
Advanced Cryptography
CS 655

Week 7:
• Constructing Depth-Robust Graphs
• Sustained Space Complexity
• Bandwidth Hard-Functions

1Spring 2023

Homework 2 Due Thursday @ 11:59PM on Gradescope
Project Proposals due Tonight

Course Project Proposal

• Due Tonight by e-mail (jblocki@purdue.edu)

• Project Proposal: 2 Pages
• Briefly the problem you plan to work on
• Briefly summarize prior work on the problem and how your project is

different
• Identify several related papers that you plan to read as part of the project
• Briefly describe your plan to attack the problem

2

mailto:jblocki@purdue.edu

A Few Project Ideas

• Pick a cryptographic scheme and try to find a tighter concrete security proof
under idealized assumptions

• Example: Tighter security analysis for Password Authenticated Key Exchange (PAKE)
protocols such as CPACE in the generic group+random oracle model?

• Pick a cryptographic scheme/protocol and analyze the security with respect
pre-processing attacks or provide a memory-tight reduction

• Example: Memory-Tight Reduction for RSA-FDH under the One-More-RSA-Inversion
problem?

• Example: Security of PAKE protocols against pre-processing attacks?
• Example: Security of AES-GCM vs pre-processing attacks?

• Pebbling Reduction for Salted iMHFs vs. Preprocessing Attackers
• Pebbling Reduction for Argon2 Round Function (in ideal permutation model)

3

A Few Project Ideas

• Implement a Cryptographic Protocol/Attack
• Example: Implement Argon2 with different instantiations of

round function
• Example: Implement partitioning oracle attack on AES-GCM.

• Many other possibilities! Make sure your proposal is
realistic.

• It is ok to try something and fail i.e., a final project
report documenting your unsuccessful attempts to solve
a problem is acceptable as long as the attempts are
clearly described 4

Recap: iMHFs

• Graph Pebbling Reduction [AS15]: Complexity of iMHF 𝑓𝑓𝐺𝐺,𝐻𝐻 is fully
captured by pebbling cost of DAG G.

• Informal Theorem [AS15]: Any algorithm A evaluating 𝑓𝑓𝐺𝐺,𝐻𝐻 in the
parallel random oracle model has 𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴) ≈ 𝜆𝜆 × 𝐶𝐶𝐶𝐶(𝐺𝐺) where
𝐻𝐻(𝑥𝑥) ∈ 0,1 𝜆𝜆

• Proof Sketch: Use execution trace from A to extract a legal pebbling
of G such that for all rounds i we have 𝑃𝑃𝑖𝑖 ≈ 𝜎𝜎𝑖𝑖 /𝜆𝜆

5
#pebbles at time i #bits in A’s memory at time i

Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible

Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible

Recap: Depth-Robustness is Sufficient! [ABP17]

Implications: There exists a constant indegree graph G with

CC G ≥ Ω
𝑛𝑛2

log𝑛𝑛
.

[AB16]: We cannot do better (in an asymptotic sense)

CC 𝐺𝐺 = O
𝑛𝑛2 log log𝑛𝑛

log𝑛𝑛
.

𝐊𝐊𝐊𝐊𝐊𝐊 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: Let G=(V,E) be (e,d)-depth robust then CC(G)≥ 𝑒𝑒𝑒𝑒.

DRSample

1 2 i… n

Indegree: 𝛿𝛿 = 2

Key Modification to Argon2i: New distribution for r(i)

Buckets:𝐵𝐵1, … ,𝐵𝐵log 𝑖𝑖
𝐵𝐵𝑗𝑗 = 𝑖𝑖 − 2𝑗𝑗 , 𝑖𝑖 − 2𝑗𝑗−1 − 1

…i-1i-2i-3i-8…
𝐵𝐵1

i-4

𝐵𝐵2𝐵𝐵3

i-5

DR-Sample: Meta-Graph

1 2 … n…2m𝑚𝑚…

𝐺𝐺𝑚𝑚

𝐺𝐺
𝑚𝑚 = 𝑂𝑂 log𝑛𝑛

Each meta-node u corresponds to m nodes 𝑢𝑢1, … ,𝑢𝑢𝑚𝑚 .
Let 𝐹𝐹𝑢𝑢 = 𝑢𝑢1, … ,𝑢𝑢𝑚𝑚/3 and 𝐿𝐿𝑢𝑢 = 𝑢𝑢𝑚𝑚−𝑚𝑚3+1

