Homework 2 Due Thursday @ 11:59PM on Gradescope
Project Proposals due Tonight

Advanced Cryptography
CS 655

Week 7:

* Constructing Depth-Robust Graphs
e Sustained Space Complexity
 Bandwidth Hard-Functions

Spring 2023



Course Project Proposal

* Due Tonight by e-mail (jblocki@purdue.edu)

* Project Proposal: 2 Pages
e Briefly the problem you plan to work on

e Briefly summarize prior work on the problem and how your project is
different

* |dentify several related papers that you plan to read as part of the project
e Briefly describe your plan to attack the problem


mailto:jblocki@purdue.edu

A Few Project Ideas

e Pick a cryptographic scheme and try to find a tighter concrete security proof
under idealized assumptions

e Example: Tighter security analysis for Password Authenticated Key Exchange (PAKE)
protocols such as CPACE in the generic group+random oracle model?

 Pick a cryptographic scheme/protocol and analyze the security with respect
pre-processing attacks or provide a memory-tight reduction

 Example: Memory-Tight Reduction for RSA-FDH under the One-More-RSA-Inversion
problem?

e Example: Security of PAKE protocols against pre-processing attacks?
e Example: Security of AES-GCM vs pre-processing attacks?

e Pebbling Reduction for Salted iMHFs vs. Preprocessing Attackers

e Pebbling Reduction for Argon2 Round Function (in ideal permutation model)



A Few Project Ideas

* Implement a Cryptographic Protocol/Attack

 Example: Implement Argon2 with different instantiations of
round function

 Example: Implement partitioning oracle attack on AES-GCM.

e Many other possibilities! Make sure your proposal is
realistic.

e |tis ok to try something and fail i.e., a final project
report documenting your unsuccessful attempts to solve
a problem is acceptable as long as the attempts are
clearly described




Recap: IMHFs

* Graph Pebbling Reduction [AS15]: Complexity of iMHF f; 4 is fully
captured by pebbling cost of DAG G.

* Informal Theorem [AS15]: Any algorithm A evaluating f; g in the
parallel random oracle model has CMC(A) = A X CC(G) where
H(x) € {0,1}*

* Proof Sketch: Use execution trace from A to extract a legal pebbling
of G such that for all rounds i we have |P;| = |o;|/A

#pebbles at time i #bits in A’'s memory at time i



Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

0-0-6-0-0



Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

o0 00



Recap: Depth-Robustness is Sufficient! [ABP17]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then CC(G)= ed.

Implications: There exists a constant indegree graph G with

2
CC(G)ZQ( b )

logn

[AB16]: We cannot do better (in an asymptotic sense)
n‘loglogn
CC(G) =0

logn



DRSample

B B, B,
[ l | : ! (—A—\
00 -0 000000 O

Indegree: 6 = 2
Key Modification to Argon2i: New distribution for r(i)

Buckets: By, ..., Blog i
B =[i—2/,i—2/"1-1]



DR-Sample: Meta-Graph
m = 0(logn)

Each meta-node u corresponds to m nodes Uy, ..., Uy, -
Let F, = {ul, ...,um/3} and L, = {um_mﬂ, ...,um} denote the first (resp.
3

last third) of these nodes

(r,,, has edge (u,v) if and only if G has some edge (x,y) withx € L,, andy € L,



Recap: DRSample Analysis

. Ig_lezlg[i)be the DRSample graph. Define Meta-Graph G,,, withm = Q(log N) and N' =
m

Last Class: We assumed that (,, Was a 0 —local expander and proved that any
& —local expander with N’ = Q( 3 nodes is (Q(N) Q(N’ )) depth-robust

* Meta-Graph (,,, is (Q (ﬂ) , Q) (ﬂ)) —depth-robust with m = Q(logN)

m m

=>» DRSample G is (Q (%) , Q(N)) —depth-robust

TODO: Prove that (7,,, is a 0 —local expander * (*almost)



0 —bipartite expander

< ) Al = Bl =n
A




0 —bipartite expander

< ) Al = Bl =n
S

XC A




0 —bipartite expander

YCEB

Al = [Bl =n

YCEB
(unreachable from X)




(6 )-local expander around v

We have (6) — local exapnsion if for every r

\ }




Not & —bipartite expander?

YCEB Al =|B| =7
Let A,B be a set of 2r consecutive
B nodes in meta-graph.

If not & —bipartite then there
existsYE Band X<ES A

\}A A with size\YJ =dr and |X|=07 such
that none of the edges from any
meta-node in Y hit any node in X




Not & —bipartite expander?

Fix some subsets |Y|=6r and
IX|=0r

Each individual edge from Y hits X
with probability 5

~ 3logn

There are % X Or edges
(all picked independently)




Not & —bipartite expander?

Each individual %dge from Y hits X with
probability =

3logn

There are % X Or edges (independent)

m

S )?X(ST

Pr|Y Misses X] < (1 —

—r 82—
< e ré (9logN

)




Not & —bipartite expander?

Y CB Union Bound:

B Pr[3X,Ys.t.Y Misses X]

—r52(9 lgngN) ( r )2
\> < exp(2) or

With

1 1
82 -
Z rd (9lOgN)+25rln(5)+2rln(1_5>




Not & —bipartite expander?

Union Bound:

YCEB

Pr[3X,Y s.t.Y Misses X|
< exp(2)
< exp(—2r)

I(DI1CE|3<6m11n( =) +1867%(1+In (= ))) logN

7 = —16% e + 26r1n 1 + 2rln 1
9log N ) 1—-6



Second Union Bound?

e Fixing any A=[u,...,u+r-1] and B=[u+r,...,u+2r-1] we say that A,B are
connected with bipartite expander with probability at least 1 —
exp(—2r)

e Ideal: Want to show that (;,,, is a 6 —local expander i.e.., this holds
foralluandallr
e Union bound over all meta-nodes u and all r?
e We can union bound over all r = log N and all u since

Z Z exp(—2r) <N 2 exp(—2r) <<%

u rzlogN r=log N




Second Union Bound?

* Fix: Let B, be the event that for some r < log N we do not have an
expander between A=[u,...,u+r-1] and B=[u+r,...,u+2r-1]

* Key Idea: Use concentration bounds to argue that ),,, B,, < &N with
high probability (for some suitably small &)

=>» For at least N — eN meta-nodes u we do have local expansion
around u.

