly

* With probability 1 — % — 4¢ cheater cannot respond to a random challenge quickly
* Multiple Challenges: Amplify probability cheating prover is caught

 Question: Does the verifier need to store all of the labels too?

Proof of Space

* Prover wants to convince verify that s/he has allocated N blocks of
space e.g., storing labels L3y 41, ..., Loy

 Question: Does the verifier need to store all of the labels too?

e Attempt 1: Prover generates Merkle-Tree commitment to all labels
L4,, L4y and sends root ¢ to the verifier.

* Problem? What if the prover commits to the wrong labels e.g., labels
that are easy to compress ?

Merkle Trees

MT?(x) == hs(x)
MTS(XL ---'Xzi) =
hs (MTS(X1; e XZi_l)’ MTS(XZi—1+1; e XZi))

Theorem: Let (Gen, h®) be a collision resistant hash
function then MT? is collision resistant.

hy—4
/\
h| 2 h3-4
hl h2 h3 h4

X1 Data block 1 Data block 2 Data block 3 Data block 4 X9

Merkle Trees

* Proof of Correctness for data block 2

Data block 3

Data block 4

Data block 1 Data block 2

* Verify that root matches

* Proof consists of just log(n) hashes

* Verifier only needs to permanently store

only one hash value

26

Proof of Space

 Question: Does the verifier need to store all of the labels too?

* Solution: Prover generates Merkle-Tree commitment to all labels
L4,,Lsy and sends root ¢ to the verifier.
* Verifier responds by picking k random nodes 1 < ¢4, ..., ¢, < 4N

* For each challenge c¢; prover must reveal labels for node ¢; and the labels for
parents(c;) = {vq, ..., U}

 Verifier validates Merkle Tree openings and checks that the labels are
consistente.g., L,, = H(Ly,, ..., Ly,)

Proof of Space

* Solution: Prover generates Merkle-Tree commitment to all labels
L4,,Lsy and sends root ¢ to the verifier.

e Suppose that eN labels are locally inconsistent

k
=>» cheater avoids detection with probability at most (1 — Z)

=» Can make this probability negligible by setting k = 2

E
42

(-9 <o

Proof of Space

* Solution: Prover generates Merkle-Tree commitment to all labels
L4,, L4y and sends root ¢ to the verifier.

e Suppose that N labels are locally inconsistent

* Revisit Pebbling Argument: Give the attacker S pebbles + allow the
attacker to delete eN nodes from the graph (inconsistent labels)
* Intuition: with probability at least (1 2 48) —e=1-— > 5¢

N
cheater cannot respond to a random cha]ﬁenge quickly

Proof of Space

* Prover wants to convince verify that s/he has allocated N blocks of space
e.g., storing labels Lay41, ..., Lay

e Question: Does the verifier need to store all of the labels too?

* Solutions: Prover generates Merkle-Tree commitment to all labels
L4,, L4y and sends root ¢ to the verifier.
* Verifier responds by picking k random nodes 1 < ¢4, ..., ¢ < 4N

* For each challenge c; prover must reveal labels for node ¢; and the labels for
parents(c;) = {vq, ..., V¢}

* Verifier validates Merkle Tree openings and checks that the label is consistent e.g.,
Lo, =H(Ly,, s Ly,)

Proof of Space

random oracle H: {0, 1}* — {0, 1}*

data d = (ds,...,dy),d; € {0, 1}%% \
initialization phase

Prover P

Verifier V

€ := Epoxx(x) (cf. Figure 2)

(¢r, @7) := commit(€)

2
store ‘)

XE {0,1}*, £ = {;E"}%Eva e {0, 1}7VA
¢y €10, 1}{N L (of. Remark 4)

\ statement x x < {0, 1}
commitment ¢y
rove that ¢, mostly correct”
cf. Remark 3 ' store

x €40, 1}, dp € {0, 1}*
execution phase

challenge ¢ ¢+ VY

o := open(£, ¢,)

answer o

Y,
F

accept if verify(gdp,c,0) =1
31

Proof of Catalytic Space

e Catalyst: substance that increases rate of chemical reaction without
itself undergoing any permanent chemical change

* Ildea: You have stored large 1TB dataset which you do not access
regularly, but you should not delete.

* Proof of Catalytic Space: Can participate in proof of work without
permanently erasing dataset i.e., dataset can be recovered

Proof of Catalytic Space

* |nitial Input/Nonce: y

* File:d = (dy, ..., dy)

* Merkle-Tree Commitment to d
Using H,, (x) == H(}, x)

Honest Prover Stores Red Labels

Can (slowly) recover file d by = Hy galiy sy £y) for all i €V
given red labels + nonce y by =L pd; forie Ve

33

Simple Proofs of Sequential Work

Bram Cohen Krzysztof Pietrzak

1 CHi O gl g

nstitute o Sczence and Technolog

“Eurocrypt 2018, Tel Aviv, May 1st 2018

Outline

° What Proofs of Sequential Work Sketch
e HOW of Construction & Proof
o Why Sustainable Blockchains

e What
e How
o Why

Prover P(N, t,w)

(¢,¢7) := PoSW(x, N)

