
Advanced Cryptography
CS 655

Week 8:

• SCRYPT (wrapup)

• Proof of Sequential Work/Proof of Space

1Spring 2023

• Take Home Midterm (Released Thursday)
• No Class on Thursday
• Office Hours moved to 3-5PM

Scrypt is maximally
memory-hard

IST Austria

Joël
Alwen

UCSB Boston U.

Binyi
Chen

Krzysztof
Pietrzak

Leonid
Reyzin

IST Austria

(work done at
IST Austria)

Stefano
Tessaro

UCSB

[Percival 2009]: scrypt

x0 x1 x2 x3 x4 x5 x6 … xn

Repeat n times: xi=H(xi-1)

Input: x0

s1 s2 s3 s4 s5 s6 … sn

Repeat n times: si=H(si-1xj) for j = si-1 mod n

s0=xn

Output: sn

H: {0,1}*  {0,1}w random oracle

s0

Data-Dependent Memory Access
 Pebbling Attacks Don’t apply

Our Result

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}*  {0,1}w random oracle

Theorem: in the parallel RO model, cc(scrypt) =  (n2)

The first ever construction works!

How quickly can you play this game?

I give you uniform challenge c from 1 to n

You return xc

You have x0 and whatever storage you want

If you store nothing but x0: n/2 H-queries per challenge

x0 xn

How quickly can you play this game?

If you store nothing but x0: n/2 H-queries per challenge

If you store p hash values: n/(2p) H-queries per challenge

If you store something other than hash values?

x0 xn

I give you uniform challenge c from 1 to n

You return xc

You have x0 and whatever storage you want

Extracting labels from A’s memory
x0 xn

Imagine: run A on every possible challenge and record queries

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x22

x23

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x22

x23

x23

x24

x21 x12

c=25

x22 x13

x13

x14

x7

x8

x30 x5

c=26

x31 x6

x26

… …

x24

x25

memory pw  time  n/(2p)
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set|  p)

Lemma 2: Time to answer c  distance from nearest blue

Conclusion: storage pw  time  n/(2p)

How to go from this…

x0 x1 x2 x3 x4 x5 x6 … xn

Single random challenge: memory 

H: {0,1}*  {0,1}w random oracle

nw

2

1

time


… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}*  {0,1}w random oracle

Single random challenge: memory 

time

m
em

o
ry

ti to compute si

Know only that
orange is inversely
proportional to red

Prior work [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
“potential” argument to get Ω(n2 / log2n)

nw

2

1

time


… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}*  {0,1}w random oracle

Single random challenge: memory 

time

m
em

o
ry

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

Idea: apply bound k
steps before si-1 is

known: purple
is inversely proportional

to red+k

nw

2

1

time


k

… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}*  {0,1}w random oracle

Single random challenge: memory 

time

m
em

o
ry

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

nw

2

1

time


… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}*  {0,1}w random oracle

Single random challenge: memory 

time

m
em

o
ry

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

nw

2

1

time


… to cc(n challenges)

Single random challenge: memory 

time

m
em

o
ry

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

nw

2

1

time


nw

2
nw

2

Adding up memory used during previous challenge:

ti ti+1 ti + ti-1
(+ ++ …1 1 1)  (ln (ti+ti-1) – ln ti)

… to cc(n challenges)

time

m
em

o
ry

nw

2
nw

2

Adding up memory used during previous challenge:

ti ti+1 ti + ti-1
(+ ++ …1 1 1)  (ln (ti+ti-1) – ln ti)

Adding up over all challenges i from 1 to n:

½nw (ln (t1+t2) – ln t2 + ln (t2+t3) – ln t3+ … + ln (tn-1+ tn) – ln tn)

 ½nw (n ln 2)  (n2w)

16

Mining Bitcoin (Proofs of Work)

Ecological: Massive energy & hardware

waste.

Economical: Requires high rewards⇒

inflation and/or high transaction fees.