=>» This is sufficient to argue that meta-graph is depth-robust.



Second Union Bound?

* Fix: Let B, be the event that for some r < log N we do not have an
expander between A=[u,...,u+r-1] and B=[u+r,...,u+2r-1]

 Key Idea: Use concentration bounds to argue that ),,, B, < &N with high
probability (for some suitably small &)

Problem? B,, and B, are not independent!

But, B, and B, are independentifu —v = log N

Solution: Partition random variables into log N buckets such that random
variables in each bucket are independent. Apply concentration bounds to

each bucket.



Sustained Space Complexity

Joél Alwen (IST Austria/Wickr)

Jeremiah Blocki (Purdue)
Krzysztof Pietrzak (IST Austria)

| |S g4 AUSTRIA

Institute of Science and Technology




Motivation: Password Storage

jblocki, 123456

Username

89d978034a3f6 85e23cfe0021f584e
3db87aa72630a9a2
345c062

jblocki

SHA1(12345689d978034a316)=85e23cfe
0021f584e3db87aa72630a9a2345c062

25



Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions
of user accounts.

LastPassEXrTT sony € C Y

ASH LEY ) . PPN AdultFriendFinder
MADISEN Linked[}] <

o 730005
rockyou 2Pkaiy

YAHOO! FA\Adobe  =o===e= Ilvmgsocﬁll@



Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions

TECH

Yahoo Triples Estimate of Breached Accounts to 3 Billion

Company disclosed late last year that 2013 hack exposed private information of over 1 billion users

By Robert McMillan and Ryan Knutson

AS]- Updated Oct. 3, 2017 9:23 p.m. ET CiTR|x= |
4 .
M. >

A massive data breach at Yahoo in 2013 was far more extensive than previously disclosed,

Life is affecting all of its 3 billion user accounts, new parent company Verizon Communications

Inc. said on Tuesday.

The figure, which Verizon said was based on new information, is three times the 1 billion

1 when it first disclosed the breach in December 2016.

e g T
counts Yahoo sald were aifected when it first disclosed the breach 1n

I A\ RUUNG



Goal: Moderately Expensive Hash Function

~ast on PC and
nensive on ASIC?

t.p

PlayStation™




0aSSWOro

nasning
competition

(2013-2015)

https://password-hashing.net/



https://password-hashing.net/

0aSSWOro
a

qaghimgl | We recommend that
Compet\_t\om you use Argon2...

(2013-2015)

https://password-hashing.net/



https://password-hashing.net/

0aSSWOro

qaghimgl | We recor?end that
Competmom you use Argon2...

There are two main versions of

(2013_2015) Argon2, Argon2i and Argon2d.

Argon2i is the safest against side-
channel attacks

https://password-hashing.net/



https://password-hashing.net/

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T

* Goal: force attacker to lock up large amounts of memory for duration
of computation

- Expensive even on customized hardware



Memory Hard Function (MHF)

d by memory costs
y Y i

A




Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T




Memory Hard Function (MHF)

d by memory costs
y Y i

e Data Independent Memory Hard Function (iMHF)
e Memory access pattern should not depend on input



Memory Hard Function (MHF)

. Intumon' computatlon costs dominated by memory cost's' T

e Data Independent Memory Hard Function (|IVIH
 Memory access pattern should not depend on input



Data-Independent Memory Hard Function (iMHF)

IMHF f , defined by

e H:{0,1}%¢ —» {0,1}* (Random Oracle)

e DAG G (encodes data-dependencies)
e Maximum indegree: 6 = 0(1)

Input: pwd, salt G/'ab/a Output: fG,H(de'Salt)= L,

L, = H(pwd salt) = H(Ly Lq)



Evaluating an iIMHF (pebbling)

I

L, = H(p\l/vd, salt) Ly =H(Ly L)

—

Pebbling Rules: P=P,,...,P.C V s.t.
*P...C P.U{x € V|parents(x) c P.,,} (need dependent values)
*nE P, (must finish and output L)



Evaluating an iMHF (

0-0-6-0-0

)



Fvaluating an iMHF ( )

0500

P, = {1} (data value L, stored in memory)




Pebbling Example

P, = {1)

P, ={1,2} (data values L, and L, stored in memory)




Pebbling Example

60500

Py =11}

P2 = {112}
P3 =13}



Pebbling Example

60 v 00

Py =11}
P2 = {112}
P3 =13}
P, =1{3,4}



Pebbling Example

0-0-0-0-'

Py =11}

P2 = {112}
P3 =13}
P, =1{3,4}
Ps = {5}



Measuring Cost: Attempt 1

e Space X Time (ST)-Complexity

ST(G) = min (tlg X maX\Pi\)

)2 iStT;
e Rich Theory

e Space-time tradeoffs t ST Cost

e But not appropriate for password hashing m

time .

space

\

/



Amortization and Parallelism

e Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

ST, =5, x1, = x [,=ST,

) f \

O

©

Q .

7 cost of computing cost of computing
fonce f three times

time

[AS15] 3 function £, (consisting of n RO calls) such that: ST(fX‘/ﬁ) = 0(ST(f))



Measuring Pebbling Costs [AS15]

lp
CC(6) = min ) [Py
P
=1

Approximates Memory Used at Step |

Amortized Area x Time
Complexity of IMHF Cumulative Memory Cost

space




Measuring Pebbling Costs [AS15]

lp
CC(G =min2 P;
@ =min ) IPL__

- Memory Used at Step |

[AS15] Costs scale linearly with #password guesses
CC(G, ...,G) = m X CC(G)
\_'_I

m times




Pebbling Example: Cumulative Cost

0-0-0-0-'

P, = {1} 5

P, ={1,2} CC(G) < ) |P|
P3 = {3} ;
e =1+2+1+2+1

= 7



Lessons from SCRYPT

SCRYPT [Per09]

* CON: Data-Dependent—> Side-Channel Concerns

®* PRO: Proven to have high CC [ACPRT17]
 CC(SCRYPT) = Q(n?)

2
e Contrast: any iMHF has CC at most O (n log log n)

logn

SilverFish
25MH Scrypt Miner

25MH/s @ 440w

e Maximally Memory Hard = Egalitarian?