, … ,𝑢𝑢𝑚𝑚 denote the first (resp.

last third) of these nodes

𝐺𝐺𝑚𝑚 has edge (u,v) if and only if G has some edge (x,y) with x ∈ 𝐿𝐿𝑢𝑢 and y ∈ 𝐿𝐿𝑢𝑢

Recap: DRSample Analysis

• Let G be the DRSample graph. Define Meta-Graph 𝐺𝐺𝑚𝑚 with m = Ω log𝑁𝑁 and N′ =
Ω 𝑁𝑁

𝑚𝑚

Last Class: We assumed that 𝐺𝐺𝑚𝑚 was a 𝛿𝛿 −local expander and proved that any
𝛿𝛿 −local expander with N′ = Ω 𝑁𝑁

𝑚𝑚
nodes is Ω 𝑁𝑁𝑁 ,Ω 𝑁𝑁𝑁 depth-robust

• Meta-Graph 𝐺𝐺𝑚𝑚 is Ω 𝑁𝑁
𝑚𝑚

,Ω 𝑁𝑁
𝑚𝑚

−depth-robust with m = Ω log𝑁𝑁

DRSample G is Ω 𝑁𝑁
𝑚𝑚

,Ω 𝑁𝑁 −depth-robust

TODO: Prove that 𝐺𝐺𝑚𝑚 is a 𝛿𝛿 −local expander * (*almost)

11

𝛿𝛿 −bipartite expander

A

B 𝐴𝐴 = 𝐵𝐵 = 𝑛𝑛

𝛿𝛿 −bipartite expander

A

B

≥ 𝛿𝛿𝛿𝛿

𝐴𝐴 = 𝐵𝐵 = 𝑛𝑛

X ⊆ 𝐴𝐴

𝛿𝛿 −bipartite expander

< 𝛿𝛿𝛿𝛿

A

B

≥ 𝛿𝛿𝛿𝛿

𝐴𝐴 = 𝐵𝐵 = 𝑛𝑛

Y ⊆ 𝐵𝐵
(unreachable from X)

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

𝛿𝛿 -local expander around v

1 2 v-2r+1 v… nv-r …… …v-r-1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

1 2 v+2r-1v… nv+r …… …v+r-1

We have 𝛿𝛿 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 if for every r

Not 𝛿𝛿 −bipartite expander?

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

𝐴𝐴 = 𝐵𝐵 = 𝑟𝑟
Let A,B be a set of 2r consecutive
nodes in meta-graph.

If not 𝛿𝛿 −bipartite then there
exists Y ⊆ 𝐵𝐵 and X ⊆ 𝐴𝐴
with size|Y|=𝛿𝛿𝛿𝛿 and |X|=𝛿𝛿𝛿𝛿 such
that none of the edges from any
meta-node in Y hit any node in X

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

Not 𝛿𝛿 −bipartite expander?

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Fix some subsets |Y|=𝛿𝛿𝛿𝛿 and
|X|=𝛿𝛿𝛿𝛿

Each individual edge from Y hits X
with probability

≈
𝛿𝛿

3 log𝑛𝑛

There are 𝑚𝑚
3

× 𝛿𝛿𝛿𝛿 edges
(all picked independently) X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

Not 𝛿𝛿 −bipartite expander?

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Each individual edge from Y hits X with
probability ≈ 𝛿𝛿

3 log 𝑛𝑛

There are 𝑚𝑚
3

× 𝛿𝛿𝛿𝛿 edges (independent)

Pr Y Misses 𝑋𝑋 ≤ 1 − 𝛿𝛿
3 log 𝑛𝑛

𝑚𝑚
3×𝛿𝛿𝛿𝛿

≤ 𝑒𝑒−𝑟𝑟𝛿𝛿
2(𝑚𝑚
9 log 𝑁𝑁)

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

Not 𝛿𝛿 −bipartite expander?

