Homework 2 Due Thursday @ 11:59PM on Gradescope
Project Proposals due Tonight

Advanced Cryptography CS 655

Week 7:

- Constructing Depth-Robust Graphs
- Sustained Space Complexity
- Bandwidth Hard-Functions

Course Project Proposal

- Due Tonight by e-mail (jblocki@purdue.edu)
- Project Proposal: 2 Pages
- Briefly the problem you plan to work on
- Briefly summarize prior work on the problem and how your project is different
- Identify several related papers that you plan to read as part of the project
- Briefly describe your plan to attack the problem

A Few Project Ideas

- Pick a cryptographic scheme and try to find a tighter concrete security proof under idealized assumptions
- Example: Tighter security analysis for Password Authenticated Key Exchange (PAKE) protocols such as CPACE in the generic group+random oracle model?
- Pick a cryptographic scheme/protocol and analyze the security with respect pre-processing attacks or provide a memory-tight reduction
- Example: Memory-Tight Reduction for RSA-FDH under the One-More-RSA-Inversion problem?
- Example: Security of PAKE protocols against pre-processing attacks?
- Example: Security of AES-GCM vs pre-processing attacks?
- Pebbling Reduction for Salted iMHFs vs. Preprocessing Attackers
- Pebbling Reduction for Argon2 Round Function (in ideal permutation model)

A Few Project Ideas

- Implement a Cryptographic Protocol/Attack
- Example: Implement Argon2 with different instantiations of round function
- Example: Implement partitioning oracle attack on AES-GCM.
- Many other possibilities! Make sure your proposal is realistic.

TRY

- It is ok to try something and fail i.e., a final project report documenting your unsuccessful attempts to solve a problem is acceptable as long as the attempts are clearly described

Recap: iMHFs

- Graph Pebbling Reduction [AS15]: Complexity of $\operatorname{iMHF} f_{G, H}$ is fully captured by pebbling cost of DAG G.
- Informal Theorem [AS15]: Any algorithm A evaluating $f_{G, H}$ in the parallel random oracle model has $C M C(A) \approx \lambda \times C C(G)$ where $H(x) \in\{0,1\}^{\lambda}$
- Proof Sketch: Use execution trace from A to extract a legal pebbling of G such that for all rounds i we have $\left|P_{i}\right| \approx\left|\sigma_{i}\right| / \lambda$

Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$
s.t. $|S| \leq e$ and $\operatorname{depth}(\mathrm{G}-\mathrm{S}) \leq \mathrm{d}$.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$
s.t. $|S| \leq e$ and depth(G-S) \leq d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Recap: Depth-Robustness is Sufficient! [ABP17]

Key Theorem: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be (e, d)-depth robust then $\mathrm{CC}(\mathrm{G}) \geq e d$.
Implications: There exists a constant indegree graph G with

$$
\operatorname{CC}(\mathrm{G}) \geq \Omega\left(\frac{n^{2}}{\log n}\right)
$$

[AB16]: We cannot do better (in an asymptotic sense)

$$
\operatorname{CC}(G)=0\left(\frac{n^{2} \log \log n}{\log n}\right)
$$

DRSample

Indegree: $\delta=2$
Key Modification to Argon2i: New distribution for r(i)

Buckets: $B_{1}, \ldots, B_{\log i}$

$$
B_{j}=\left[i-2^{j}, i-2^{j-1}-1\right]
$$

DR-Sample: Meta-Graph

Each meta-node u corresponds to m nodes u_{1}, \ldots, u_{m}.
Let $F_{u}=\left\{u_{1}, \ldots, u_{m / 3}\right\}$ and $L_{u}=\left\{u_{m-\frac{m}{3}+1}, \ldots, u_{m}\right\}$ denote the first (resp. last third) of these nodes
G_{m} has edge (u, v) if and only if G has some edge (x, y) with $\mathrm{x} \in L_{u}$ and $\mathrm{y} \in L_{u}$

Recap: DRSample Analysis

- Let Ge the DRSample graph. Define Meta-Graph G_{m} with $\mathrm{m}=\Omega(\log N)$ and $\mathrm{N}^{\prime}=$ $\Omega\left(\frac{N}{m}\right)$

Last Class: We assumed that G_{m} was a δ-local expander and proved that any δ-local expander with $\mathrm{N}^{\prime}=\Omega\left(\frac{N}{m}\right)$ nodes is $\left(\Omega\left(N^{\prime}\right), \Omega\left(N^{\prime}\right)\right)$ depth-robust

- Meta-Graph G_{m} is $\left(\Omega\left(\frac{N}{m}\right), \Omega\left(\frac{N}{m}\right)\right)$-depth-robust with $\mathrm{m}=\Omega(\log N)$
\rightarrow DRSample G is $\left(\Omega\left(\frac{N}{m}\right), \Omega(N)\right)$-depth-robust
TODO: Prove that G_{m} is a δ-local expander * (*almost)

δ-bipartite expander

B

$$
|A|=|B|=n
$$

δ-bipartite expander

B

$$
|A|=|B|=n
$$

$$
\begin{aligned}
& \geq \delta n \\
& x \subseteq A
\end{aligned}
$$

δ-bipartite expander

$Y \subseteq B$
 $<\delta n$
 B
 $Y \subseteq B$
 (unreachable from X)
 $\mathrm{X} \subseteq A$

(δ)-local expander around v

We have (δ) - local exapnsion if for every r

Contains Bipartite Expander Graph

Not δ-bipartite expander?
$Y \subseteq B$

$$
X \subseteq A
$$

$$
|A|=|B|=r
$$

Let A, B be a set of 2 r consecutive nodes in meta-graph.

If not δ-bipartite then there exists $Y \subseteq B$ and $X \subseteq A$ with size $|Y|=\delta r$ and $|X|=\delta r$ such that none of the edges from any meta-node in Y hit any node in X

Not δ-bipartite expander?

Fix some subsets $|\mathrm{Y}|=\delta r$ and
$|\mathrm{X}|=\delta r$
Each individual edge from Y hits X with probability

$$
\approx \frac{\delta}{3 \log n}
$$

There are $\frac{m}{3} \times \delta r$ edges
(all picked independently)

Not δ-bipartite expander?

Each individual edge from Y hits X with probability $\approx \frac{\delta}{3 \log n}$

There are $\frac{m}{3} \times \delta r$ edges (independent)

$$
\begin{aligned}
& \operatorname{Pr}[\text { Y Misses } X] \leq\left(1-\frac{\delta}{3 \log n}\right)^{\frac{m}{3} \times \delta r} \\
& \quad \leq e^{-r \delta^{2}\left(\frac{m}{9 \log N}\right)}
\end{aligned}
$$

Not δ-bipartite expander?

Not δ-bipartite expander?
Union Bound:

$$
\begin{aligned}
& \operatorname{Pr}[\exists X, \text { Y s.t.Y Misses } X] \\
& \leq \exp (z) \\
& \leq \exp (-2 r)
\end{aligned}
$$

Pick $m \geq$
$\left(18 \delta^{-1} \ln \left(\frac{1}{\delta}\right)+18 \delta^{-2}\left(1+\ln \left(\frac{1}{1-\delta}\right)\right)\right) \log N$

$$
\mathrm{X} \subseteq A_{\mathrm{z}=-r \delta^{2}\left(\frac{m}{9 \log N}\right)+2 \delta r \ln \left(\frac{1}{\delta}\right)+2 r \ln \left(\frac{1}{1-\delta}\right)}
$$

Second Union Bound?

- Fixing any $A=[u, \ldots, u+r-1]$ and $B=[u+r, \ldots, u+2 r-1]$ we say that A, B are connected with bipartite expander with probability at least $1-$ $\exp (-2 r)$
- Ideal: Want to show that G_{m} is a δ-local expander i.e.., this holds for all u and all r
- Union bound over all meta-nodes u and all r ?
- We can union bound over all $r \geq \log N$ and all u since

$$
\sum_{u} \sum_{r \geq \log N} \exp (-2 r) \leq N \sum_{r \geq \log N} \exp (-2 r) \ll \frac{2}{N}
$$

Second Union Bound?

- Fix: Let $\boldsymbol{B}_{\boldsymbol{u}}$ be the event that for some $r<\log N$ we do not have an expander between $A=[u, \ldots, u+r-1]$ and $B=[u+r, \ldots, u+2 r-1]$
- Key Idea: Use concentration bounds to argue that $\sum_{u} \boldsymbol{B}_{\boldsymbol{u}} \leq \varepsilon N$ with high probability (for some suitably small ε)
\rightarrow For at least $\mathrm{N}-\varepsilon N$ meta-nodes u we do have local expansion around u.
\rightarrow This is sufficient to argue that meta-graph is depth-robust.

Second Union Bound?