What Happened?

e CC(SCRYPT) = Q(n?) the function can be computed
with low memory

* Each strategy below is easily feasible

e Evaluate with O(n) memory in O(n) time
e Evaluate with O(1/n) memory in O(n+/n) time
e Evaluate with O(1) memory in 0(n?) time

e SCRYPT ASIC miners opt for low memory + high
computation options

e Goal: Ensure that low memory options are
infeasible

SilverFish

25MH/s @ 440w

51



Sustained Space

e Using memory is more costly than doing computation (at least for
ASICs).

e |dea: Only charge for computational steps where a lot of memory
is being used.

e Definition: s-Sustained Space

“Time spent above memory threshold s”

s-Sustained Space

) /\\/\\/AL

time

Intuition:
trade-offs
are free.

space




Wanted: A Moderately Hard Function

e Desiderata:
e Cost for honest & adversary roughly same:

Honest Computational Model Adversarial Model
e Sequential Computation e Parallel Computation
e Single Evaluation e Amortization across many
e Cost measured in ST evaluations
Complexity e Cost measured in s-SS
(for some large s)




Main Theorem

* For any neN we give a function f, and prove that in the parallel
Random Oracle Model (PROM):

Honest Adversarial
e Sequential Algorithm E e V parallel algs. A
e Time(Z(f,)) =n » s-SS(A(f,)) = Q(n) per eval.
o ST(E(f,)) = n? for s = Q(n/log(n))

* Bonus: f, is an iIMHF.

=7 runs in constant time and has data-independent memory access pattern



The Parallel Black Pebbling Game

Parallel Black Pebbling Game: Same as Black Pebbling, except can touch many pebbles
per iteration.

Goal: Place a pebble on the sink.

Rule 1: A node can be pebbled only if all parents contain a pebble.
Rule 2: A pebble can always be removed.

s-SS analogue: Count number of steps when at least s pebbles on graph.

Want G with...
1. Size(G)=n

2. In-degree(G) =2
s-SS Complexity
1-SS =3
2-SS=1

n
log(n)

-SS(G) = Q(n)




Technical Ingredient

n
m=my € ®(10gn)

Space-Complexity: () (ﬁ)

m=mn€®(

sinks

n

logn

) sources

1 [PTC/7]

e [PTC77] Built a constant
indegree DAG G with n nodes
and proves that any sequential
pebbling has at least one step in
which there are at least
Q(n/logn) pebbles on the
graph.

e [Hopcroft77] Any constant
indegree graph DAG G can be
pebbled with space at most
O(n/logn)

56



Technical Ingredient #1 [PTC/7/]

m=m, €0 (L) sinks
logn

e [PTC77] Built a constant indegree
DAG G space complexity Q(n/logn)
* Recursive Construction
e PTC,, contains 2 internal copies of PTC,

e Stronger Lemma used for Induction!
* For any sequential pebbling Py, ..., P;

We can find an interval [i, j] € [t] such
that both

1. |Py| = cymforeachk € [i,j]

2. Atleast c,m source nodes are
(re)pebbled during the interval

Space-Complexity: () (ﬁ)

n
m=m, €0 (—) sources
logn

57



Technical Ingredient #1 [PTC7/7/]

e [PTC77] Built a constant indegree DAG G space complexity Q(n/logn)

e Recursive Construction
* PTC,, contains 2 internal copies of PTC,

e Stronger Lemma used for Induction!

e For any parallel (sequentied) pebbling P;, ..., P;

 Can find aninterval [i,j] € [t] such that
1. |Py| = cyn/logn for eachk € [i,]] (lots of pebbles on the graph)
2. Atleast c,n/logn source nodes are (re)pebbled during the interval

e Implication (s = cyn/logn):s-SS(P)=j +1—i
e Sequential Pebbling: j+1—1i > c,n/logn (by(2)above)
e Parallel Pebbling: Could (re)pebble all c,n/logn in one step!




Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust forall S €V
s.t. |S| < e we have depth(G — 5) > d.

Otherwise, we say that G is (e,d)-reducible.

Example: (e=2,d=2)-reducible

000000




Block Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust forall S € V
s.t. |S| < e we have depth(G — 5) > d.

Otherwise, we say that G is (e,d)-reducible.

Example: (e=2,d=2)-reducible

000000




Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

e [EGS75] n node G with log(n) in-degree and (€)(n), {2(n))-depth-
robust
e Problem: Constants too smalle.g.,, e = 10™*nand d = 10~ ?n
* Problem: in-degree too high.

e [MMV13] e-extremely depth robust DAG G} with log?(n) in-
degree and (e,d)-DR for any e+d < n(1-¢).
* Problem: in-degree too high.



Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

* [MMV13] g-extremely depth robust DAG G with indegree
O(log“n polylog(logn)).

* Problem: in-degree too high.

* [NEW] e-extremely depth robust DAG D} with indegree O(log (n))
e Construction: similar to [EGS75]
 Many technical details to work out (see paper)



Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

e [NEW] e-extremely depth robust DAG D;with indegree O(log (n))
e Construction: similar to [EGS75]
 Many technical details to work out (see paper)

Useful Observation: Any subgraph of D;[S] of size |S| > en must contain a
path of length |S| — en

Proof: Otherwise DAG D} is not (e, d)-depth robust ford = |S| —enand e =
IV \ S| = n — |S]. Contradiction, D} is e-extremely depth robust and

et+d=n—en<(1-¢e)n.



Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

Lemma: If legal (parallel) pebbling P.,...,P, of D, has at least one pebbling
round j with space s = |P;| > 2en then there are at least t = li;’i — en distinct

. . P
time rounds k with space |P,| = l—z’—l

Proof: Let i<j be last round before round j such that |P,| < l%'i and let S =

P;\ P;. Any node in S is (re)pebbled during the interval [ij].