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Union Bound:

Pr ∃𝑋𝑋, Y s. t. Y Misses 𝑋𝑋

≤ 𝑒𝑒−𝑟𝑟𝛿𝛿
2 𝑚𝑚
9 log 𝑁𝑁 𝑟𝑟

𝛿𝛿𝛿𝛿

2

≤ exp 𝑧𝑧
WithX ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

z = −𝑟𝑟𝛿𝛿2
𝑚𝑚

9 log𝑁𝑁
+ 2𝛿𝛿𝛿𝛿 ln

1
𝛿𝛿

+ 2𝑟𝑟 ln
1

1 − 𝛿𝛿

Not 𝛿𝛿 −bipartite expander?

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Union Bound:

Pr ∃𝑋𝑋, Y s. t. Y Misses 𝑋𝑋
≤ exp 𝑧𝑧

≤ exp −2𝑟𝑟
Pick 𝑚𝑚 ≥
(18𝛿𝛿−1ln 1

𝛿𝛿
+ 18𝛿𝛿−2(1 + ln 1

1−𝛿𝛿
)) log𝑁𝑁

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

z = −𝑟𝑟𝛿𝛿2
𝑚𝑚

9 log𝑁𝑁
+ 2𝛿𝛿𝛿𝛿 ln

1
𝛿𝛿

+ 2𝑟𝑟 ln
1

1 − 𝛿𝛿

Second Union Bound?

• Fixing any A=[u,…,u+r-1] and B=[u+r,…,u+2r-1] we say that A,B are
connected with bipartite expander with probability at least 1 −
exp −2𝑟𝑟

• Ideal: Want to show that 𝐺𝐺𝑚𝑚 𝑖𝑖𝑖𝑖 𝑎𝑎 𝛿𝛿 −local expander i.e.., this holds
for all u and all r

• Union bound over all meta-nodes u and all r?
• We can union bound over all 𝑟𝑟 ≥ log𝑁𝑁 and all u since

�
𝑢𝑢

�
𝑟𝑟≥log 𝑁𝑁

exp −2𝑟𝑟 ≤𝑁𝑁 �
𝑟𝑟≥log 𝑁𝑁

exp −2𝑟𝑟 ≪
2
𝑁𝑁

21

Second Union Bound?

• Fix: Let 𝑩𝑩𝒖𝒖 be the event that for some 𝑟𝑟 < log𝑁𝑁 we do not have an
expander between A=[u,…,u+r-1] and B=[u+r,…,u+2r-1]

• Key Idea: Use concentration bounds to argue that ∑𝑢𝑢𝑩𝑩𝒖𝒖 ≤ 𝜀𝜀𝜀𝜀 with
high probability (for some suitably small 𝜀𝜀)

For at least N − 𝜀𝜀𝜀𝜀 meta-nodes u we do have local expansion
around u.

This is sufficient to argue that meta-graph is depth-robust.

22

Second Union Bound?

• Fix: Let 𝑩𝑩𝒖𝒖 be the event that for some 𝑟𝑟 < log𝑁𝑁 we do not have an
expander between A=[u,…,u+r-1] and B=[u+r,…,u+2r-1]

• Key Idea: Use concentration bounds to argue that ∑𝑢𝑢𝑩𝑩𝒖𝒖 ≤ 𝜀𝜀𝜀𝜀 with high
probability (for some suitably small 𝜀𝜀)

Problem? 𝑩𝑩𝒖𝒖 and 𝑩𝑩𝒖𝒖+𝟏𝟏 are not independent!
But, 𝑩𝑩𝒖𝒖 and 𝑩𝑩𝒗𝒗 are independent if 𝒖𝒖 − 𝒗𝒗 ≥ 𝒍𝒍𝒍𝒍𝒍𝒍 𝑵𝑵
Solution: Partition random variables into 𝒍𝒍𝒍𝒍𝒍𝒍 𝑵𝑵 buckets such that random
variables in each bucket are independent. Apply concentration bounds to
each bucket.