Security: E.g. buy old ASICs for 51%

attack.

Proofs of Space

• Proof of Work
• Energy Intensive
• Non-Egalitarian

• Original Vision for Bitcoin: anyone can
mine with idle cycles on PC

• Alternatives:
• Proof of Stake (Democratic?)
• Proof of Space

• Proof of Space Applications:
• Distributed Consensus
• Proofs of (Replicated Storage)

17

Technical Ingredient #2

• [NEW] 𝜀-extremely depth robust DAG 𝐷𝑛
𝜀with indegree O(log (n))

• Construction: similar to [EGS75]
• Many technical details to work out (see paper)

Useful Observation: Any subgraph of 𝐷𝑛
𝜀[𝑆] of size 𝑆 > 𝜀𝑛 must contain a

path of length 𝑆 − 𝜀𝑛

Proof: Otherwise DAG 𝐷𝑛
𝜀 is not 𝑒, d -depth robust for d = 𝑆 − 𝜀𝑛 and 𝑒 =

𝑉 ∖ 𝑆 = 𝑛 − 𝑆 . Contradiction, 𝐷𝑛
𝜀 is 𝜀-extremely depth robust and

𝑒 + 𝑑 = 𝑛 − 𝜀𝑛 ≤ 1 − 𝜀 𝑛.

18

Definition: A DAG 𝐺𝑛
𝜀 is 𝜀-extremely depth robust if it is (e,d)-depth-

robust for all 𝑒 + 𝑑 ≤ 1 − 𝜀 𝑛.

Let’s Play an (Extreme) Pebbling Game

Let G be a 𝜀-extremely depth robust graph with 4N nodes.

You can place S pebbles on the graph (anywhere)

Challenger asks you to place a pebble on node 3N + c for a random challenge 1 ≤
𝑐 ≤ 𝑁.

How fast can you respond to the challenge (in expectation)?

19

Definition: A DAG 𝐺𝑛
𝜀 is 𝜀-extremely depth robust if it is (e,d)-depth-

robust for all 𝑒 + 𝑑 ≤ 1 − 𝜀 𝑛.

Let’s Play a (Pebbling) Game

Observation 1: there is a directed path P of length 4N − S − 4𝜀𝑁.

Observation 2: At least N − S − 4𝜀𝑁 nodes in 3𝑁 + 1,4𝑁 have depth at
least 3N − S − 4𝜀𝑁 ≥ 𝑁 (assume S ≤ N and 4𝜀 ≤ 1)

Observation 3: With probability at least 1 −
S

N
− 4𝜀 we will take N rounds to

respond to the challenge.

20

Definition: A DAG 𝐺𝑛
𝜀 is 𝜀-extremely depth robust if it is (e,d)-depth-

robust for all 𝑒 + 𝑑 ≤ 1 − 𝜀 𝑛.

Non-Pebbling Game

Let G be a 𝜀-extremely depth robust graph with 4N nodes.

Let 𝐿1, … . , 𝐿4𝑁 denote the labels of the graph G using random oracle 𝐻(.)

e.g., if parents 𝑣 = (𝑢,𝑤) then 𝐿𝑣 = 𝐻(𝐿𝑢 , 𝐿𝑤)

You can store 𝑆𝜆 bits in memory

Challenger picks a random challenge 1 ≤ 𝑐 ≤ 𝑁 and asks you for label 𝐿3𝑁+𝑐 for.

How fast can you respond to the challenge (in expectation)?
21

Definition: A DAG 𝐺𝑛
𝜀 is 𝜀-extremely depth robust if it is (e,d)-depth-

robust for all 𝑒 + 𝑑 ≤ 1 − 𝜀 𝑛.