—> (observation) the subgraph J:[S] contains a path of length t > l%’i — &n

— at least t pebbling rounds to reach configuration P from P,



PTC Overlay (Attempt 1)

n

m=mne®( )sinks

logn

Space-Complexity: () (L

logn

OO -

n
\_/ m=m, €0 (—) sources
logn

Lemma [PTC77] In any pebbling
of PTC, we can find an interval
li,7] € [t] such that
1. |Py| = cyn/lognfor each
k € [i,j] (lots of pebbles
on the graph)

2. Atleast c,n/logn source
nodes are (re)pebbled
during the interval

[NEW] Now requires Q(m)
rounds since D is &-
extremely depth robust

65



PTC Overlay (Attempt 1)

Lemma [PTC77] In any pebbling of PTC we can find an interval [, j] € [t] such that
1. |Py| = cyn/lognforeachk € [i,j] (lots of pebbles on the graph)
2. Atleast c,n/logn source nodes are (re)pebbled during the interval

[NEW] Overlay requires 2(m) rounds since DZ, is e-extremely depth robust

Problems:

* Requiress = Q(n/logn) pebbles fort = Q(n/logn) rounds
 |promiseds = Q(n/logn) pebbles for t = (.(n) rounds)

* Indegree still too highi.e., indeg(Dj5,) = O(logn)

e | promised constant indegree O(1)



Technical Ingredient #3

* Indegree Reduction [ABP17] deals with both problems simultaneously!

indeg(Df,) € ©(logn)

o_.(,é:ﬁb_.*@ m=mn€@(logn)

26
coples E copies copies

= indeg(J5,) = 2
#nodes = 20m € 0(n)

67



Technical Ingredient #3

* Indegree Reduction [ABP17] deals with both problems simultaneously!

indeg(Df5,) € ©(logn)

o_....ma...*omwnee(%)

8 = indeg(J5) = 2
#nodes = 26m € ©(n)

Lemma [ABP17]: If DS, is (e, d)-depth robust then J . is (e, d§)-depth robust.
Furthermore, indeg(J&,) = 2 and J&, has 2dm = 0(n) nodes.



The Final Construction

m=m, €0 (L) sinks
logn

Theorem: Any (parallel)
pebbling requires

s = Q(n/logn) pebbles
fort = Q(n) rounds

Technical Details in
paper

69



Consequences of new Depth-Robust Graphs

* Logic: “Parallel Black-White Pebbling”

. Applifcation: CNF formulas with very memory costly refutation resolution
proofs.

e MHFS: Applications: Optimal CC for any graph of size n even though
only O(log(n)) in-degree

(1-n)n?
+ CC(DE) =—F=

* Exact Constants! ,
e Complete DAG: CC(Kn ) < % (prior result is almost optimal!)

e Coding Theory: better locally detectable error detection codes
[BGGZ19]

e Improved Proof-of-Sequential work (temporarily. See “Simple Proofs
of Sequential Work” for construction without depth-robust graphs).



A Few Open Questions

* Practical Construction of iIMHF with high sustained space complexity?

e Analyze/improve constant factors in bounds
e Computer Aided Analysis?

e Stronger Results for dMHFs? Hybrid Modes like Argon2id?

* Find constant indegree DAG with parallel space-time complexity
ST!II(G) = Q(n?) or show that no such DAG exists

2
» Note: [AB16] pebbling shows that CC(G) = 0 (” log log n
attack P still has ST!I(P) = Q(n?)

), but the pebbling

logn



A Few Open Questions

* Practical Construction of iMHF with high sustained space complexity?
* See upcoming crypto 2019 paper

e Data-Independent Memory Hard Functions: New Attacks and Stronger
Constructions (with Ben Harsha and Siteng Kang and Seunghoon Lee and Lu Xing
and Samson Zhou).

Theorem: Any pebbling of (practical) DAG G either has
1. Cumulative Cost w(n?), or
2. Atleasts = Q(n/logn) pebbles for t = (.(n) rounds



Announcements & Reminders

e Homework 2 Due Tonight (2/23/2023)

e Midterm Next Week
e Informal Poll: Take Home vs. In-Class

* Course Presentation (Signup Sheet will be Announced Soon)



Bandwidth Hard Functions:
Reductions and Lower Bounds

Jeremiah Blocki (Purdue)
Ling Ren (MIT)
Samson Zhou (Purdue)

H B Massachusetts
I I Institute of
Technology




Offline Attacks

jblocki, 123456

Username | Salt Hash

jblocki 85e23cfe0021
f584e3db87aa
72630a9a234
5c062

HASH(123456 )=85e23cfe

0021f584e3db87aa72630a9a2345c062

75



Offline Attacks: A Common Problem

e Password breaches at major companies have affected mitiens billions
of user accounts.

LastPassEXEXz sonNy €Dy 232 Dropbox

ASHLEY

MADIS- - Linked T fOCliOU ZappOS@ 'mg u r

YAHOO!  Fa\Adobe e ivingsocial blﬂ%

222myspace tumblr. dailymotion
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Key Stretching

H _.
H T

Hash Iteration Memory Hard Functions

BCRYPT rexor2 sCrypt

7



What is the ASIC Advantage?

Advertised Capacity: >200,000x faster than §eruf
4.73 Thi/s —

SS per eval(): capital +  electricity

# of lifetime eval()

79



SS per eval(): amortized capital + electricity

80



Reducing ASIC Advantage

Memory-hard functions [Percival’09 (scrypt)]:
“A natural way to reduce the advantage provided by an
attacker’s ability to construct highly parallel circuits is

to increase the size of the circuit.”

Size of the circuit:
e dominated by memory

 Reasonable approximation of amortized capital costs

81



Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory costs
AR

* Goal: force attacker to lock up large amounts of memory for duration
of computation

- Expensive even on customized hardware

82



Lot’s of Work on Memory Hard Functions

 [Percival’09 (scrypt)]

e Password Hashing Competition

e Argon2 (winner), Catena, Lyra2, yescrypt...
e Data-Independent (iMHF) vs Data-Dependent (dMHF)

* iMHF: harder to construct, but resistant to side-channel attacks like cache-timing

e [Boneh et al.” 16 (Balloon Hash)]
e [Alwen & Serbinenko’ 15]

e Definitional issue with ST-complexity (amortization of costs)
e Cumulative Memory Complexity (stronger requirement to address amortization)

e [Alwen & Blocki’ 16, 17]

e Argon2i, Balloon Hash and other iMHFs have low cumulative memory complexity
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Lot’s of Work on Memory Hard Functions

e [Alwen & Blocki’ 16, 17]

e Argon2i, Balloon Hash and other data-independent memory hard functions have
low cumulative memory complexity (cmc)

e [ABP17]

* Theoretical construction of iIMHFs with asymptotically optimal cumulative memory
complexity

e [ABH17]

e First practical construction of iIMHFs with asymptotically optimal cumulative
memory complexity

 [ABP18] Sustained Space Complexity
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Reducing ASIC Advantage