23

Sustained Space Complexity
Joël Alwen (IST Austria/Wickr)

Jeremiah Blocki (Purdue)
Krzysztof Pietrzak (IST Austria)

24

Motivation: Password Storage

25

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f584e
3db87aa72630a9a2
345c062

Salt

89d978034a3f6

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

https://password-hashing.net/

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…
There are two main versions of
Argon2, Argon2i and Argon2d.
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Goal: force attacker to lock up large amounts of memory for duration
of computation
Expensive even on customized hardware

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input

Data-Independent Memory Hard Function (iMHF)

1
2

3
4

Output: fG,H (pwd,salt)= L4
Input: pwd, salt

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

iMHF fG,H defined by
• H: 0,1 2𝑘𝑘 → 0,1 𝑘𝑘 (Random Oracle)
• DAG G (encodes data-dependencies)

• Maximum indegree: 𝛿𝛿 = O 1

1

Evaluating an iMHF (pebbling)

Pebbling Rules : 𝑃𝑃=P1,…,Pt⊂ 𝑉𝑉 s.t.
• Pi+1⊂ Pi ∪ 𝑥𝑥 ∈ 𝑉𝑉 parents 𝑥𝑥 ⊂ Pi+1 (need dependent values)
• n∈ Pt (must finish and output Ln)

1
2

3
4 Output: L4Input:

pwd, salt

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1

Evaluating an iMHF (pebbling)

1 2 3 4 51 3 4 5

1 2 3 4 5

P1 = {1} (data value L1 stored in memory)

Evaluating an iMHF (pebbling)

Pebbling Example

1 2 3 4 5

P1 = {1}
P2 = {1,2} (data values L1 and L2 stored in memory)

Pebbling Example

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

Pebbling Example

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}

Pebbling Example

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}

Measuring Cost: Attempt 1

• Space × Time (ST)-Complexity

ST 𝐺𝐺 = min
𝑃𝑃

𝑡𝑡𝑃𝑃 × max
𝑖𝑖≤𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖
• Rich Theory

• Space-time tradeoffs
• But not appropriate for password hashing

time

sp
ac

e

m

t

ST Cost

Amortization and Parallelism

• Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

[AS15] ∃ function fn (consisting of n RO calls) such that: 𝑆𝑆𝑆𝑆 𝑓𝑓× 𝑛𝑛 = 𝑂𝑂(𝑆𝑆𝑆𝑆 𝑓𝑓)

time

sp
ac

e S1

T1

ST1 = S1 × T1 ≈ S3 × T3 = ST3
S3

T3

cost of computing
f once

cost of computing
f three times

Measuring Pebbling Costs [AS15]

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖
Memory Used at Step iApproximates

Amortized Area x Time
Complexity of iMHF Cumulative Memory Cost

iterations

sp
ac

e

Measuring Pebbling Costs [AS15]

CC 𝐺𝐺 = min
𝑃𝑃
�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

[AS15] Costs scale linearly with #password guesses
CC 𝐺𝐺, … ,𝐺𝐺 = m × CC(𝐺𝐺)

𝑚𝑚 times

Memory Used at Step i

Pebbling Example: Cumulative Cost

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}

CC 𝐺𝐺 ≤�
𝑖𝑖=1

5

𝑃𝑃𝑖𝑖

= 1 + 2 + 1 + 2 + 1
= 7

Lessons from SCRYPT

SCRYPT [Per09]
• CON: Data-Dependent Side-Channel Concerns
• PRO: Proven to have high CC [ACPRT17]

• CC(SCRYPT) = Ω 𝑛𝑛2

• Contrast: any iMHF has CC at most 𝑂𝑂 𝑛𝑛2 log log 𝑛𝑛
log 𝑛𝑛

• Maximally Memory Hard  Egalitarian?

50

What Happened?

• CC(SCRYPT) = Ω 𝑛𝑛2 the function can be computed
with low memory

• Each strategy below is easily feasible
• Evaluate with O 𝑛𝑛 memory in 𝑂𝑂 𝑛𝑛 time
• Evaluate with O 𝑛𝑛 memory in 𝑂𝑂 𝑛𝑛 𝑛𝑛 time
• Evaluate with O 1 memory in 𝑂𝑂 𝑛𝑛2 time

• SCRYPT ASIC miners opt for low memory + high
computation options

• Goal: Ensure that low memory options are
infeasible

51

Sustained Space
• Using memory is more costly than doing computation (at least for

ASICs).
• Idea: Only charge for computational steps where a lot of memory

is being used.
• Definition: s-Sustained Space

“Time spent above memory threshold s”

s-Sustained Space

time

sp
ac

e

s

Intuition:
trade-offs
are free.