T := open(x, N, é»,7)

Outline

Proofs of Sequential Work Sketch

of Construction & Proof

Sustainable Blockchains

H:{0,1}* — {0,1}*

Verifier V(N,t,w)
statement x x + {0,1}*

PoSW ¢ ~,

5

f P 0, 1 t-w
challenge y > §+=10:4
answer 7

verify(x, N, ¢,7,) € {accept, reject}

Outline

° What Proofs of Sequential Work Sketch
e HOW of Construction & Proof
o Why Sustainable Blockchains

H:{0,1}* - {0,1}*

Prover P(N, t,w) Verifier V(N,t,w)
statement x x + {0,1}*

PoSW ¢ ~

o o

) - 0.1t
challenge e 7 {01}
aaaaaa T

(¢,¢7) := PoSW(x, N)

5

T := open(x, N, é»,7)

Outline

° What Proofs of Sequential Work Sketch
e HOW of Construction & Proof
o Why Sustainable Blockchains

H:{0,1}* - {0,1}*

Prover P(N, t,w) Verifier V(N,t,w)
statement x x + {0,1}*

PoSW ¢ ~
I
:

(¢,¢7) := PoSW(x, N)

9,1}
challenge 7 {01}
aaaaaa T

verify(x, N, ¢,,T) € {accept, reject}

5

T := open(x, N, é»,7)

Proofs of Sequential Work

H:{0,1}* —» {0,1}*

/

Prover P(N, t,w) Verifier V(N, t, w)
statement x x + {0,1}*

PoSW ¢ . «E
challenge ~y o= v+ {0,1}
answer T .

verify(x, N, ¢,~,T) € {accept, reject}

(¢a ¢'P) e POSW(Xa N)

T = open(Xa N, ¢'Pa’7) ‘

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest*, Adi Shamir**, and David A.Wagner***

Revised March 10, 1996

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest®, Adi Shamir**, and David A. Wagner™*

Revised March 10, 1996

uzzle: (N = p- g, X, T), solution: X2 " mod N
solution computed with two exponentiation given p, q:

e« 2T mod @(N) , x? = xemodN

conjectured to require T sgquential squarings given only N
X > X2—> X2 - ...x2 modN

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest®, Adi Shamir**, and David A. Wagner™*

Revised March 10, 1996
uzzle: (N = p- g, X, T), solution: X2 " mod N
solution computed with two exponentiation given p, q:
e« 2T mod @(N) , x? = xemodN

conjectured to require T sgquential squarings given only N
X > X2—> X2 = ...x2 modN

sequential computation ~
computation time =
“send message to the future”

Publicly Verifiable Proofs of Sequential Work

Mohammad Mahmoody* Tal Morant Salil Vadhan+

February 18, 2013

PoSW vs. Time-Lock Puzzles

Publicly Verifiable Proofs of Sequential Work

Mohammad Mahmoody* Tal Moran' Salil Vadhan?
February 18, 2013

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest*, Adi Shamir**, and David A. Wagner***
Revised March 10, 1996

Functionality

e Send message to the future

PoSW vs. Time-Lock Puzzles

Publicly Verifiable Proofs of Sequential Work | |Time-lock puzzles and timed-release Crypto

Mohammad Mahmoody* Tal Moran! Salil Vadhan! [| Ronald L. Rivest*, Adi Shamir**, and David A. Wagner***
February 18, 2013

Revised March 10, 1996

Functionality

. e Send message to the future
Assumption _

. o Non-standard algebraic

assumption

PoSW vs. Time-Lock Puzzles

Publicly Verifiablef§Proofs of Sequential Work | |Time-lock puzzles and timed-release Crypto

Mohammad Mahmoody* Tal Moran! Salil Vadhan! [| Ronald L. Rivest*, Adi Shamir**, and David A. Wagner***

February 18, 2013 Revised March 10, 1996

Functionality
. e Send message to the future

Assumption
. e Non-standard algebraic

assumption
Public vs. Private
e Public-coin = e Private-coin =

Publicly verfiable Designated verifier

Proofs gf Sequential ek

Prover P Verifier V

statement x |
e

& 4

x Vg

Time T € N

Proofs of Sequential \Work
aka. Verifiable Delay Algorithm

Prover P Verifier V @
statement x | X < G
“ TimeT eN ;“%
_ S
‘ I =1(x.T) = u verify(x, T, 7) €
accept/reject

Proofs gf Sequentialvark

Prover P Verifier V

statement y | X ‘—OG
“ TimeTeN : %
‘ r=1(x.T) _ “)}‘ verify(x, T, 7) €
accept/reject

Proofs gf Sequential ek

Prover P Verifier V @
statement x ; X <Gy
. T TimeT eN 5 K
‘ r=r(e1) o ‘ ‘ verify(y, T, 1) €
accept/reject

Completeness: 7(c, T) can be computed making T queries to H

Soundness: Computing any 1! s.t. verify(x, T, 1) =accept for
random y requires almost T sequential queriesto H

Proofs gf Sequential ek

Prover P Verifier V @
statement x X9 g

“ TimeT eN «_%

8

‘ r=7(x.T) _ ‘)>.