(memory-hard) (bandwidth-hard)
SS per eval(): amortized capital + electricity
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How to Define Bandwidth
Hardness?
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Energy Cost
* Graph labeling, compute H:{0,1}?* — {0,1}* in a DAG
 Give the adversary a cache
e Energy Cost

(#bits transfered to/from cache)
ecost(fG,H,mw) = (Cp X " + C, X (#evals H)

v
\

Bit in cache
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Evaluating an iMHF (red-blue pebbling)

InpuLa/ab/:Wutput: Ly
. -

pwd, salt™}
L, = H(p\l/vd, salt) Ly =H(Ly L)

Pebbling: ﬁ=(Bl,R1)..., (B,,R,) where
 Set of labels stored in memory at round i: B,
» Set of labels stored in cache at round i: R. (Cache-Size: |R.| < m)

Goal: place red pebble on last node (N) inin G
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Evaluating an iIMHF (red-blue pebbling)

PEbeIng }_)) — (BO — ®) RO — ®)) (Bll Rl)) e (Btl Rt)
* B.set of labels stored in memory at time i
* R set of labels stored in cache at time i. (Cache-Size: [R| < m)

Legal Pebbling Moves between Rounds:

 [Blue Move] Change the color of a pebble (cache-miss: store/load
value from memory)

* [Red Move] Place new red pebble on node v if parents(v) c R,
e [Discard Pebble] May discard pebble(s) at any time.



Red-Blue Pebbling Cost [RD17]
rbpeb(P) = C,, X (#Blue Moves in P) + C. X (#Red Moves in P)

rbpeb(G, m) = bpeb(P)
B

Set of all legal red-blue

pebblings of DAG G
with cache-size m.




Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

rbpeb(P) = C,, X (#Blue Moves in P) + C. X (#Red Moves in P)

Attacker (ASIC):
rbpeb’(P’) = C;, X (#Blue Moves in P") + C; X (#Red Moves in P’)

Attacker gets to play with potentially advantageous constants

In)]~C,~ C,=C. =102 X C.~ 1p] (C.«C,)
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Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

How can | make sure

that the function iIs

— : 1 energy intensive for
rbpeb(P) = Cy X (#Blue MovesinP) + C. X (# e itacker e walls

Attacker (ASIC):
rbpeb’(P") = Cy, X (#Blue Moves in P’) + C, X (#Red CAU

Attacker gets to play with potentially advantageous cons
C/K C; C, = 0(Cp)

Life’s Not Fair

Getusedtoit. ©>



[Abadi et al.’05]
[Dwork et al.’03]

A Natural Approach

* An iMHF f; ,;is memory-bound if:
e Computable with at most B cache misses (resp. blue moves)

 Not computable with < ¢B cache misses (resp. blue moves) even using
a cache of size M

(definition for dMHFs is similar, but does not involve pebbling)

Problem: Hard to construct; must rule out all space-time tradeoffs

Theorem[Hopcroft’77]: If G has constant indegree then there is a black pebbling which

never requires more than S = O(N/log(N)) pebbles.

Corollary: If M= O(N/log(N)) we need 0 blue-moves



Bandwidth-hard functions [RD17]

e Observation: computation is not free (even for attacker)!
e Allows for slight relaxation of goal

* Definition: An iMHF f; , is bandwidth hard against attacker
with cache-size m if

Best Red-Blue Pebbling for Honest Party

rbpeb(G, m)
rbpeb’ (G, m)

= 0(1)

Best Red-Blue Pebbling for ASIC attacker

Sufficient Condition: rbpeb(G,m) = Q(N X Cy)



Prior State of Affairs (Bandwidth-Hardness)

Prior Results [RD17]: Key Open Questions:
* Proved that DAGs for several key Pebbling Reduction? Is it true that any
iIMHFs satisfy algorithm A computing f , in the

_ random oracle model can be described
rbpeb(G,m) = QN X Cp) (1) as a red-blue pebbling strategy?

(Thm: [AS15] holds for black pebblings)
Does equation (1) hold for

* Proved that dMHF scrypt is * Argon2i? (PHC Winner)
bandwidth-hard * e DRSample? (Maximal CMC [ABH17])

*vs restricted class of attackers * aATSample? (Maximal CMC [ABH17])

e Catena-BRG
e Balloon Hash



Pebbling Reduction [BRZ18]

Pebbling Reduction: Any algorithm A computing f; g in the random

oracle model can be described as a red-blue pebbling strategy with
comparable cost.

ecost(fG,H,m X W) > Q(rbpeb(G, 8m))

Arguably a reasonable upper bound on cache-size
Typical N = 220 (1KB Blocks) = (LGB RAM)

° Arg0n2| eCOSt (G, 6(1\,2/3)) — Q(N X Cb) N = 2%%/3 (1KB Blocks) = (10MB cache)
 DRSample: ecost(G, O(Nl_g)) = Q(N X C})
* aATSample: ecost (G, 5(N)) = Q(N X Cy)

Tolerates Larger Cache-Size



Additional Results [BRZ18]

Computational Complexity: NP-Hard to find ecost(G).
(Open Question: Approximate ecost(G)?)

Tight Relationship between parallel and sequential pebblings:
rbpeb(G, 2m) < rbpeb! (G, m)

(this relationship does not hold for black pebblings!)

Generic Connection Between Memory Hardness and Bandwidth

Hardness: Any MHF f(.) with high cumulative memory complexity must
have reasonably high energy cost.



Additional Results [BRZ18]

Generic Connection Between Memory Hardness and Bandwidth
Hardness: Any MHF f(.) with high cumulative memory complexity must
have reasonably high energy cost.

| cmc(f)
ecost(f,mw) = Q (mtm (t Cr + Gy ( P m)))

Theorem [ABPRT17]: cmc(scrypt) = Q(N?)
Corollary: ecost(scrypt) = Q(N,/C, X Cy)
(first unconditional lower bound on energy cost of scrypt)




Bonus: More Contributions

ecost(f,mw) = Q (mtin (t Cr + Gy (CH;(/ZV(D _ m)))

Theorem [ABPRT17]: cmc(scrypt) = Q(N?)
Corollary: ecost(scrypt) = Q(N,/C, X Cy)
(first unconditional lower bound on energy cost of scrypt)

Comparison: [RD17] lower bound is slightly stronger Q(N X C,) for
restricted adversary class.