FACT:
CC > 𝑠𝑠𝑠𝑠

Wanted: A Moderately Hard Function
• Desiderata:

• Cost for honest & adversary roughly same:

Adversarial Model
• Parallel Computation
• Amortization across many

evaluations
• Cost measured in s-SS

(for some large s)

Honest Computational Model
• Sequential Computation
• Single Evaluation
• Cost measured in ST

Complexity

Main Theorem
• For any n∊ℕ we give a function fn and prove that in the parallel

Random Oracle Model (PROM):

• Bonus: fn is an iMHF.
⇒E runs in constant time and has data-independent memory access pattern

Honest

• Sequential Algorithm E

• Time(E(fn)) = n

• ST(E(fn)) = n2

Adversarial

• ∀ parallel algs. A

• s-SS(A(fn)) = Ω(n) per eval.

for s = Ω(n/log(n))

The Parallel Black Pebbling Game

Parallel Black Pebbling Game: Same as Black Pebbling, except can touch many pebbles
per iteration.

s-SS analogue: Count number of steps when at least s pebbles on graph.

s-SS Complexity
1-SS = 3
2-SS = 1

G

Goal: Place a pebble on the sink.
Rule 1: A node can be pebbled only if all parents contain a pebble.
Rule 2: A pebble can always be removed.

Want G with…

1. Size(G) = n

2. In-degree(G) = 2

3. 𝑛𝑛
log(𝑛𝑛)

-SS(G) = Ω(n)

Technical Ingredient #1 [PTC77]

• [PTC77] Built a constant
indegree DAG G with n nodes
and proves that any sequential
pebbling has at least one step in
which there are at least
Ω 𝑛𝑛/ log𝑛𝑛 pebbles on the
graph.

• [Hopcroft77] Any constant
indegree graph DAG G can be
pebbled with space at most
𝑂𝑂 𝑛𝑛/ log𝑛𝑛

56

Technical Ingredient #1 [PTC77]

• [PTC77] Built a constant indegree
DAG G space complexity Ω 𝑛𝑛/ log𝑛𝑛

• Recursive Construction
• PTC2n contains 2 internal copies of PTCn

• Stronger Lemma used for Induction!
• For any sequential pebbling 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡
We can find an interval 𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such
that both
1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑚𝑚 for each k ∈ 𝑖𝑖, 𝑗𝑗
2. At least 𝑐𝑐2𝑚𝑚 source nodes are

(re)pebbled during the interval

57

Technical Ingredient #1 [PTC77]

• [PTC77] Built a constant indegree DAG G space complexity Ω 𝑛𝑛/ log𝑛𝑛
• Recursive Construction

• PTC2n contains 2 internal copies of PTCn

• Stronger Lemma used for Induction!
• For any parallel (sequential) pebbling 𝑃𝑃𝑡𝑡, … ,𝑃𝑃𝑡𝑡
• Can find an interval 𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such that

1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑛𝑛/ log𝑛𝑛 for each k ∈ 𝑖𝑖, 𝑗𝑗 (lots of pebbles on the graph)
2. At least 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 source nodes are (re)pebbled during the interval

• Implication (s = 𝑐𝑐1𝑛𝑛/ log𝑛𝑛): s-SS(P) ≥ 𝑗𝑗 + 1 − 𝑖𝑖
• Sequential Pebbling: 𝑗𝑗 + 1 − 𝑖𝑖 ≥ 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 (by (2) above)
• Parallel Pebbling: Could (re)pebble all 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 in one step!

58

Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust for all 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 we have depth 𝐺𝐺 − 𝑆𝑆 > d.

Otherwise, we say that G is (e,d)-reducible.

1 2 3 4 5

Example: (e=2,d=2)-reducible

6

Block Depth Robustness [ABP17]

1 2 3 4 5

Example: (e=2,d=2)-reducible

6

Definition: A DAG G=(V,E) is (e,d)-depth-robust for all 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 we have depth 𝐺𝐺 − 𝑆𝑆 > d.

Otherwise, we say that G is (e,d)-reducible.

Technical Ingredient #2

• [EGS75] n node G with log(n) in-degree and (Ω(n), Ω(n))-depth-
robust

• Problem: Constants too small e.g., 𝑒𝑒 = 10−4𝑛𝑛 and 𝑑𝑑 = 10−2𝑛𝑛
• Problem: in-degree too high.

• [MMV13] 𝜀𝜀-extremely depth robust DAG 𝐺𝐺𝑛𝑛𝜀𝜀 with log2(n) in-
degree and (e,d)-DR for any e+d < n(1-ε).