- Fix: Let $\boldsymbol{B}_{\boldsymbol{u}}$ be the event that for some $r<\log N$ we do not have an expander between $A=[u, \ldots, u+r-1]$ and $B=[u+r, \ldots, u+2 r-1]$
- Key Idea: Use concentration bounds to argue that $\sum_{u} \boldsymbol{B}_{\boldsymbol{u}} \leq \varepsilon N$ with high probability (for some suitably small ε)

Problem? $\boldsymbol{B}_{\boldsymbol{u}}$ and $\boldsymbol{B}_{\boldsymbol{u}+\boldsymbol{1}}$ are not independent!
But, $\boldsymbol{B}_{\boldsymbol{u}}$ and $\boldsymbol{B}_{\boldsymbol{v}}$ are independent if $\boldsymbol{u}-\boldsymbol{v} \geq \boldsymbol{\operatorname { l o g }} \boldsymbol{N}$
Solution: Partition random variables into $\boldsymbol{\operatorname { l o g }} \boldsymbol{N}$ buckets such that random variables in each bucket are independent. Apply concentration bounds to each bucket.

Sustained Space Complexity

$\mathrm{I}|\mathbf{S}| \mathbf{T}$ austria

Joël Alwen (IST Austria/Wickr)
Jeremiah Blocki (Purdue)
Krzysztof Pietrzak (IST Austria)

Institute of Science and Technology

Motivation: Password Storage

Offline Attacks: A Common Problem

- Password breaches at major companies have affected millions billions of user accounts.

Offline Attacks: A Common Problem

- Password breaches at major companies have affected millions billions TECH

Yahoo Triples Estimate of Breached Accounts to 3 Billion

Company disclosed late last year that 2013 hack exposed private information of over 1 billion users
By Robert McMillan and Ryan Knutson
Updated Oct. 3, 2017 9:23 p.m. ET
A massive data breach at Yahoo in 2013 was far more extensive than previously disclosed, affecting all of its 3 billion user accounts, new parent company Verizon Communications
Inc. said on Tuesday.
The figure, which Verizon said was based on new information, is three times the 1 billion accounts Yahoo said were affected when it first disclosed the breach in December 2016.
The new disclosure, four months after Verizon completed its acquisition of Yahoo, shows

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

password

 hashing
(2013-2015)
https://password-hashing.net/

password

We recommend that you use Argon2...
(2013-2015)
https://password-hashing.net/

password

(2013-2015)

We recommend that you use Argon2...

There are two main versions of Argon2, Argon2i and Argon2d. Argon2i is the safest against sidechannel attacks

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

- Goal: force attacker to lock up large amounts of memory for duration of computation
\rightarrow Expensive even on customized hardware

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

sCrypt

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

sCrypt

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

VS.

sCrypt

- Data Independent Memory Hard Function (iMHF)
- Memory access pattern should not depend on input

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

VS.

sCrypt

\|ll\|l

- Data Independent Memory Hard Function (iMHF)
- Memory access pattern should not depend on input

Data-Independent Memory Hard Function (iMHF)

iMHF $\mathrm{f}_{\mathrm{G}, \mathrm{H}}$ defined by

- $\mathrm{H}:\{0,1\}^{2 k} \rightarrow\{0,1\}^{k} \quad$ (Random Oracle)
- DAG G
(encodes data-dependencies)
- Maximum indegree: $\delta=0(1)$

Input: pwd, salt

$$
L_{1}=H(p w d \text {, salt }) \quad, \quad \text {, salt }
$$

Evaluating an iMHF (pebbling)

Pebbling Rules: $\vec{P}=\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{t}} \subset V$ s.t.

- $\mathrm{P}_{\mathrm{i}+1} \subset \mathrm{P}_{\mathrm{i}} \cup\left\{x \in V \mid\right.$ parents $\left.(x) \subset \mathrm{P}_{\mathrm{i}+1}\right\} \quad$ (need dependent values)
- $n \in P_{t}$

Evaluating an iMHF (pebbling)

Evaluating an iMHF (pebbling)

$P_{1}=\{1\} \quad$ (data value L_{1} stored in memory)

Pebbling Example

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\}
\end{aligned}
$$

(data values L_{1} and L_{2} stored in memory)

Pebbling Example

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\}
\end{aligned}
$$

Pebbling Example

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\}
\end{aligned}
$$

Pebbling Example

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\} \\
& P_{5}=\{5\}
\end{aligned}
$$

Measuring Cost: Attempt 1

- Space \times Time (ST)-Complexity

$$
\operatorname{ST}(G)=\min _{\vec{P}}\left(t_{\vec{P}} \times \max _{i \leq t_{\vec{P}}}\left|P_{i}\right|\right)
$$

- Rich Theory
- Space-time tradeoffs
- But not appropriate for password hashing

Amortization and Parallelism

- Problem: for parallel computation ST-complexity can scale badly in the number of evaluations of a function.

f once f three times
[AS15] \exists function f_{n} (consisting of n RO calls) such that: $S T\left(f^{\times \sqrt{n}}\right)=O(S T(f))$

Measuring Pebbling Costs [AS15]

Approximates

Memory Used at Step i
Amortized Area x Time
Complexity of iMHF
Cumulative Memory Cost

iterations

Measuring Pebbling Costs [AS15]

$$
\operatorname{CC}(G)=\min _{\vec{P}} \sum_{i=1}^{t_{\vec{p}}}\left|P_{i}\right|
$$

Memory Used at Step i
[AS15] Costs scale linearly with \#password guesses $\operatorname{CC}(G, \ldots, G)=m \times \operatorname{CC}(G)$
m times

Pebbling Example: Cumulative Cost

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\} \\
& P_{5}=\{5\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{CC}(G) & \leq \sum_{i=1}^{5}\left|P_{i}\right| \\
& =1+2+1+2+1 \\
& =7
\end{aligned}
$$

Lessons from SCRYPT

SCRYPT [Per09]

- CON: Data-Dependent \rightarrow Side-Channel Concerns
- PRO: Proven to have high CC [ACPRT17]
- CC(SCRYPT $)=\Omega\left(n^{2}\right)$
- Contrast: any iMHF has CC at most $O\left(\frac{n^{2} \log \log n}{\log n}\right)$
- Maximally Memory Hard \rightarrow Egalitarian?

What Happened?

- CC(SCRYPT) $=\Omega\left(n^{2}\right)$ the function can be computed with low memory
- Each strategy below is easily feasible
- Evaluate with $O(n)$ memory in $O(n)$ time
- Evaluate with $O(\sqrt{n})$ memory in $O(n \sqrt{n})$ time

- Evaluate with $O(1)$ memory in $O\left(n^{2}\right)$ time
- SCRYPT ASIC miners opt for low memory + high computation options
- Goal: Ensure that low memory options are infeasible

Sustained Space

- Using memory is more costly than doing computation (at least for ASICs).
- Idea: Only charge for computational steps where a lot of memory is being used.
- Definition: s-Sustained Space
"Time spent above memory threshold s"

Intuition: trade-offs are free.

Wanted: A Moderately Hard Function

- Desiderata:
- Cost for honest \& adversary roughly same:

Honest Computational Model

- Sequential Computation
- Single Evaluation
- Cost measured in ST Complexity

Adversarial Model

- Parallel Computation
- Amortization across many evaluations
- Cost measured in s-SS (for some large s)

Main Theorem

- For any $n \in \mathbb{N}$ we give a function f_{n} and prove that in the parallel Random Oracle Model (PROM):

$\underline{\text { Honest }}$
- $\operatorname{Sequential~Algorithm~} \mathcal{E}$
- $\operatorname{Time}\left(\mathcal{E}\left(f_{n}\right)\right)=\mathrm{n}$
- $\operatorname{ST}\left(\mathcal{E}\left(f_{n}\right)\right)=\mathrm{n}^{2}$

Adversarial

- \forall parallel algs. \mathcal{A}
- $s-S S\left(\mathcal{A}\left(f_{n}\right)\right)=\Omega(n)$ per eval.

$$
\text { for } s=\Omega(n / \log (n))
$$

- Bonus: f_{n} is an iMHF.
$\Rightarrow \mathcal{E}$ runs in constant time and has data-independent memory access pattern

The Parallel Black Pebbling Game

Parallel Black Pebbling Game: Same as Black Pebbling, except can touch many pebbles per iteration.

Goal: Place a pebble on the sink.
Rule 1: A node can be pebbled only if all parents contain a pebble.
Rule 2: A pebble can always be removed.
s-SS analogue: Count number of steps when at least s pebbles on graph.
s-SS Complexity
$1-S S=3$
$2-S S=1$

Want G with...