Non-Pebbling Game

Let 𝐿1, … . , 𝐿4𝑁 denote the labels of the graph G using random oracle 𝐻(.)

e.g., if parents 𝑣 = (𝑢,𝑤) then 𝐿𝑣 = 𝐻(𝐿𝑢 , 𝐿𝑤)

You can store 𝑆𝜆 bits in memory

Challenger picks a random challenge 1 ≤ 𝑐 ≤ 𝑁 and asks you for label 𝐿3𝑁+𝑐 for.

Extractor Argument: Can PROM algorithm into an equivalent pebbling strategy with 𝑆(1 + 𝑜 1) pebbles.

22

Definition: A DAG 𝐺𝑛
𝜀 is 𝜀-extremely depth robust if it is (e,d)-depth-

robust for all 𝑒 + 𝑑 ≤ 1 − 𝜀 𝑛.

Proof of Space

• Prover wants to convince verify that s/he has allocated N blocks of space
e.g., storing labels 𝐿3𝑁+1, … . , 𝐿4𝑁

• Cheating prover may try to store S < N𝜆(1 − 4𝜀) bits
• Pebbling Reduction: Cheating prover cannot respond to

• Verifier can periodically challenge prover for label 𝐿3𝑁+𝑐 and the expects
response quickly

• With probability 1 −
S

N
− 4𝜀 cheater cannot respond to a random challenge quickly

• Multiple Challenges: Amplify probability cheating prover is caught

• Question: Does the verifier need to store all of the labels too?

23

Proof of Space

• Prover wants to convince verify that s/he has allocated N blocks of
space e.g., storing labels 𝐿3𝑁+1, … . , 𝐿4𝑁

• Question: Does the verifier need to store all of the labels too?

• Attempt 1: Prover generates Merkle-Tree commitment to all labels
𝐿1, … . , 𝐿4𝑁 and sends root 𝜙 to the verifier.

• Problem? What if the prover commits to the wrong labels e.g., labels
that are easy to compress ?

24

Merkle Trees

𝐌𝐓𝐬 𝒙 ≔ hs 𝑥

𝐌𝐓𝐬 𝐱𝟏, … , 𝐱𝟐𝐢 ≔

hs 𝐌𝐓𝐬 𝐱𝟏, … , 𝐱𝟐𝐢−𝟏 , 𝐌𝐓𝐬 𝐱𝟐𝐢−𝟏+𝟏, … , 𝐱𝟐𝐢

25

Theorem: Let (Gen, hs) be a collision resistant hash
function then 𝐌𝐓𝐬 is collision resistant.

𝐱𝟏 𝐱𝟐

Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches

• Proof consists of just log(n) hashes
• Verifier only needs to permanently store

only one hash value

26

Proof of Space

• Question: Does the verifier need to store all of the labels too?

• Solution: Prover generates Merkle-Tree commitment to all labels
𝐿1, … . , 𝐿4𝑁 and sends root 𝜙 to the verifier.
• Verifier responds by picking k random nodes 1 ≤ 𝑐1, … , 𝑐𝑘 ≤ 4𝑁

• For each challenge 𝑐𝑖 prover must reveal labels for node 𝑐𝑖 and the labels for
parents 𝑐𝑖 = {𝑣1, … , 𝑣𝑡}

• Verifier validates Merkle Tree openings and checks that the labels are
consistent e.g., 𝐿𝑐𝑖 = 𝐻(𝐿𝑣1 , … , 𝐿𝑣𝑡)

27

Proof of Space

• Solution: Prover generates Merkle-Tree commitment to all labels
𝐿1, … . , 𝐿4𝑁 and sends root 𝜙 to the verifier.

• Suppose that 𝜀𝑁 labels are locally inconsistent

 cheater avoids detection with probability at most 1 −
𝜀

4

𝑘

 Can make this probability negligible by setting 𝑘 =
4𝜆

𝜀

1 −
𝜀

4

4𝜆

𝜀
≤ 𝑒−𝜆

28

Proof of Space

• Solution: Prover generates Merkle-Tree commitment to all labels
𝐿1, … . , 𝐿4𝑁 and sends root 𝜙 to the verifier.