Recent: Unconditional proof that ecost(scrypt) = Q(N X C;,)




Pebbling Reduction

e Goal: Compute f; y i Goal: Pebble G
minimize minimize
ecost(fg 1, mw) rbpeb(G, m)

> g9, ®
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Pebbling Reduction

e Goal: Compute f; y i Goal: Pebble G
minimize minimize

ecost(fG H) mw) rbpeb(G, m)

Easy Direction a/ b/
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Pebbling Reduction

* Goal: Compute f; g e Goal: Pebble G
minimize

rbpeb(G, 0(m))

minimize
ecost( fe H mw)

Extractor Argument
(can’t compress
labels from RO)

:
> *(thw
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Pebbling Reduction

* Prior pebbling reduction implies that total number of pebbles on
graph (red or blue) is proportional to overall state size (cache+ )

* Challenge: Ex-post facto pebbling only gives us black pebbling P,...,P..
e Which pebbles should we color blue/red in each round?

e We cannot directly see what labels are transferred to/from cache (the labels
might be stored in encrypted form!)

* Recall: In ex-post facto pebbling P, denotes labels that appear “out of
the blue” in our simulation i.e., the next time these labels appear will
be as the input to a random oracle query.



Pebbling Reduction

* Prior pebbling reduction implies that total number of pebbles on graph
(red or blue) is proportional to overall state size (cache+ )

* Challenge: Ex-post facto pebbling only gives us black pebbling P,,...,P..

* Recall: In ex-post facto pebbling P. denotes labels that appear “out of the
blue” in our simulation i.e., the next time these labels appear will be as the
input to a random oracle query.

* Intuition: We expect that at least |P,|-m of the labels in P, will have to be
transferred from cache in the future at cost (| P,|-m)Cy,.



Pebbling Reduction

* Challenge: Ex-post facto pebbling only gives us black pebbling P,,...,P..

 Recall: In ex-post facto pebbling P. denotes labels that appear “out of the blue” in
our simulation i.e., the next time these labels appear will be as the input to a
random oracle query.

* Intuition: We expect that at least |P,|-m of the labels in P, will have to be
transferred from cache in the future incurring cost (|P,|-m)Cy,.

e Suppose Not: If fewer than (LPi |-m)Cy, /2 bits are transferred to/from cache
after round i then extractor hint would include
e Cache State atroundi (mw) bits
* Bits transferered between cache/memory ((|P;|-m)Cy /2 bits)
» Additional information to extract labels (<(|P,|-m) C,, /2 bits)
e =» Contradiction! We would extract a random |P.|w-bit string with a much shorter hint



Pebbling Reduction

* Key Definition: QueryFirst(t,,t,)

* Data-labels L, that appear “out of

the blue” as input to RO query

before output during rounds [t,, t,]

e Dependent on execution trace of
attacker.

* Partition time into intervals [t,, t,],
[1+t,, t5]... s.t

4m > |QueryFirst(t,t.,;)| >3m

e Claim 1: Attacker must transfer at
least mw bits to/from cache during
each interval [1+t,t, ]

e Claim 2: Can find legal red-blue
pebbling in which

1.

The number of blue moves during
each interval [1+t,t.,,] is at most 4m

We never use more than 8m red
pebbles.



Pebbling Reduction

Claim 1: Attacker must transfer at
least mw bits to/from cache during
each interval [1+t,t.,,]

Proof Sketch: Suppose not then we
could use an extractor to extract
3m labels with a hint of size

(|h| — 2mw) < 3mw

The odds of this happening are
negligible!

e Extractor Hint:

* State 0., of PROM attacker cache
A at time 1+t

* ignore memory (€1+ti )
e At most mw bits

* List of messages passed to/from
cache during interval [1+t,t.,,]
e At most mw bits
e List of labels in QueryFirst(t,t.,,) to
extract (plus information to
recognize relevant queries)

« 0(m (log(n + q))) K mw



Extractor for Pebbling Reduction

* Given state of cache 04, and

list of messages passed to/from
memory we can simulate the
attacker.

e When the attacker submits the
ith random oracle query

* Check hint to see the ith query x is
of interest

e Otherwise forward query to
random oracle and forward the
response to the attacker

e Label appears “out of the blue”

 Making the query “ruins” label
L., we want to extract
° Lv — H(U' Lv—l' LT(V))
 How to identify such a query?
e Rely on hint.
 How to continue simulation

without making the RO query?

e L previously appeared out of the
blue.

e Thus, extractor can simply send the
response L,



Bandwidth Hardness of Candidate iMHFs

e Key Pebbling Lemma: Lower bounds
rbpeb(G,m, T, B, R) cost to pebble rbpeb(G,m, T, B,R)
target nodes T < [N] starting from > C.|lancestorsq_pyg,(T)]

configuration with

e Blue Pebbleson B € [N]\T .. :
+ Red Pebbles on R € [N\T e Intuition: If there is a path from v
, B to T which avoids the set R U B’
* Let B € B be blue moves that are then node v must be pebbled at
eventually converted to red pebbles. some point at cost C,..

rbpeb(G,m,T,B,R) = C,|B’]

110



Bandwidth Hardness of Candidate iMHFs

* Key Lemma (central to all proofs)

* Lower bounds rbpeb(G,m, T, B, R) cost to pebble target nodes T € [N]
starting from configuration with

e Blue Pebbleson B € [N]\T
e Red Pebbleson R € [N]\T

e letB' C B be blue moves that are eventually converted to red pebbles.

Lemma: VT,B,R € [N]\T

rbpeb(G,m,T,B,R) > LgniC%(CrIancestorsg_RUB,(T)| + C,|B'])
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Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R € [N]|\T

rbpeb(G m,T,B,R) > gnlc%(C lancestorsq_pyug, (T)| + C,|B'|)

Partition the nodes [N |\ E] into () (%) intervals Ty, T, ..., each
containing 0(m) nodes.

rbpeb(G,m ) > Bchn[ln\Tl (rbpeb(G, m,T;, B, R))

121 ¢ |IR|sm

1 B IRl <m rn, 1T 1T
7 Q(m) nodes



Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R € [N]\T
rbpeb(G,m,T,B,R) = my
] We lower bound this quantity
for three IMHF candidates

e NT. Argon2i, DRSample and .
Partition the nodes [N ]\ [;] I aATSample alning

Q(m) nodes.