1. $\quad \operatorname{Size}(G)=n$
2. In-degree $(G)=2$
3. $\frac{n}{\log (n)}-\operatorname{SS}(G)=\Omega(n)$

Technical Ingredient \#1 [PTC77]

- [PTC77] Built a constant indegree DAG G with n nodes and proves that any sequential pebbling has at least one step in which there are at least $\Omega(n / \log n)$ pebbles on the graph.
- [Hopcroft77] Any constant indegree graph DAG G can be pebbled with space at most $O(n / \log n)$

Technical Ingredient \#1 [PTC77]

- [PTC77] Built a constant indegree DAG G space complexity $\Omega(n / \log n)$
- Recursive Construction
- PTC $_{2 n}$ contains 2 internal copies of PTC $_{n}$
- Stronger Lemma used for Induction!
- For any sequential pebbling P_{1}, \ldots, P_{t} We can find an interval $[i, j] \subseteq[t]$ such that both

1. $\left|P_{k}\right| \geq c_{1} m$ for each $\mathrm{k} \in[i, j]$
2. At least $c_{2} m$ source nodes are (re)pebbled during the interval

Technical Ingredient \#1 [PTC77]

- [PTC77] Built a constant indegree DAG G space complexity $\Omega(n / \log n)$
- Recursive Construction
- PTC $_{2 n}$ contains 2 internal copies of PTC $_{n}$
- Stronger Lemma used for Induction!
- For any parallel (sequential) pebbling P_{t}, \ldots, P_{t}
- Can find an interval $[i, j] \subseteq[t]$ such that

1. $\left|P_{k}\right| \geq c_{1} n / \log n$ for each $\mathrm{k} \in[i, j]$ (lots of pebbles on the graph)
2. At least $c_{2} n / \log n$ source nodes are (re)pebbled during the interval

- Implication ($\mathrm{s}=c_{1} n / \log n$): $\mathrm{s}-\mathrm{SS}(\mathrm{P}) \geq j+1-i$
- Sequential Pebbling: $j+1-i \geq c_{2} n / \log n$ (by (2) above)
- Parallel Pebbling: Could (re)pebble all $c_{2} n / \log n$ in one step!

Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust for all $S \subseteq V$
s.t. $|S| \leq e$ we have depth $(G-S)>$ d.

Otherwise, we say that G is (e,d)-reducible.

Example: (e=2,d=2)-reducible

Block Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust for all $S \subseteq V$ s.t. $|S| \leq e$ we have depth $(G-S)>$ d.

Otherwise, we say that G is (e,d)-reducible.

Example: (e=2,d=2)-reducible

Technical Ingredient \#2

Definition: A DAG G_{n}^{ε} is ε-extremely depth robust if it is (e,d)-depthrobust for all $e+d \leq(1-\varepsilon) n$.

- [EGS75] n node G with $\log (\mathrm{n})$ in-degree and $(\Omega(\mathrm{n}), \Omega(\mathrm{n}))$-depthrobust
- Problem: Constants too small e.g., $e=10^{-4} n$ and $d=10^{-2} n$
- Problem: in-degree too high.
- [MMV13] ε-extremely depth robust DAG G_{n}^{ε} with $\log ^{2}(\mathrm{n})$ indegree and (e,d)-DR for any e+d < $\mathrm{n}(1-\varepsilon)$.
- Problem: in-degree too high.

Technical Ingredient \#2

Definition: A DAG G_{n}^{ε} is ε-extremely depth robust if it is (e,d)-depthrobust for all $e+d \leq(1-\varepsilon) n$.

- [MMV13] ε-extremely depth robust DAG G_{n}^{ε} with indegree $O\left(\log ^{2} n\right.$ polylog $\left.(\log n)\right)$.
- Problem: in-degree too high.
- [NEW] ε-extremely depth robust DAG D_{n}^{ε} with indegree $\mathrm{O}(\log (\mathrm{n}))$
- Construction: similar to [EGS75]
- Many technical details to work out (see paper)

Technical Ingredient \#2

Definition: A DAG G_{n}^{ε} is ε-extremely depth robust if it is (e,d)-depthrobust for all $e+d \leq(1-\varepsilon) n$.

- [NEW] ε-extremely depth robust DAG D_{n}^{ε} with indegree $\mathrm{O}(\log (\mathrm{n}))$
- Construction: similar to [EGS75]
- Many technical details to work out (see paper)

Useful Observation: Any subgraph of $D_{n}^{\varepsilon}[S]$ of size $|S|>\varepsilon n$ must contain a path of length $|S|-\varepsilon n$
Proof: Otherwise DAG D_{n}^{ε} is not ($e, \mathrm{~d}$)-depth robust for $\mathrm{d}=|S|-\varepsilon n$ and $e=$ $|V \backslash S|=n-|S|$. Contradiction, D_{n}^{ε} is ε-extremely depth robust and

$$
e+d=n-\varepsilon n \leq(1-\varepsilon) n .
$$

Technical Ingredient \#2

Definition: A DAG G_{n}^{ε} is ε-extremely depth robust if it is (e,d)-depthrobust for all $e+d \leq(1-\varepsilon) n$.
Lemma: If legal (parallel) pebbling $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{t}}$ of D_{n}^{ε} has at least one pebbling round j with space $\mathrm{s}=\left|P_{j}\right|>2 \varepsilon n$ then there are at least $\mathrm{t}=\frac{\left|P_{i}\right|}{2}-\varepsilon n$ distinct time rounds k with space $\left|P_{k}\right| \geq \frac{\left|P_{j}\right|}{2}$

Proof: Let $\mathrm{i}<\mathrm{j}$ be last round before round j such that $\left|P_{i}\right|<\frac{\left|P_{i}\right|}{2}$ and let $S=$ $P_{j} \backslash P_{i}$. Any node in S is (re)pebbled during the interval $[\mathrm{i}, \mathrm{j}]$.
\rightarrow (observation) the subgraph $J_{n}^{\varepsilon}[S]$ contains a path of length $\mathrm{t} \geq \frac{\left|P_{i}\right|}{2}-\varepsilon n$
\rightarrow at least t pebbling rounds to reach configuration P_{j} from P_{i}

PTC Overlay (Attempt 1)

Lemma [PTC77] In any pebbling of PTC n we can find an interval $[i, j] \subseteq[t]$ such that

1. $\left|P_{k}\right| \geq c_{1} n / \log n$ for each $\mathrm{k} \in[i, j]$ (lots of pebbles on the graph)
2. At least $c_{2} n / \log n$ source nodes are (re)pebbled during the interval
[NEW] Now requires $\Omega(m)$ rounds since D_{n}^{ε} is ε extremely depth robust

PTC Overlay (Attempt 1)

Lemma [PTC77] In any pebbling of PTC $_{n}$ we can find an interval $[i, j] \subseteq[t]$ such that

1. $\left|P_{k}\right| \geq c_{1} n / \log n$ for each $\mathrm{k} \in[i, j]$ (lots of pebbles on the graph)
2. At least $c_{2} n / \log n$ source nodes are (re)pebbled during the interval
[NEW] Overlay requires $\Omega(m)$ rounds since D_{m}^{ε} is ε-extremely depth robust

Problems:

- Requires $s=\Omega(n / \log n)$ pebbles for $t=\Omega(n / \log n)$ rounds
- I promised $s=\Omega(n / \log n)$ pebbles for $t=\Omega(n)$ rounds)
- Indegree still too high i.e., indeg $\left(D_{m}^{\varepsilon}\right)=O(\log n)$
- I promised constant indegree O(1)

Technical Ingredient \#3

- Indegree Reduction [ABP17] deals with both problems simultaneously!

Technical Ingredient \#3

- Indegree Reduction [ABP17] deals with both problems simultaneously!
$\operatorname{indeg}\left(D_{m}^{\varepsilon}\right) \in \Theta(\log n)$

Lemma [ABP17]: If D_{m}^{ε} is (e, d)-depth robust then J_{m}^{ε} is $(e, d \delta)$-depth robust. Furthermore, indeg $\left(J_{\mathrm{m}}^{\varepsilon}\right)=2$ and $J_{\mathrm{m}}^{\varepsilon}$ has $2 d m=O(n)$ nodes.

The Final Construction

Theorem: Any (parallel) pebbling requires $\mathrm{s}=\Omega(n / \log n)$ pebbles for $t=\Omega(n)$ rounds

Technical Details in paper

Consequences of new Depth-Robust Graphs

- Logic: "Parallel Black-White Pebbling"
- Application: CNF formulas with very memory costly refutation resolution proofs.
- MHFS: Applications: Optimal CC for any graph of size n even though only $\mathrm{O}(\log (\mathrm{n}))$ in-degree
- $\operatorname{CC}\left(D_{m}^{\varepsilon}\right) \geq \frac{(1-\eta) n^{2}}{2}$
- Exact Constants!
- Complete DAG: $C C\left(K_{n}\right) \leq \frac{n^{2}}{2}$ (prior result is almost optimal!)
- Coding Theory: better locally detectable error detection codes [BGGZ19]
- Improved Proof-of-Sequential work (temporarily. See "Simple Proofs of Sequential Work" for construction without depth-robust graphs).

A Few Open Questions

- Practical Construction of iMHF with high sustained space complexity?
- Analyze/improve constant factors in bounds
- Computer Aided Analysis?
- Stronger Results for dMHFs? Hybrid Modes like Argon2id?
- Find constant indegree DAG with parallel space-time complexity $\mathrm{ST}^{\| I}(\mathrm{G})=\Omega\left(n^{2}\right)$ or show that no such DAG exists
- Note: [AB16] pebbling shows that $C C(G)=O\left(\frac{n^{2} \log \log n}{\log n}\right)$, but the pebbling attack P still has $\mathrm{ST}^{\mathrm{I}}(P)=\Omega\left(n^{2}\right)$

A Few Open Questions

- Practical Construction of iMHF with high sustained space complexity?
- See upcoming crypto 2019 paper
- Data-Independent Memory Hard Functions: New Attacks and Stronger Constructions (with Ben Harsha and Siteng Kang and Seunghoon Lee and Lu Xing and Samson Zhou).