• Suppose that 𝜀𝑁 labels are locally inconsistent

• Revisit Pebbling Argument: Give the attacker S pebbles + allow the
attacker to delete 𝜀𝑁 nodes from the graph (inconsistent labels)

• Intuition: with probability at least 1 −
S

N
− 4𝜀 − 𝜀 = 1 −

S

N
− 5𝜀

cheater cannot respond to a random challenge quickly

29

Proof of Space

• Prover wants to convince verify that s/he has allocated N blocks of space
e.g., storing labels 𝐿3𝑁+1, … . , 𝐿4𝑁

• Question: Does the verifier need to store all of the labels too?

• Solutions: Prover generates Merkle-Tree commitment to all labels
𝐿1, … . , 𝐿4𝑁 and sends root 𝜙 to the verifier.
• Verifier responds by picking k random nodes 1 ≤ 𝑐1, … , 𝑐𝑘 ≤ 4𝑁
• For each challenge 𝑐𝑖 prover must reveal labels for node 𝑐𝑖 and the labels for
parents 𝑐𝑖 = {𝑣1, … , 𝑣𝑡}

• Verifier validates Merkle Tree openings and checks that the label is consistent e.g.,
𝐿𝑐𝑖 = 𝐻(𝐿𝑣1 , … , 𝐿𝑣𝑡)

30

Proof of Space

31

Proof of Catalytic Space

• Catalyst: substance that increases rate of chemical reaction without
itself undergoing any permanent chemical change

• Idea: You have stored large 1TB dataset which you do not access
regularly, but you should not delete.

• Proof of Catalytic Space: Can participate in proof of work without
permanently erasing dataset i.e., dataset can be recovered

32

Proof of Catalytic Space

• Initial Input/Nonce: 𝜒

• File: 𝑑 = (𝑑1, … , 𝑑𝑁)

• Merkle-Tree Commitment to 𝑑

Using 𝐻𝜒 𝑥 ≔ 𝐻(𝜒, 𝑥)

Honest Prover Stores Red Labels

Can (slowly) recover file 𝑑

given red labels + nonce 𝜒

33

Simple Proofs of Sequential Work
Bram Cohen Krzysztof Pietrzak

Eurocrypt 2018, Tel Aviv, May 1st 2018

• What

• How

• Why

Outline
Proofs of Sequential Work Sketch

of Construction & Proof

Sustainable Blockchains

• What

• How

• Why

Outline
Proofs of Sequential Work Sketch

of Construction & Proof

Sustainable Blockchains

• What

• How

• Why

Outline
Proofs of Sequential Work Sketch

of Construction & Proof

Sustainable Blockchains

• What

• How

• Why

Outline
Proofs of Sequential Work Sketch

of Construction & Proof

Sustainable Blockchains

σi τ i σi+1 τ i+1

βi+1

α i α i+1

βi

Proofs of Sequential Work

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest*, Adi Shamir**, and David A . Wagner***

Revised March 10, 1996

puzzle: (N = p · q, x, T) , solution: x2
T

mod N
solution computed with two exponentiation given p, q:

e ← 2T mod φ(N) ,
T

x2 = xe mod N

conjectured to require T sequential squarings given only N
2 T

x → x2 → x2 → . . . x2 mod N

puzzle: (N = p · q, x, T) , solution: x2
T

mod N
solution computed with two exponentiation given p, q:

e ← 2T mod φ(N) ,
T

x2 = xe mod N

conjectured to require T sequential squarings given only N
2 T

x → x2 → x2 → . . . x2

sequential computation ∼
computation time ⇒

“send message to the future”