> i '
rbpeb(G,m ) > 5 rbpeb

|
<m

,m,T;,B,R))

121 gtIR
> >, min (min (C;lancestorss_pus (Tl + Gy ')

(21 s.t.|R|sm
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Bandwidth Hardness of Candidate iMHFs

Theorem: [N]\ E‘ into (%) intervals Ty, T,, ..., each containing Q(m) nodes
then rbpeb(G,m) =

B,Rrgn[ll\%\Ti (gllgr}?(CrIancestorSG_RUB,(Ti)| + C,|B |))

121 s.t.|R|sm

2
Argon2iif m = O(NE_E) then for each interval T; of 0(m) nodes we have

2
g L 41y (}_gllg%(cr|anceSt0rsG—RUB/(T )|+ Cy|B |)) =0 (mln {N C,, NBCb})

s.t.|R|sm



Bandwidth Hardness of Candidate iMHFs

Theorem: [N ]\ E] into () (%) inte
then rbpeb(G,m) =

o ((m) nodes

Amortized: Q(1) blue moves
per node in interval (best

mun ( m possible)

/4 B.RE[N|\T; \B/
121 st |R|sm

2
Argon2i if m = O(NE_g) then for each interval T; of Q0(m) nodes we%a

B,Rrgn[ll\%\Ti (lgllg%(cr|Cl7’lCBSt07‘SG_RUB,(T)| + CblB D) = () (mln {N Cr:

s.t.|R|sm

\LJ
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Bandwidth Hardness of Candidate iMHFs

Theorem: [N ]\ E] into () (%) interva
then rbpeb(G,m) =

o (0(m) nodes

1
Amortized: Q(NE) red moves
min (ml per node In interval (expensive

121 s.t.|R|sm

2
Argon2i if m = O(NE_S) then for each interval T; of Q(m) nodes @ have

min (min (C,-lancestorsq_pyg, (T;)| + CbIB'I)) =0 (min @NEC},})

B,RS[N]|\T; \B/ CB
s.t.|R|sm
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Bandwidth Hardness of Candidate iMHFs

Argon2i

min (mm (Cylancestors (T)| + Cp|B’ I)) (min {N C N%C })
B,RS[N|\T; \B/ CB G—RUB/ b T b
s.t.|R|sm

We must pay this cost () ( ) tlmes for each interval T;
4
rbpeb \G, N"S =0 (min {N§Cr, NCb})



Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R € [N]|\T

rbpeb(G,m,T,B,R) > énicrll;(C,,.IancestorsG_RUB,(T)| + C,|B'|)

DRSample: For any constant p < 1 ifm = O(NP)

5 x2in - (min (C;lancestorsg_rus, (T)| + Gy |B'D)

s.t.|R|sm
ol

min {N%JrgCr, NP Cb})



Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R C [N]\T

rbpeb(G m, T B, E Amortized ( : Q(NOD
A red moves per node in interval

(expensive even if

DRSample: For any constant [

min (min (encestorsc_RUB,(Ti)I + CbIB'I))

B,RC[N|\T; \B/ CB

t.|R|<
:;Rar:iln{r;]vpcb})
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Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R S [N]\T Amortized: Q(1) blue moves
rbpeb(G,m, T, B, F per node in interval (best
possible)

DRSample: For any constant [

, nin - (min (C,lancgggorsg—rus (TD1 + C,1B'D)

S.t.IR(Sm @

= () \min {N%Jr%(]r)
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Bandwidth Hardness of Candidate iMHFs

DRSample: For any constant p < 1 ifm = O(NP)

5200 (gplgr}g(CrIancestorSG_RUB,(Ti)I + Cy|B I))

t.|R|<
o loin (¥ wec )

If m = O(NP) must pay this cost ) (%) times

rbpeb(G, NP) = Q) (min {N%_gCr, NCb})



Comparison between Argon2i and DRSample

e Argon2i is maximally bandwidth
hard if attacker’s cache size is
m = o(N?/3) ©
e Arguably a reasonable assumption
In practice

e Argon2iis not maximally
memory hard ®

e But it does beat out other entrants
in the Password Hashing
Competition ©

DRSample is both maximally
memory hard and maximally
bandwidth hard ©

e Even if attackers cache sizeism =
O(Nl—e)

aATSample is also maximally
memory hard and maximally

bandwidth hard ©
e Even if attackers cache sizeism =

0 (lo:N)




Joél
Alwen
IST Austria

Scrypt is maximally
memory-hard

Binyi Krzysztof Leonid Stefano
Chen Pietrzak Reyzin Tessaro
UCSB IST Austria Boston U. UCSB

(work done at
IST Austria)



[Percival 2009]: scrypt
e O

H: {0,1}" — {0,1}¥ random oracle

InPUt: Xo Data-Dependent Memory Access
. =>» Pebbling Attacks Don’t apply
Repeat n times: x.=H(x ,)

So=X,
Repeat n times: s;=H(s, ;®x;) for j =s;; mod n
Output: s,



scrypt in the wild

e Used in several cryptocurrencies, most notably
Litecoin (a top-4 cryptocurrency by market cap)

 |dea behind password-hashing winner Argon2d

e Attempts to standardize within IETF (RFC 7914)



Memory-Hard Functions

Goal: Find moderately hard F for which
special-purpose hardware, parallelism, and amortization do not help.

Proposal [Percival 2009]: make a function that needs a lot of memory

(memory is always general, unlike computation)

Make sure parallelism cannot help
(force evaluation to cost the same)

Complexity measure: memory x time



What's the best we can hope for?

H: {0,1} — {0,1}* random oracle

s e s

Upper bound on cc(scrypt):

The naive algorithm stores every x. value.
Time: 2n. Memory: <n. Total: <2n? (in w-bit units).
Note: any function that has an n-step sequential algorithm
has cc < n?/2 (because memory < time)

No function so far has been proven to have cc of n?

(several candidates were proposed during
password-hashing competition 2013-15; some have been broken)



Data-Independent Memory Hard Functions

OO0 8000820008000
=0 OO CROmOmOO0-0=0

Observation: any function whose memory access pattern
is independent of the input
can be represented as a fixed graph

Sequential algorithm of time n = n nodes
Term: iIMHF (Data-independent Memory Hard Function)

[Alwen-Blocki 16]: for any iMHF, cc < n? log log n/ log n

scrypt is a very simple dMHF
Q: can scrypt beat this IMHF bound?



Our Result

H: {0,1} — {0,1}* random oracle

TRy

Theorem: in the parallel RO model, cc(scrypt) = Q (n?)