Theorem: Any pebbling of (practical) DAG G either has

1. Cumulative Cost $\omega\left(n^{2}\right)$, or
2. At least $\mathrm{s}=\Omega(n / \log n)$ pebbles for $\mathrm{t}=\Omega(n)$ rounds

Announcements \& Reminders

- Homework 2 Due Tonight (2/23/2023)
- Midterm Next Week
- Informal Poll: Take Home vs. In-Class
- Course Presentation (Signup Sheet will be Announced Soon)

Bandwidth Hard Functions: Reductions and Lower Bounds

Jeremiah Blocki (Purdue)
Ling Ren (MIT)
Samson Zhou (Purdue)

Massachusetts
Institute of
Technology

Offline Attacks

Offline Attacks: A Common Problem

- Password breaches at major companies have affected millions billions of user accounts.

LastPass 중․․ sony ebay Dropbox

Key Stretching

Hash Function	Cost: C
H	()
H^{τ}	© ©

Hash Iteration

BCRYPT PBKDF2

Memory Hard Functions sCrypt

What is the ASIC Advantage?

Advertised Capacity: $>200,000 x$ faster than 4.73 Th/s

$$
\begin{aligned}
& \text { \$\$ per eval(): } \frac{\text { capital }}{\# \text { of lifetime eval() }}
\end{aligned}
$$

What is the ASIC Advantage?

\$\$ per eval(): amortized capital + electricity

Reducing ASIC Advantage

Memory-hard functions [Percival'09 (scrypt)]:
> "A natural way to reduce the advantage provided by an attacker's ability to construct highly parallel circuits is
> to increase the size of the circuit."

Size of the circuit:

- dominated by memory
- Reasonable approximation of amortized capital costs

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

- Goal: force attacker to lock up large amounts of memory for duration of computation
\rightarrow Expensive even on customized hardware

Lot's of Work on Memory Hard Functions

- [Percival'09 (scrypt)]
- Password Hashing Competition
- Argon2 (winner), Catena, Lyra2, yescrypt...
- Data-Independent (iMHF) vs Data-Dependent (dMHF)
- iMHF: harder to construct, but resistant to side-channel attacks like cache-timing
- [Boneh et al.' 16 (Balloon Hash)]
- [Alwen \& Serbinenko' 15]
- Definitional issue with ST-complexity (amortization of costs)
- Cumulative Memory Complexity (stronger requirement to address amortization)
- [Alwen \& Blocki' 16, 17]
- Argon2i, Balloon Hash and other iMHFs have low cumulative memory complexity

Lot's of Work on Memory Hard Functions

- [Alwen \& Blocki' 16, 17]
- Argon2i, Balloon Hash and other data-independent memory hard functions have low cumulative memory complexity (cmc)
- [ABP17]
- Theoretical construction of iMHFs with asymptotically optimal cumulative memory complexity
- [ABH17]
- First practical construction of iMHFs with asymptotically optimal cumulative memory complexity
- [ABP18] Sustained Space Complexity

Reducing ASIC Advantage

(memory-hard) (bandwidth-hard)
\$\$ per eval(): amortized capital + electricity

How to Define Bandwidth Hardness?

Energy Cost

- Graph labeling, compute $\mathrm{H}:\{0,1\}^{2 w} \rightarrow\{0,1\}^{w}$ in a DAG
- Give the adversary a cache
- Energy Cost

$$
\operatorname{ecost}\left(f_{G, H}, m w\right)=\mathrm{C}_{\mathrm{b}} \times \text { (\#bits transfered to/from cache) }
$$

Evaluating an iMHF (red-blue pebbling)

Pebbling: $\vec{P}=\left(\mathrm{B}_{1}, \mathrm{R}_{1}\right) \ldots,\left(\mathrm{B}_{\mathrm{t}}, \mathrm{R}_{\mathrm{t}}\right)$ where

- Set of labels stored in memory at round i : B_{i}
- Set of labels stored in cache at round $\mathrm{i}: \mathrm{R}_{\mathrm{i}}\left(\right.$ Cache-Size: $\left.\left|\mathrm{R}_{\mathrm{i}}\right| \leq m\right)$

Goal: place red pebble on last node (N) in in G

Evaluating an iMHF (red-blue pebbling)

Pebbling: $\vec{P}=\left(B_{0}=\emptyset, R_{0}=\varnothing\right),\left(B_{1}, R_{1}\right), \ldots,\left(B_{t}, R_{t}\right)$

- B_{i} set of labels stored in memory at time i
- R_{i} set of labels stored in cache at time i. (Cache-Size: $\left|R_{i}\right| \leq m$)

Legal Pebbling Moves between Rounds:

- [Blue Move] Change the color of a pebble (cache-miss: store/load value from memory)
- [Red Move] Place new red pebble on node v if parents $(v) \subset R_{i}$
- [Discard Pebble] May discard pebble(s) at any time.

Red-Blue Pebbling Cost [RD17]

 $\operatorname{rbpeb}(P)=\mathrm{C}_{\mathrm{b}} \times(\#$ Blue Moves in P$)+\mathrm{C}_{\mathrm{r}} \times(\#$ Red Moves in $P)$$$
\operatorname{rbpeb}(G, m)=\min _{P \in \mathcal{R} \mathcal{B}(G, m)} \operatorname{rbpeb}(P)
$$

Set of all legal red-blue pebblings of DAG G with cache-size m .

Red-Blue Pebbling Cost Inequity [RD17]

 Honest Party (CPU):$$
\operatorname{rbpeb}(P)=\mathrm{C}_{\mathrm{b}} \times(\# \text { Blue Moves in } \mathrm{P})+\mathrm{C}_{\mathrm{r}} \times(\# \text { Red Moves in } P)
$$

Attacker (ASIC): $\operatorname{rbpeb}^{\prime}\left(P^{\prime}\right)=\mathrm{C}_{\mathrm{b}}^{\prime} \times\left(\#\right.$ Blue Moves in $\left.\mathrm{P}^{\prime}\right)+\mathrm{C}_{\mathrm{r}}^{\prime} \times\left(\#\right.$ Red Moves in $\left.P^{\prime}\right)$

Attacker gets to play with potentially advantageous constants

$$
1 \mathrm{~nJ} \approx \mathrm{C}_{\mathrm{b}}^{\prime} \approx \mathrm{C}_{\mathrm{b}} \approx \mathrm{C}_{\mathrm{r}} \approx 10^{-3} \times \mathrm{C}_{\mathrm{r}}^{\prime} \approx 1 \mathrm{pJ}\left(\mathrm{C}_{\mathrm{r}}^{\prime} \ll \mathrm{C}_{\mathrm{r}}\right)
$$

Red-Blue Pebbling Cost Inequity [RD17]

 Honest Party (CPU):$\operatorname{rbpeb}(P)=\mathrm{C}_{\mathrm{b}} \times(\#$ Blue Moves in P$)+\mathrm{C}_{\mathrm{r}} \times(\# \mathrm{~F}$
How can I make sure that the function is energy intensive for the attacker as well?

Attacker (ASIC): $\operatorname{rbpeb}^{\prime}\left(P^{\prime}\right)=\mathrm{C}_{\mathrm{b}}^{\prime} \times\left(\#\right.$ Blue Moves in $\left.\mathrm{P}^{\prime}\right)+\mathrm{C}_{\mathrm{r}}^{\prime} \times(\#$ Red

Attacker gets to play with potentially advantageous cons

$$
\mathrm{C}_{\mathrm{r}}^{\prime} \ll \mathrm{C}_{\mathrm{r}} \quad \mathrm{C}_{\mathrm{b}}^{\prime}=\Theta\left(\mathrm{C}_{\mathrm{b}}\right)
$$

A Natural Approach

[Dwork et al.'03]

- An iMHF $\mathrm{f}_{\mathrm{G}, \mathrm{H}}$ is memory-bound if:
- Computable with at most B cache misses (resp. blue moves)
- Not computable with <cB cache misses (resp. blue moves) even using a cache of size M
(definition for dMHFs is similar, but does not involve pebbling)

Problem: Hard to construct; must rule out all space-time tradeoffs
Theorem[Hopcroft'77]: If G has constant indegree then there is a black pebbling which never requires more than $\mathrm{S}=\mathrm{O}(\mathrm{N} / \log (\mathrm{N}))$ pebbles.