Completeness: 7(c, T) can be computed making T queries to H

verify(x, T, 1) €

accept/reject

Soundness: Computing any 1! s.t. verify(x, T, 1) =accept for
random y requires almost T sequential queriesto H

massive parallelism useless to generate valid proof faster =
prover must make almost T sequential queries ~ T time

Three Problems of the [MMV’13] PoSW

1) Space Complexity :
2) Poor/Unclear Parameters

3) Uniqueness :

Three Problems of the [MMV’13] PoSW

1) Space Complexity :

2) Poor/Unclear Parameters
3) Uniqueness

New Construction

1) Prover needs only O(log(T)) (not O(T)) space, e.g. for

T = 2% (~ aday) that's ~ 10KB vs.~ 1PB.
2) Simple construction and proof with good concrete parameters.
3) Awesome open problem!

Construction and Proof Sketch

Three Basic Concepts

Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])

DAG G = (V,E) is (e, d)
1 pi 3 4 5 6 depth-robust if after removing any
e nodes a path of length d exists.

Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])
DAG G = (V,E) is (e, d)

@ 2 »3 »A »©O @ depth-robust if after removing any

is (2, 3) depth-robust e nodes a path of length d exists.

Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])

DAG G = (V,E) is (e, d)
1 pi 3 4 5 6 depth-robust if after removing any
e nodes a path of length d exists.

Graph Labelling
|abe| £/ — H(£Darent5(i)), e.g. £4 — H(£3,£4)

Three Basic Concepts

Depth-Robust Graphs (only [MMV'13])

DAG G = (V,E) is (e, d)
1 pi 3 4 5 6 depth-robust if after removing any
e nodes a path of length d exists.

Graph Labelling
|abe| £/ — H(£Darent5(i)), e.g. £4 — H(£3,£4)

Random Oracles are Sequential

H g _ queriesy = H(x), y' = H(x!) where
>I >I c vl |
- | y € x' = query x' was made after x
X 1Y

\V

s he MMY'13 Congtraction

statement y X *OG

Time T =6 ~7§

b T O

o Protocol specifies depth-robust

DAG G on T nodes £ »E »E »E »F »E
o Define “fresh” random oracle

Hy(-) = H(x)
e Compute labels of G using H

Prover

The MMV’13 Construction

Prover P Verifier V @
statement x X9y

Time T =6 ~7§

) g ‘) »%'
Proof Sketch

e Gis (e, d) depth-robust £tttk

e @ commits P to labels {£}} jev
e i isbad if £ ~H(E

-

parents(i))

¢
e Case 1: = e bad nodes = will fail opening phase whp.

orover pl NE€ MMV 13 Ganstruction
statement y X *OG

“ TimeT =6 s
%

>

Proof Sketch
e Gis (e, d) depth-robust q_@_@_,m
e @ commits P to labels {£]} jev

. i isbad if £ /=H(E,

arents(i))

¢
e Case 1: = e bad nodes = will fail opening phase whp.

 Case 2: Less than ebad labels = 3 path of good nodes
(by (e, d) depth-robustness) = P made d sequential
queries (by sequantality of RO)

The New Construction

/
For every leaf i add all edges (j, i) where| is left sibling of
node on pathi — root

The New Construction

7 right sibling r=15
left sibling \

For every leaf i add all eages (j, i) wherej is left sibling of
node on pathi — root

The New Construction

For every leaf i add all edges (j, i) wherej is left sibling of
node on pathi — root

The New Construction

—
[

15

1 2

For every leaf i add all edges (j, i) wherej is left sibling of
node on pathi — root

o P computes labelling £; = H(£parents(i)) and sends root

label ¢ = £7 to V. Can be done storing only log(T) labels.
o V challenges P to open a subset of leaves and checks

consistency (blue and green edges!)

The New Construction

P T= 15

Proof Sketch

The New

Propf Sketch

« P committed to labels £ after sending ¢ = £15.
e i isbad if £ /=H(£'parents(,.)).

The New Construction
)

ISSENNA

- | Proof Sketch
« P committed to labels £ after sending ¢ = £1s.

o i isbadif £ FH(EL, cnts(i))-
e Let S c V denote the bad nodes and

15

The New Construction

[SRENERR

- | Proof Sketch
P committed to labels £ after sending ¢ = £1s.

| isbad if £ /~H(E,

arents(i))

Claim 1: 3_

e Let S c V denote the bad nodes and
e Claim 2: P can't open |S|/T fraction of leafs.

why we care

Sustainable Blockchains

aij f,+\

S~ — S~ —

Mining Bitcoin (Proofs of Work

——

e

: |
l W A
\ L
\ : v
7/
|
|

. ¥ - "
2
s
| Il
!

! ' \
\ |
‘ 5
| h—) |
. A .

23

4 »
!
- ' ' |
1
! -
!
“)
1
. |
‘ 5
' _

A

A
3

z v eTE
)\
\
)

& Kncminer,

Mining Bitcoin (Proofs of Work)

e - J.' e e S L SAN N
S Kncminer,

Can wehave a more “sustainable”
Blockchain?

Thanks for Listening