mod N

Publicly Verifiable Proofs of Sequential Work

Mohammad Mahmoody* Tal Morant Salil Vadhan+

February 18, 2013

PoSW vs. Time-Lock Puzzles

• Prove that time has passed
⇒ Non-interactive time-stamps

• Send message to the future
Functionality

PoSW vs. Time-Lock Puzzles

• Prove that time has passed
⇒ Non-interactive time-stamps

• Send message to the future

• Random oracle model or

“sequential” hash-function

• Non-standard algebraic
assumption

Functionality

Assumption

PoSW vs. Time-Lock Puzzles

• Prove that time has passed
⇒ Non-interactive time-stamps

• Send message to the future

• Random oracle model or

“sequential” hash-function

• Non-standard algebraic

assumption

Functionality

Assumption

• Public-coin ⇒
Publicly verfiable

Public vs. Private
• Private-coin ⇒

Designated verifier

Proofs of Sequential Workaka. Verifiable Delay Algorithm

χ ←
Prover P Verifier V

statement χ

Time T ∈ N

Proofs of Sequential Work
aka. Verifiable Delay Algorithm

verify(χ, T, τ) ∈
accept/reject

χ ←
Prover P Verifier V

statement χ

Time T ∈ N

τ = τ (χ, T)

Proofs of Sequential Workaka. Verifiable Delay Algorithm

verify(χ, T, τ) ∈
accept/reject

Completeness and Soundness in the random oracle model:

HProver P
χ ←

Verifier V
statement χ

Time T ∈ N

τ = τ (χ, T)

Proofs of Sequential Workaka. Verifiable Delay Algorithm

verify(χ, T, τ) ∈
accept/reject

HProver P
χ ←

Verifier V
statement χ

Time T ∈ N

τ = τ (χ, T)

Completeness and Soundness in the random oracle model:

Completeness: τ (c, T) can be computed making T queries to H

Soundness: Computing any τ l s.t. verify(χ, T, τ l) =accept for
random χ requires almost T sequential queries to H

Proofs of Sequential Workaka. Verifiable Delay Algorithm

verify(χ, T, τ) ∈
accept/reject

HProver P
χ ←

Verifier V
statement χ

Time T ∈ N

τ = τ (χ, T)

Completeness and Soundness in the random oracle model:

Completeness: τ (c, T) can be computed making T queries to H

Soundness: Computing any τ l s.t. verify(χ, T, τ l) =accept for
random χ requires almost T sequential queries to H

massive parallelism useless to generate valid proof faster ⇒
prover must make almost T sequential queries ∼ T time

Three Problems of the [MMV’13] PoSW

1) Space Complexity : Prover needs massive (linear in T)

space to compute proof.
2) Poor/Unclear Parameters due to usage of sophisticated

combinatorial objects.
3) Uniqueness : Once an accepting proof is computed, many

other valid proofs can be generated (not a problem for
time-stamping, but for blockchains).

Three Problems of the [MMV’13] PoSW

1) Space Complexity : Prover needs massive (linear in T)

space to compute proof.
2) Poor/Unclear Parameters due to usage of sophisticated combinatorial objects.
3) Uniqueness : Once an accepting proof is computed, many other valid proofs can

be generated (not a problem for time-stamping, but for blockchains).

New Construction
1) Prover needs only O(log(T)) (not O(T)) space, e.g. for

T = 242 (≈ a day) that’s ≈ 10KB vs. ≈ 1PB.
2) Simple construction and proof with good concrete parameters.

3) Awesome open problem!

Construction and Proof Sketch

Three Basic Concepts

depth-robust if after removing any
e nodes a path of length d exists.

1 2 3 4 5 6

Depth-Robust Graphs (only [MMV’13])

DAG G = (V, E) is (e,d)

Three Basic Concepts

depth-robust if after removing any
e nodes a path of length d exists.

Depth-Robust Graphs (only [MMV’13])

DAG G = (V, E) is (e,d)

1 2 3 4 5 6
is (2, 3) depth-robust

Three Basic Concepts

depth-robust if after removing any
e nodes a path of length d exists.