Corollary: If $\mathrm{M}=\mathrm{O}(\mathrm{N} / \log (\mathrm{N}))$ we need 0 blue-moves

Bandwidth-hard functions [RD17]

- Observation: computation is not free (even for attacker)!
- Allows for slight relaxation of goal
- Definition: An iMHF $f_{G, H}$ is bandwidth hard against attacker with cache-size m if

Best Red-Blue Pebbling for Honest Party

$$
\frac{\operatorname{rbpeb}^{\prime}(G, m)}{\operatorname{rbpeb}^{\prime}(G, m)}=\Theta(1)
$$

Best Red-Blue Pebbling for ASIC attacker
Sufficient Condition: $\operatorname{rbpeb}(G, m)=\Omega\left(N \times \mathrm{C}_{\mathrm{b}}\right)$

Prior State of Affairs (Bandwidth-Hardness)

Prior Results [RD17]:

- Proved that DAGs for several key iMHFs satisfy $\operatorname{rbpeb}(G, m)=\Omega\left(N \times \mathrm{C}_{\mathrm{b}}\right)$
- Catena-BRG
- Balloon Hash
- Proved that dMHF scrypt is bandwidth-hard *
*vs restricted class of attackers

Key Open Questions:

Pebbling Reduction? Is it true that any algorithm A computing $f_{G, H}$ in the random oracle model can be described as a red-blue pebbling strategy?
(Thm: [AS15] holds for black pebblings)
Does equation (1) hold for

- Argon2i? (PHC Winner)
- DRSample? (Maximal CMC [ABH17])
- aATSample? (Maximal CMC [ABH17])

Pebbling Reduction [BRZ18]

Pebbling Reduction: Any algorithm A computing $f_{G, H}$ in the random oracle model can be described as a red-blue pebbling strategy with comparable cost.

$$
\operatorname{ecost}\left(f_{G, H}, m \times w\right) \geq \Omega(\operatorname{rbpeb}(G, 8 m))
$$

Arguably a reasonable upper bound on cache-size Typical $N=2^{20}(1 \mathrm{~KB}$ Blocks $)=(1 \mathrm{~GB}$ RAM $)$ $\begin{aligned} \text { Typical } N & =2^{20}(1 \mathrm{~KB} \text { Blocks })=(1 \mathrm{~GB} \text { RAM }) \\ N & =2^{40 / 3}(1 \mathrm{~KB} \text { Blocks })=(10 \mathrm{MB} \text { cache })\end{aligned}$

- $\operatorname{Argon2i:~} \quad \operatorname{ecost}\left(G, \tilde{O}\left(N^{2 / 3}\right)\right)=\Omega\left(N \times \mathrm{C}_{\mathrm{b}}\right)$
- DRSample: $\quad \operatorname{ecost}\left(G, O\left(N^{1-\varepsilon}\right)\right)=\Omega\left(N \times \mathrm{C}_{\mathrm{b}}\right)$
- aATSample: $\operatorname{ecost}(G, \tilde{O}(N))=\Omega\left(N \times \mathrm{C}_{\mathrm{b}}\right)$

Additional Results [BRZ18]

Computational Complexity: NP-Hard to find ecost(G).
(Open Question: Approximate ecost(G)?)

Tight Relationship between parallel and sequential pebblings:

$$
\operatorname{rbpeb}(G, 2 m) \leq \operatorname{rbpeb}^{\|}(G, m)
$$

(this relationship does not hold for black pebblings!)
Generic Connection Between Memory Hardness and Bandwidth Hardness: Any MHF f(.) with high cumulative memory complexity must have reasonably high energy cost.

Additional Results [BRZ18]

Generic Connection Between Memory Hardness and Bandwidth Hardness: Any MHF f(.) with high cumulative memory complexity must have reasonably high energy cost.

$$
\operatorname{ecost}(f, m w) \geq \Omega\left(\min _{\mathrm{t}}\left(t \mathrm{C}_{\mathrm{r}}+\mathrm{C}_{\mathrm{b}}\left(\frac{\operatorname{cmc}(\mathrm{f})}{t w}-m\right)\right)\right)
$$

Theorem [ABPRT17]: cmc (scrypt) $=\Omega\left(\mathrm{N}^{2}\right)$
Corollary: ecost(scrypt) $=\Omega\left(\mathrm{N} \sqrt{\mathrm{C}_{\mathrm{r}} \times \mathrm{C}_{\mathrm{b}}}\right)$
(first unconditional lower bound on energy cost of scrypt)

Bonus: More Contributions

$$
\operatorname{ecost}(f, m w) \geq \Omega\left(\min _{\mathrm{t}}\left(t \mathrm{C}_{\mathrm{r}}+\mathrm{C}_{\mathrm{b}}\left(\frac{\operatorname{cmc}(\mathrm{f})}{t w}-m\right)\right)\right)
$$

Theorem [ABPRT17]: cmc(scrypt) $=\Omega\left(\mathrm{N}^{2}\right)$
Corollary: ecost(scrypt) $=\Omega\left(\mathrm{N} \sqrt{\mathrm{C}_{\mathrm{r}} \times \mathrm{C}_{\mathrm{b}}}\right)$
(first unconditional lower bound on energy cost of scrypt)
Comparison: [RD17] lower bound is slightly stronger $\Omega\left(N \times C_{b}\right)$ for restricted adversary class.
Recent: Unconditional proof that ecost(scrypt) $=\Omega\left(\mathrm{N} \times \mathrm{C}_{\mathrm{b}}\right)$

Pebbling Reduction

- Goal: Compute $f_{G, H}$
minimize
$\operatorname{ecost}\left(f_{G, H}, m w\right)$
- Goal: Pebble G minimize $\operatorname{rbpeb}(G, m)$

Pebbling Reduction

- Goal: Compute $f_{G, H}$
minimize
$\operatorname{ecost}\left(f_{G, H}, m w\right)$
- Goal: Pebble G minimize $\operatorname{rbpeb}(G, m)$

Pebbling Reduction

- Goal: Compute $f_{G, H}$
minimize

$\underset{\operatorname{ecost}\left(f_{G, H}, m w\right)}{\operatorname{minimize}}$
- Goal: Pebble G minimize $\operatorname{rbpeb}(G, O(m))$

Pebbling Reduction

- Prior pebbling reduction implies that total number of pebbles on graph (red or blue) is proportional to overall state size (cache+RAM)
- Challenge: Ex-post facto pebbling only gives us black pebbling $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{t}}$.
- Which pebbles should we color blue/red in each round?
- We cannot directly see what labels are transferred to/from cache (the labels might be stored in encrypted form!)
- Recall: In ex-post facto pebbling P_{i} denotes labels that appear "out of the blue" in our simulation i.e., the next time these labels appear will be as the input to a random oracle query.

Pebbling Reduction

- Prior pebbling reduction implies that total number of pebbles on graph (red or blue) is proportional to overall state size (cache+RAM)
- Challenge: Ex-post facto pebbling only gives us black pebbling P_{1}, \ldots, P_{t}.
- Recall: In ex-post facto pebbling P_{i} denotes labels that appear "out of the blue" in our simulation i.e., the next time these labels appear will be as the input to a random oracle query.
- Intuition: We expect that at least $\left|P_{i}\right|-m$ of the labels in P_{i} will have to be transferred from cache in the future at cost $\left(\left|P_{i}\right|-m\right) C_{b}$.

Pebbling Reduction

- Challenge: Ex-post facto pebbling only gives us black pebbling P_{1}, \ldots, P_{t}.
- Recall: In ex-post facto pebbling P_{i} denotes labels that appear "out of the blue" in our simulation i.e., the next time these labels appear will be as the input to a random oracle query.
- Intuition: We expect that at least $\left|P_{i}\right|-m$ of the labels in P_{i} will have to be transferred from cache in the future incurring cost $\left(\left|P_{i}\right|-m\right) C_{b}$.
- Suppose Not: If fewer than $\left(\left|P_{i}\right|-m\right) C_{b} / 2$ bits are transferred to/from cache after round i then extractor hint would include
- Cache State at round i (mw) bits
- Bits transferered between cache/memory ((|P $\mid-m) C_{b} / 2$ bits)
- Additional information to extract labels $\left(\ll\left(\left|P_{i}\right|-m\right) C_{b} / 2\right.$ bits)
- \rightarrow Contradiction! We would extract a random $\left|\mathrm{P}_{\mathrm{i}}\right|$ w-bit string with a much shorter hint

Pebbling Reduction

- Key Definition: QueryFirst $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$
- Data-labels L_{v} that appear "out of the blue" as input to RO query before output during rounds $\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right.$]
- Dependent on execution trace of attacker.
- Partition time into intervals $\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right]$, [$1+t_{2}, t_{3}$]... s.t
$4 m>\mid$ QueryFirst $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right) \mid>3 \mathrm{~m}$
- Claim 1: Attacker must transfer at least mw bits to/from cache during each interval $\left[1+\mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}+1}\right]$
- Claim 2: Can find legal red-blue pebbling in which

1. The number of blue moves during each interval $\left[1+t_{i}, t_{i+1}\right]$ is at most $4 m$
2. We never use more than 8 m red pebbles.

Pebbling Reduction

Claim 1: Attacker must transfer at least mw bits to/from cache during each interval $\left[1+\mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}+1}\right]$
Proof Sketch: Suppose not then we could use an extractor to extract 3 m labels with a hint of size

$$
(|\mathrm{h}|-2 m w) \ll 3 \mathrm{mw}
$$

The odds of this happening are negligible!