The first ever construction works!



Talk Outline

‘/I\/Iemory—hard functions for password hashing

‘/Design of scrypt

‘/How to measure cost: cumulative complexity (cc)

‘/I\/Iain Result: cc(scrypt) is highest possible n?
in parallel RO model

Before proving: can we simplify scrypt?



How quickly can you play this game?

E)—>( > O>O=O—=>O>O=>O>0O—=0O-0—=0O—%)
You have x, and whatever storage you want

| give you uniform challenge ¢ from 1 to n

You return X,

If you store nothing but x,: n/2 H-queries per challenge



How quickly can you play this game?
O @ =@~ @ —>(—%)

You have x, and whatever storage you want

| give you uniform challenge ¢ from 1 to n

You return X,

If you store nothing but x,: n/2 H-queries per challenge

If you store p hash values: n/(2p) H-queries per challenge

If you store something other than hash values?



Result for the scrypt one-shot game

O OaOn =000 LO00=0n S0 0D
You have x, and whatever storage you want

| give you uniform challenge i from 1 to n

You return x

Prior result 1: if you store p labels, expected time >n/(2p)

Prior result 2 [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
same if you store “entangled” labels
(such as XOR or more general linear functions)

but not portions of labels, XORs of portions, etc.

Our result: same for arbitrary storage of pw bits!
(where w is label length = output length of H)



Claim: time >n/(2p) if storage pw
O O OO OO OSSO OO O

Basic idea of the argument (inspired by [Alwen-Serbinenko]):

if A is too fast, then
we can extract many labels from A’s storage w/o querying H

but can’t extract more than p labels b/c RO not compressible



Extracting labels from A's memory

¥ =) OO0 0O-0=00—0O—>%)
Imagine: run A on every possible challenge and record queries

c=23 c=24 c=25 c=26
X5 Xqg X5 Xq4 X51 X1, X309 X
A
1(6 )£15 1(6 )i15 )£13 X26
X7 X16 X7 X6 X14

X22 122 X7

X23 X23 £8

’123 1‘24

Xo4 X5



Extracting labels from A's memory
o> OO O OOt

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
U l l l | l |
Xe Xis X6 X1s5 X13 X526
Vo Vo |
X7 X X7 Xi6 X14
X322 122 T7
X33 X33 Xg
X3 X4
| |

Xo4 X5



Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
U l l l | l |
Xe Xis X6 X1s5 X13 X526
Vo Vo |
X7 X X7 Xi6 X14
X322 122 T7
X33 X33 Xg
X3 X4
| |

Xo4 X5



Extracting labels from A's memory

OnOny RO O OaOnOs o M Op O S Oud

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
)is )i14 )i 314 121 )i12 )i )is
X6 X5 X6 Xis X22 Xq3 X31 Xg
1(6 )£15 1(6 )i15 )£13 X26
X7 X16 X7 X6 X14
Lemmma 1: all blue labels can be extracted from memory of A

without querying H

Proof: Make a predictor for H that runs A in parallel
on all challenges, one step at a time,
predicting blue values by querying H only when needed




Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < |memory|/w)



Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < pw/w)



Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < p)



memory pw = time > n/(2p)

OnOny RO O OaOnOs o M Op O S Oud

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < p)

Lemma 2: Time to answer c > distance from nearest blue
Proof: induction



memory pw = time > n/(2p)

OnOny RO O OaOnOs o M Op O S Oud

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < p)

Lemma 2: Time to answer ¢ > distance from nearest blue
Conclusion: storage pw = time > n/(2p)




Talk Outline

‘/Memory—hard functions for password hashing

‘/Design of scrypt

‘/How to measure cost: cumulative complexity (cc)

‘/ scrypt: very simple dMHF (and iMHF won’t work)

Main Result: cc(scrypt) is highest possible n?
in parallel RO model

Proof in two parts

v/1. memory vs. time to answer one random challenge
2. cumulative complexity of n challenges



How to go from this...

H: {0,1} — {0,1}* random oracle

(=0 =g (0 0 s = = =)

nw 1
o

Single random challenge: memory > _
2 time




. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

T =

Single random challenge: memory >

2 time

Know only that
/f\ }/orange is inversely
I .
proportional to red
\ /\ . \ —T

2mory

Prior work [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
“potential” argument to get & (n?/ log?n)

|4 < \

t. to compute s; | time




... to cc(n challenges)

H: {0,1} — {0,1}* random oracle
o

Single random chall >, 2
ingle random challenge: memory > .
5 & Y 2 ° time
Know erhxthat

Idea: apply bound k e
orange is inversely

steps before s, is .
proportional to red

|

known: purple I

is inversely proportic%l\ |
| |

to re8I+k : |

/ L]
| 1, to compute s, [ t to computes; | time




.. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

@ =

Single random challenge: memory >

time

Know erhxthat

orange is inversely
proportional to red

memory

VA

| t,, to compute s, [ t to computes; | time




.. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

@ =

Single random challenge: memory >

time

Know erhxthat

orange is inversely
proportional to red

memory

\

| t,, to compute s, [ t to computes; | time




. to cc(n challenges)

Adding up memory used during previous challenge:

nw (1 1
—— + —— [N ] > —
-\t " + e+ t +t ) _2 (In(t+t ;) —Int)

Single random chall >, 2
ingle random challenge: memory > .
& & Y 2 ° time
Know erhxthat

orange is inversely
proportional to red

memory

{VERYVA

| T, tocompute s, ;| t to computes; | time




.. to cc(n challenges)

Adding up memory used during previous challenge:

nw (1 1
—— + —— [N ] > —
-\t " + e+ t +t ) _2 (In(t+t ;) —Int)

Adding up over all challenges i from 1 to n:
2nw (In (t;+t,) —Int, +In (t,+t;) —Int;+ .. +In (t, 1+ ) —Int)
> Ynw (n In 2) > Q(n’w)

memory

Y -

| | | time




Talk Outline

‘/Memory—hard functions for password hashing

‘/Design of scrypt

‘/How to measure cost: cumulative complexity (cc)

v~ scrypt: very simple dMHF (and iMHF won’t work)

Main Result: cc(scrypt) is highest possible n?
in parallel RO model

Proof in two parts

v/1. memory vs. time to answer one random challenge
V2. cumulative complexity of n challenges



Thanks for Listening

g %
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