1 2 3 4 5 6

Depth-Robust Graphs (only [MMV’13])

DAG G = (V, E) is (e,d)

Graph Labelling

label £i = H(£parents(i)), e.g. £4 = H(£3,£4)

Three Basic Concepts

x

y

H H

x l yl

queries y = H(x), yl = H(x l) where
y ⊆ xl ⇒ query xl was made after x

Random Oracles are Sequential

depth-robust if after removing any
e nodes a path of length d exists.

1 2 3 4 5 6

Depth-Robust Graphs (only [MMV’13])

DAG G = (V, E) is (e,d)

Graph Labelling

label £i = H(£parents(i)), e.g. £4 = H(£3,£4)

Three Basic Concepts

The MMV’13 ConstructionHProver P
χ ←

Verifier V
statement χ

Time T = 6

• Protocol specifies depth-robust
DAG G on T nodes

• Define “fresh” random oracle
Hχ(·) ≡ H(χ ·)

• Compute labels of G using Hχ

£1 £2 £3 £4 £5 £6

The MMV’13 Construction
HProver P

χ ←
Verifier V

statement χ

£l l l l l l£2 £3 £4 £5 £6
• G is (e, d) depth-robust

˜ l
i• φ commits P to labels {£ }

1

i∈V

i• i is bad if £l /= H(£l
parents(i))

Time T = 6
φ

Proof Sketch

φ

• Case 1: ≥ e bad nodes ⇒ will fail opening phase whp.

The MMV’13 ConstructionHProver P
χ ←

Verifier V
statement χ

£l l l l l l£2 £3 £4 £5 £6
• G is (e, d) depth-robust

˜ l
i• φ commits P to labels {£ }

1

i∈V

i• i is bad if £l /= H(£l
parents(i))

Time T = 6
φ

Proof Sketch

φ

• Case 1: ≥ e bad nodes ⇒ will fail opening phase whp.
• Case 2: Less than e bad labels ⇒ ∃ path of good nodes

(by (e, d) depth-robustness) ⇒ P̃ made d sequential
queries (by sequantality of RO)

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

T = 15

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

right sibling
T = 15

left sibling

The New Construction

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

T = 15

The New Construction

14

3

1 2

15

For every leaf i add all edges (j, i) where j is left sibling of
node on path i → root

• P computes labelling £i = H(£parents(i)) and sends root

label φ = £T to V. Can be done storing only log(T) labels.

T = 15

• V challenges P to open a subset of leaves and checks
consistency (blue and green edges!)

Proof Sketch

The New Construction
φ T = 15

Proof Sketch
˜ l

i• P committed to labels £ after sending φ = £15.

i• i is bad if £l /= H(£l
parents(i)).

The New
Construction

φ
T = 15

Proof Sketch
˜ l

i• P committed to labels £ after sending φ = £15.

i• i is bad if £l /= H(£l
parents(i)).

• Let S ⊂ V denote the bad nodes and all nodes below.

The New Construction
φ

T = 15

Proof Sketch
˜ l

i• P committed to labels £ after sending φ = £15.

i• i is bad if £l /= H(£l
parents(i)).

• Let S ⊂ V denote the bad nodes and all nodes below.
• Claim 1: ∃ path going through V − S (of length T − |S|).

The New Construction
φ

T = 15

• Claim 2: P̃ can’t open |S|/T fraction of leafs.

Theorem: P̃ made only T (1 − c) sequential queries
⇒ will pass opening phase with prob. ≤ (1 − c)#of challenges

why we care

Sustainable Blockchains

σi τ i σi+1 τ i+1

βi+1

α i α i+1

βi

Mining Bitcoin (Proofs of Work)

Mining Bitcoin (Proofs of Work)

Ecological: Massive energy & hardware

waste.

Economical: Requires high rewards⇒

inflation and/or high transaction fees.

Security: E.g. buy old ASICs for 51%

attack.

Can we have a more “sustainable”

Blockchain?

Thanks for Listening

75