- Extractor Hint:
- State $\sigma_{1+t_{i}}$ of PROM attacker cache A at time $1+\mathrm{t}_{\mathrm{i}}$
- ignore memory $\left(\xi_{1+t_{i}}\right)$
- At most mw bits
- List of messages passed to/from cache during interval $\left[1+\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right]$
- At most mw bits
- List of labels in QueryFirst $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}+1}\right)$ to extract (plus information to recognize relevant queries)
- $O(m(\log (n+q))) \ll m w$

Extractor for Pebbling Reduction

- Given state of cache $\sigma_{1+t_{i}}$ and list of messages passed to/from memory we can simulate the attacker.
- When the attacker submits the $i^{\text {th }}$ random oracle query
- Check hint to see the $i^{\text {th }}$ query x is of interest
- Otherwise forward query to random oracle and forward the response to the attacker
- Label appears "out of the blue"
- Making the query "ruins" label L_{v} we want to extract
- $L_{v}=H\left(v, L_{v-1}, L_{r(V)}\right)$
- How to identify such a query?
- Rely on hint.
- How to continue simulation without making the RO query?
- L_{v} previously appeared out of the blue.
- Thus, extractor can simply send the response L_{v}

Bandwidth Hardness of Candidate iMHFs

- Key Pebbling Lemma: Lower bounds $\operatorname{rbpeb}(G, m, T, B, R)$ cost to pebble target nodes $T \subseteq[N]$ starting from configuration with
- Blue Pebbles on $B \subseteq[N] \backslash T$
- Red Pebbles on $R \subseteq[N] \backslash T$
- Let $B^{\prime} \subseteq B$ be blue moves that are eventually converted to red pebbles.

$$
\begin{aligned}
& \text { rbpeb }(G, m, T, B, R) \\
& \geq C_{r} \mid \text { ancestors }_{G-R \cup B I}(T) \mid
\end{aligned}
$$

- Intuition: If there is a path from v to T which avoids the set $R \cup B^{\prime}$ then node v must be pebbled at some point at cost C_{r}.
$\operatorname{rbpeb}(G, m, T, B, R) \geq C_{b}\left|B^{\prime}\right|$

Bandwidth Hardness of Candidate iMHFs

- Key Lemma (central to all proofs)
- Lower bounds rbpeb (G, m, T, B, R) cost to pebble target nodes $T \subseteq[N]$ starting from configuration with
- Blue Pebbles on $B \subseteq[N] \backslash T$
- Red Pebbles on $R \subseteq[N] \backslash T$
- Let $B^{\prime} \subseteq B$ be blue moves that are eventually converted to red pebbles.

$$
\begin{aligned}
& \text { Lemma: } \forall T, B, R \subseteq[N] \backslash \mathrm{T} \\
& \operatorname{rbpeb}(G, m, T, B, R) \geq \min _{B^{\prime} \subseteq B}\left(C_{r} \mid \text { ancestors }_{G-R \cup B^{\prime}}(T)\left|+C_{b}\right| B^{\prime} \mid\right)
\end{aligned}
$$

Bandwidth Hardness of Candidate iMHFs

Lemma: $\forall T, B, R \subseteq[N] \backslash T$

$$
\operatorname{rbpeb}(G, m, T, B, R) \geq \min _{B^{\prime} \subseteq B}\left(C_{r} \mid \text { ancestors }_{G-R \cup B^{\prime}}(T)\left|+C_{b}\right| B^{\prime} \mid\right)
$$

Partition the nodes $[N] \backslash\left[\frac{N}{2}\right]$ into $\Omega\left(\frac{N}{m}\right)$ intervals T_{1}, T_{2}, \ldots, each containing $\Omega(m)$ nodes.

$$
\operatorname{rbpeb}(G, m) \geq \sum_{i \geq 1} \min _{\substack{B, R \subseteq[N] \backslash T_{i} \\ \text { s.t. }|R| \leq m}}\left(\operatorname{rbpeb}\left(G, m, T_{i}, B, R\right)\right)
$$

Bandwidth Hardness of Candidate iMHFs

Lemma: $\forall T, B, R \subseteq[N] \backslash T$

$$
\operatorname{rbpeb}(G, m, T, B, R) \geq m_{B}
$$

> We lower bound this quantity for three iMHF candidates
Partition the nodes $[N] \backslash\left[\frac{N}{2}\right]$ ir Argon2i, DRSample and aATSample
díning $\Omega(m)$ nodes.

$$
\begin{aligned}
& \operatorname{rbpeb}(G, m) \geq \sum_{i \geq 1} \min _{\substack{B, R \subseteq[N]}}\left(\operatorname{rbped}\left(G, m, T_{i}, B, R\right)\right) \\
\geq & \sum_{i \geq 1} \min _{\substack{B, R \subseteq \mid N] \backslash T_{i} \\
\text { s.t. }|R| \leq m}}\left(\min _{B^{\prime} \subseteq B}\left(C_{r} \mid \text { agcestors }_{G-R \cup B^{\prime}}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right)
\end{aligned}
$$

Bandwidth Hardness of Candidate iMHFs

Theorem: $[N] \backslash\left[\frac{N}{2}\right]$ into $\Omega\left(\frac{N}{m}\right)$ intervals T_{1}, T_{2}, \ldots, each containing $\Omega(m)$ nodes then $\operatorname{rbpeb}(G, m) \geq$

$$
\sum_{i \geq 1} \min _{\substack{B, R \subseteq[N] \backslash T_{i} \\ s . t .|R| \leq m}}\left(\min _{B^{\prime} \subseteq B}\left(C_{r} \mid \text { ancestors }_{G-R \cup B^{\prime}}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right)
$$

Argon2i if $m=O\left(N^{\frac{2}{3}-\varepsilon}\right)$ then for each interval T_{i} of $\Omega(m)$ nodes we have

$$
\min _{\substack{B, R \subseteq[N] \backslash T_{i} \\ \text { s.t. }|R| \leq m}}\left(\min _{B \prime \subseteq B}\left(C_{r} \mid \text { ancestors }_{G-R \cup B^{\prime}}(T)\left|+C_{b}\right| B^{\prime} \mid\right)\right)=\Omega\left(\min \left\{N C_{r}, N^{\frac{2}{3}} C_{b}\right\}\right)
$$

Bandwidth Hardness of Candidate iMHFs

Theorem: $[N] \backslash\left[\frac{N}{2}\right]$ into $\Omega\left(\frac{N}{m}\right)$ intemen \boldsymbol{T} then $\operatorname{rbpeb}(G, m) \geq$

Amortized: $\Omega(1)$ blue moves
$\sum_{i \geq 1} \min _{\substack{B, R \subseteq[N] \backslash T_{i} \\ \text { s.t. }|R| \leq m}}\left(\min _{B^{\prime} \subseteq}\right.$
per node in interval (best possible)

Argon2i if $m=O\left(N^{\frac{2}{3}-\varepsilon}\right)$ then for each interval T_{i} of $\Omega(m)$ nodes we have $\min _{\substack{B, R \subseteq[N] \backslash T_{i} \\ \text { s.t. } . R \mid \leq m}}\left(\min _{B^{\prime} \subseteq B}\left(C_{r} \mid\right.\right.$ ancestors $\left.\left.s_{G-R \cup B \prime}(T)\left|+C_{b}\right| B^{\prime} \mid\right)\right)=\Omega\left(\min \left\{N C_{r}, N^{\frac{2}{3}} C_{b}\right\}\right)$

Bandwidth Hardness of Candidate iMHFs

Theorem: $[N] \backslash\left[\frac{N}{2}\right]$ into $\Omega\left(\frac{N}{m}\right)$ intervals $T . T \longrightarrow \quad \mathrm{~g} \Omega(m)$ nodes then $\operatorname{rbpeb}(G, m) \geq$

$$
\sum_{i \geq 1} \min _{\substack{B, R \subseteq[N] \backslash T_{i} \\ \text { s.t. }|R| \leq m}} \min _{B^{\prime} \subseteq B}
$$

Amortized: $\Omega\left(N^{\frac{1}{3}}\right)$ red moves per node in interval (expensive even if $C_{r} \ll C_{b}$

> Argon2i if $m=O\left(N^{\frac{2}{3}-\varepsilon}\right)$ then for each interval T_{i} of $\Omega(m)$ nodes , have $\min _{\substack{B, R \subseteq[N] \backslash T_{i} \\ \text { s.t. }|R| \leq m}}\left(\min _{B^{\prime} \subseteq B}\left(C_{r} \mid\right.\right.$ ancestors $\left.\left.\left._{G-R \cup B \prime}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right)=\Omega\left(\min N C_{r}, N^{\frac{2}{3}} C_{b}\right\}\right)$

Bandwidth Hardness of Candidate iMHFs

Argon2i

$\min _{B, R \subseteq[N] \backslash T_{i}}\left(\min _{B^{\prime} \subseteq B}\left(C_{r} \mid\right.\right.$ ancestors $\left.\left._{G-R \cup B^{\prime}}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right)=\Omega\left(\min \left\{N C_{r}, N^{\frac{2}{3}} C_{b}\right\}\right)$ s.t. $|R| \leq m$

We must pay this cost $\Omega\left(\frac{N}{m}\right)$ times for each interval T_{i}

$$
\operatorname{rbpeb}\left(G, N^{\frac{2}{3}-\varepsilon}\right)=\Omega\left(\min \left\{N^{\frac{4}{3}} C_{r}, N C_{b}\right\}\right)
$$

Bandwidth Hardness of Candidate iMHFs

Lemma: $\forall T, B, R \subseteq[N] \backslash T$

$$
\operatorname{rbpeb}(G, m, T, B, R) \geq \min _{B^{\prime} \subseteq B}\left(C_{r} \mid \text { ancestors }_{\mathrm{G}-\mathrm{R} \mathrm{\cup B}},(\mathrm{~T})\left|+C_{b}\right| B^{\prime} \mid\right)
$$

DRSample: For any constant $\rho<1$ if $\mathrm{m}=O\left(N^{\rho}\right)$

$$
\begin{aligned}
& \min _{\substack{B, R \subseteq[R] \backslash T_{i} \\
\text { s.t. } \mid R}}\left(\min _{B \prime}\left(C_{B} \mid \text { ancestors }_{G-R \cup B \prime}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right) \\
& \left.=\Omega\left(\min ^{\frac{1}{2}+\frac{\rho}{2}} C_{r}, N^{\rho} C_{b}\right\}\right)
\end{aligned}
$$

Bandwidth Hardness of Candidate iMHFs

Lemma: $\forall T, B, R \subseteq[N] \backslash T$

$$
\begin{aligned}
& \text { Amortized (} \rho=0.8 \text {): } \Omega\left(N^{0.1}\right) \\
& \text { red moves per node in interval } \\
& \text { (expensive even if } C_{r} \ll C_{b}
\end{aligned}
$$

DRSample: For any constant ρ

$$
\begin{aligned}
& \min _{B, R \subseteq[N] \backslash T_{i}}\left(\min _{B^{\prime} \subseteq B}\left(G_{G} \text { icestors }{ }_{G-R \cup B^{\prime}}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right) \\
& =\Omega\left(\min ^{\prime}\left\{N N^{\frac{1}{2}+\frac{\rho}{2}} C_{r}, N^{\rho} C_{b}\right\}\right)
\end{aligned}
$$

Bandwidth Hardness of Candidate iMHFs

Lemma: $\forall T, B, R \subseteq[N] \backslash T$ $\operatorname{rbpeb}(G, m, T, B, P$

Amortized: $\Omega(1)$ blue moves per node in interval (best possible)

DRSample: For any constant ρ

$$
\begin{aligned}
& \min _{\substack{B, R \subseteq[R] \backslash T_{i} \\
\text { s.t. } \mid R}}\left(\min _{B \prime}\left(C_{B} \mid \text { anc } \operatorname{ors}_{G-R \cup B^{\prime}}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right) \\
& \left.=\Omega\left(\min ^{\frac{1}{2}+\frac{\rho}{2}} C_{r} N^{\rho} C_{b}\right\}\right)
\end{aligned}
$$

Bandwidth Hardness of Candidate iMHFs

DRSample: For any constant $\rho<1 \mathrm{ifm}=O\left(N^{\rho}\right)$

$$
\begin{aligned}
& \min _{\substack{B, R \subseteq[N] \backslash T_{i} \\
\text { s.t. } \mid R R \leq m}}\left(\min _{B^{\prime} \subseteq B}\left(C_{r} \mid \text { ancestors }_{G-R \cup B^{\prime}}\left(T_{i}\right)\left|+C_{b}\right| B^{\prime} \mid\right)\right) \\
& =\Omega\left(\min ^{2}\left\{N^{\frac{1}{2}+\frac{\rho}{2}} C_{r}, N^{\rho} C_{b}\right\}\right)
\end{aligned}
$$

If $\mathrm{m}=O\left(N^{\rho}\right)$ must pay this $\operatorname{cost} \Omega\left(\frac{N}{N^{\rho}}\right)$ times

$$
\operatorname{rbpeb}\left(G, N^{\rho}\right)=\Omega\left(\min \left\{N^{\frac{3}{2}-\frac{\rho}{2}} C_{r}, N C_{b}\right\}\right)
$$

Comparison between Argon2i and DRSample

- Argon 2 i is maximally bandwidth hard if attacker's cache size is $m=o\left(N^{2 / 3}\right) \odot$
- Arguably a reasonable assumption in practice
- Argon $2 i$ is not maximally memory hard : $:$
- But it does beat out other entrants in the Password Hashing Competition (:)
- DRSample is both maximally memory hard and maximally bandwidth hard ()
- Even if attackers cache size is $m=$ $O\left(N^{1-\varepsilon}\right)$
- aATSample is also maximally memory hard and maximally bandwidth hard ()
- Even if attackers cache size is $m=$ $O\left(\frac{N}{\log N}\right)$

Scrypt is maximally memory-hard

Joël	Binyi	Krzysztof	Leonid	Stefano
Alwen	Chen	Pietrzak	Reyzin	Tessaro
IST Austria	UCSB	IST Austria	Boston U. (work done at IST Austria)	UCSB

[Percival 2009]: scrypt

H: $\{0,1\}^{*} \rightarrow\{0,1\}^{w}$ random oracle

Input: x_{0}
Repeat n times: $\mathrm{x}_{\mathrm{i}}=\mathrm{H}\left(\mathrm{x}_{\mathrm{i}-1}\right)$
$\mathrm{s}_{\mathrm{o}}=\mathrm{x}_{\mathrm{n}}$
Repeat n times: $\mathrm{s}_{\mathrm{i}}=\mathrm{H}\left(\mathrm{s}_{\mathrm{i}-1} \oplus \mathrm{x}_{\mathrm{j}}\right)$ for $\mathrm{j}=\mathrm{s}_{\mathrm{i}-1} \bmod \mathbf{n}$
Output: s_{n}

scrypt in the wild

- Used in several cryptocurrencies, most notably Litecoin (a top-4 cryptocurrency by market cap)
- Idea behind password-hashing winner Argon2d
- Attempts to standardize within IETF (RFC 7914)

Memory-Hard Functions

Goal: Find moderately hard F for which special-purpose hardware, parallelism, and amortization do not help.

Proposal [Percival 2009]: make a function that needs a lot of memory (memory is always general, unlike computation)

Make sure parallelism cannot help (force evaluation to cost the same)

Complexity measure: memory \times time

What's the best we can hope for?

$\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{w}}$ random oracle

Upper bound on cc(scrypt):
The naïve algorithm stores every x_{i} value.
Time: 2 n . Memory: $\leq \mathrm{n}$. Total: $\leq 2 \mathrm{n}^{2}$ (in w-bit units).
Note: any function that has an n-step sequential algorithm has $\mathrm{cc} \leq \mathrm{n}^{2} / 2$ (because memory \leq time)
No function so far has been proven to have cc of n^{2} (several candidates were proposed during password-hashing competition 2013-15; some have been broken)

Data-Independent Memory Hard Functions

Observation: any function whose memory access pattern is independent of the input can be represented as a fixed graph
Sequential algorithm of time $n \Rightarrow n$ nodes
Term: iMHF (Data-independent Memory Hard Function)
[Alwen-Blocki 16]: for any iMHF, cc $\leq n^{2} \log \log n / \log n$
scrypt is a very simple dMHF
Q: can scrypt beat this iMHF bound?

Our Result
$\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{w}}$ random oracle

Theorem: in the parallel RO model, cc(scrypt) $=\Omega\left(\mathrm{n}^{2}\right)$
The first ever construction works!

Talk Outline
$\checkmark^{\text {Memory-hard functions for password hashing }}$
$\sqrt{ }$ Design of scrypt
$\sqrt{ }$ How to measure cost: cumulative complexity (cc)
$\sqrt{ }$ Main Result: cc(scrypt) is highest possible n^{2} in parallel RO model

Before proving: can we simplify scrypt?

How quickly can you play this game?

You have x_{0} and whatever storage you want
I give you uniform challenge c from 1 to n You return X_{c}

If you store nothing but x_{0} : $n / 2 \mathrm{H}$-queries per challenge

How quickly can you play this game?

You have x_{0} and whatever storage you want
I give you uniform challenge c from 1 to n You return x_{c}

If you store nothing but $x_{0}: n / 2 H$-queries per challenge
If you store p hash values: $n /(2 p) H$-queries per challenge
If you store something other than hash values?

Result for the scrypt one-shot game

You have x_{0} and whatever storage you want
I give you uniform challenge i from 1 to n You return x_{i}
Prior result 1: if you store p labels, expected time $\geq n /(2 p)$
Prior result 2 [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro '16]: same if you store "entangled" labels (such as XOR or more general linear functions) but not portions of labels, XORs of portions, etc.

Our result: same for arbitrary storage of pw bits! (where w is label length = output length of H)

Claim: time $\geq n /(2 p)$ if storage pw

Basic idea of the argument (inspired by [Alwen-Serbinenko]): if A is too fast, then we can extract many labels from A's storage w/o querying H but can't extract more than p labels b / c RO not compressible

Extracting labels from A’s memory

Imagine: run A on every possible challenge and record queries

\cdots	$c=23$	
	x_{5}	X_{14}
	\downarrow	\downarrow
	X_{6}	x_{15}

$\begin{array}{cc}x_{6} & x_{15} \\ \downarrow & \downarrow \\ x_{7} & x_{16}\end{array}$
$\begin{array}{cc}c=24 \\ x_{5} & x_{14} \\ \downarrow & \downarrow \\ x_{6} & x_{15}\end{array}$

$c=26$
x_{30}
x_{5}
\downarrow_{31}
x_{3}
x_{6}
$\begin{array}{cc}x_{6} & x_{15} \\ \downarrow & \downarrow \\ x_{7} & x_{16}\end{array}$

X_{26}

Extracting labels from A’s memory

Mark blue any label whose earliest appearance is not from H

\cdots		
		$=23$
	X_{5}	X_{14}
	\downarrow	\downarrow
	X_{6}	X_{15}

x_{22}
\downarrow
x_{23}
$\begin{array}{cc}c=24 \\ x_{5} & x_{14} \\ \downarrow & \downarrow \\ x_{6} & x_{15}\end{array}$

$c=26$
x_{30}
x_{5}
\downarrow_{31}
x_{3}
x_{6}

X_{26}

Extracting labels from A’s memory

Mark blue any label whose earliest appearance is not from H
... $\mathrm{C}=23$

$\begin{array}{cc}x_{6} & x_{15} \\ \downarrow & \downarrow \\ x_{7} & x_{16}\end{array}$
x_{22}
\downarrow
x_{23}
c=24

$\begin{array}{ll}c=26 \\ x_{30} & x_{5} \\ \downarrow & \downarrow \\ x_{31} & x_{6}\end{array}$
$\begin{array}{cc}x_{6} & x_{15} \\ \downarrow & \downarrow \\ x_{7} & x_{16}\end{array}$

X_{26}

Extracting labels from A’s memory

Mark blue any label whose earliest appearance is not from H

$$
\mathrm{c}=23
$$

$$
c=25
$$

$$
c=26
$$

$$
\begin{gathered}
\mathrm{x}_{30} \mathrm{X}_{5} \\
\downarrow{ }^{\downarrow}{ }^{\downarrow} \mathrm{x}_{6}
\end{gathered}
$$

$$
c=24
$$

X_{26}

Lemma 1: all blue labels can be extracted from memory of A without querying H
Proof: Make a predictor for H that runs A in parallel on all challenges, one step at a time, predicting blue values by querying H only when needed

Extracting labels from A's memory

Mark blue any label whose earliest appearance is not from H

$\mathrm{c}=24$

$$
\begin{aligned}
& c=26 \\
& x_{30} x_{5} \\
& \downarrow{ }^{\downarrow} \quad{ }^{2} \\
& x_{31}
\end{aligned}
$$

$\begin{array}{cc}x_{6} & x_{15} \\ \downarrow & \downarrow \\ x_{7} & x_{16}\end{array}$

$$
x_{26}
$$

Lemma 1: all blue labels can be extracted from memory of A without querying H (so \mid blue set $|\leq|$ memory \mid / w)

Extracting labels from A’s memory

Mark blue any label whose earliest appearance is not from H
... $\mathrm{C}=23$

$\begin{array}{cc}\mathrm{X}_{6} & \mathrm{x}_{15} \\ \downarrow & \downarrow \\ \mathrm{X}_{7} & \mathrm{X}_{16}\end{array}$
C=24

X_{26}

Lemma 1: all blue labels can be extracted from memory of A without querying H (so |blue set $\mid \leq \mathrm{pw} / \mathrm{w}$)

Extracting labels from A's memory

Mark blue any label whose earliest appearance is not from H
... $\mathrm{C}=23$

$\begin{array}{ll}x_{6} & x_{15} \\ \downarrow & \downarrow \\ \mathrm{x}_{7} & \mathrm{x}_{16}\end{array}$
$\mathrm{C}=24$

$\begin{array}{ll}\mathrm{x}_{6} & \mathrm{x}_{15} \\ \downarrow & \downarrow \\ \mathrm{x}_{7} & \mathrm{x}_{16}\end{array}$

$$
\begin{aligned}
& \mathrm{c}=26 \\
& \mathrm{x}_{30} \quad \mathrm{x}_{5} \\
& \downarrow \\
& \downarrow \\
& \mathrm{x}_{31} \\
& x_{6}
\end{aligned}
$$

$$
x_{26}
$$

Lemma 1: all blue labels can be extracted from memory of A without querying H (so |blue set $\mid \leq p$)

memory pw \Rightarrow time $\geq n /(2 p)$

Mark blue any label whose earliest appearance is not from H
... $\mathrm{C}=23$

c=24

$\begin{array}{cc}\mathrm{X}_{6} & \mathrm{X}_{15} \\ \downarrow & \downarrow \\ \mathrm{X}_{7} & \mathrm{X}_{16}\end{array}$

$$
\begin{aligned}
& \mathrm{c}=26 \\
& \mathrm{x}_{30} \quad \mathrm{x}_{5} \\
& \downarrow \quad \downarrow \\
& \mathrm{x}_{31} \mathrm{x}_{6}
\end{aligned}
$$

$$
x_{26}
$$

Lemma 1: all blue labels can be extracted from memory of A without querying H (so |blue set $\mid \leq p$)

Lemma 2: Time to answer $\mathrm{c} \geq$ distance from nearest blue Proof: induction

memory pw \Rightarrow time $\geq n /(2 p)$

Mark blue any label whose earliest appearance is not from H
... $\mathrm{C}=23$

$\mathrm{c}=24$

$$
\begin{aligned}
& \mathrm{c}=26 \\
& \mathrm{x}_{30} \quad \mathrm{x}_{5} \\
& \downarrow \quad \downarrow \\
& \mathrm{x}_{31} \mathrm{x}_{6}
\end{aligned}
$$

$$
x_{26}
$$

Lemma 1: all blue labels can be extracted from memory of A without querying H (so |blue set $\mid \leq p$)
Lemma 2: Time to answer $\mathrm{c} \geq$ distance from nearest blue Conclusion: storage $p w \Rightarrow$ time $\geq n /(2 p)$

Talk Outline
$\sqrt{ }$ Memory-hard functions for password hashing
$\sqrt{ }$ Design of scrypt
$\sqrt{ }$ How to measure cost: cumulative complexity (cc)
\checkmark scrypt: very simple dMHF (and iMHF won't work)
Main Result: cc(scrypt) is highest possible n^{2} in parallel RO model
Proof in two parts
$\sqrt{ }$. memory vs. time to answer one random challenge
2. cumulative complexity of n challenges
$\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{w}}$ random oracle

Single random challenge: memory $\geq \frac{n w}{2} \bullet \frac{1}{\text { time }}$

... to cc(n challenges)

$\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{w}}$ random oracle

Single random challenge: memory $\geq \frac{n w}{2} \bullet \frac{1}{\text { time }}$

... to cc(n challenges)
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$ random oracle

Single random challenge: memory $\geq \frac{n w}{2} \bullet \frac{1}{\text { time }}$

to cc(n challenges)

$\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{w}}$ random oracle

Single random challenge: memory $\geq \frac{n w}{2} \bullet \frac{1}{\text { time }}$

to cc(n challenges)

$\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{w}}$ random oracle

Single random challenge: memory $\geq \frac{n w}{2} \bullet \frac{1}{\text { time }}$

... to cc(n challenges)
Adding up memory used during previous challenge:

$$
\frac{n w}{2}\left(\frac{1}{t_{i}}+\frac{1}{t_{i}+1}+\cdots+\frac{1}{t_{i}+t_{i-1}}\right) \geq \frac{n w}{2}\left(\ln \left(t_{i}+t_{i-1}\right)-\ln t_{i}\right)
$$

Single random challenge: memory $\geq \frac{\mathrm{nw}}{2} \bullet \frac{1}{\text { time }}$

... to cc(n challenges)
Adding up memory used during previous challenge:

$$
\frac{n w}{2}\left(\frac{1}{t_{i}}+\frac{1}{t_{i}+1}+\cdots+\frac{1}{t_{i}+t_{i-1}}\right) \geq \frac{n w}{2}\left(\ln \left(t_{i}+t_{i-1}\right)-\ln t_{i}\right)
$$

Adding up over all challenges ifrom 1 to n :
$1 / 2 n w\left(\ln \left(t_{1}+t_{2}\right)-\ln t_{2}+\ln \left(t_{2}+t_{3}\right)-\ln t_{3}+\ldots+\ln \left(t_{n-1}+t_{n}\right)-\ln t_{n}\right)$

$$
\geq 1 / 2 n w(n \ln 2) \geq \Omega\left(n^{2} w\right)
$$

Talk Outline
Memory-hard functions for password hashing
$\sqrt{ }$ Design of scrypt
$\sqrt{ }$ How to measure cost: cumulative complexity (cc)
$\boldsymbol{\downarrow}$ scrypt: very simple dMHF (and iMHF won't work)
Main Result: cc(scrypt) is highest possible n^{2} in parallel RO model

Proof in two parts

$\sqrt{1}$. memory vs. time to answer one random challenge
$\sqrt{ }$ 2. cumulative complexity of n challenges

Thanks for Listening