• Problem: in-degree too high.

61

Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.

Technical Ingredient #2

• [MMV13] 𝜀𝜀-extremely depth robust DAG 𝐺𝐺𝑛𝑛𝜀𝜀 with indegree
𝑂𝑂 log2𝑛𝑛 polylog log𝑛𝑛 .

• Problem: in-degree too high.

• [NEW] 𝜀𝜀-extremely depth robust DAG 𝐷𝐷𝑛𝑛𝜀𝜀 with indegree O(log (n))
• Construction: similar to [EGS75]
• Many technical details to work out (see paper)

62

Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.

Technical Ingredient #2

• [NEW] 𝜀𝜀-extremely depth robust DAG 𝐷𝐷𝑛𝑛𝜀𝜀with indegree O(log (n))
• Construction: similar to [EGS75]
• Many technical details to work out (see paper)

Useful Observation: Any subgraph of 𝐷𝐷𝑛𝑛𝜀𝜀[𝑆𝑆] of size 𝑆𝑆 > 𝜀𝜀𝑛𝑛 must contain a
path of length 𝑆𝑆 − 𝜀𝜀𝜀𝜀
Proof: Otherwise DAG 𝐷𝐷𝑛𝑛𝜀𝜀 is not 𝑒𝑒, d -depth robust for d = 𝑆𝑆 − 𝜀𝜀𝜀𝜀 and 𝑒𝑒 =
𝑉𝑉 ∖ 𝑆𝑆 = 𝑛𝑛 − 𝑆𝑆 . Contradiction, 𝐷𝐷𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust and

𝑒𝑒 + 𝑑𝑑 = 𝑛𝑛 − 𝜀𝜀𝜀𝜀 ≤ 1 − 𝜀𝜀 𝑛𝑛.

63

Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.

Technical Ingredient #2

Lemma: If legal (parallel) pebbling P1,…,Pt of 𝐷𝐷𝑛𝑛𝜀𝜀 has at least one pebbling
round j with space s = 𝑃𝑃𝑗𝑗 > 2𝜀𝜀𝑛𝑛 then there are at least t = 𝑃𝑃𝑗𝑗

2
− 𝜀𝜀𝜀𝜀 distinct

time rounds k with space 𝑃𝑃𝑘𝑘 ≥ 𝑃𝑃𝑗𝑗
2

64

Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.

Proof: Let i<j be last round before round j such that 𝑃𝑃𝑖𝑖 < 𝑃𝑃𝑗𝑗
2

and let 𝑆𝑆 =
𝑃𝑃𝑗𝑗 ∖ 𝑃𝑃𝑖𝑖. Any node in S is (re)pebbled during the interval [i,j].
 (observation) the subgraph 𝐽𝐽𝑛𝑛𝜀𝜀[𝑆𝑆] contains a path of length t ≥ 𝑃𝑃𝑗𝑗

2
− 𝜀𝜀𝜀𝜀

 at least t pebbling rounds to reach configuration 𝑃𝑃𝑗𝑗 from 𝑃𝑃𝑖𝑖

PTC Overlay (Attempt 1)
Lemma [PTC77] In any pebbling
of PTCn we can find an interval
𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such that

1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑛𝑛/ log𝑛𝑛for each
k ∈ 𝑖𝑖, 𝑗𝑗 (lots of pebbles
on the graph)

2. At least 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 source
nodes are (re)pebbled
during the interval

[NEW] Now requires Ω 𝑚𝑚
rounds since 𝐷𝐷𝑛𝑛𝜀𝜀 is 𝜀𝜀-
extremely depth robust

65

PTC Overlay (Attempt 1)
Lemma [PTC77] In any pebbling of PTCn we can find an interval 𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such that

1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑛𝑛/ log 𝑛𝑛for each k ∈ 𝑖𝑖, 𝑗𝑗 (lots of pebbles on the graph)
2. At least 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 source nodes are (re)pebbled during the interval

[NEW] Overlay requires Ω 𝑚𝑚 rounds since 𝐷𝐷𝑚𝑚𝜀𝜀 is 𝜀𝜀-extremely depth robust

Problems:
• Requires s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles for t = Ω 𝑛𝑛/ log𝑛𝑛 rounds

• I promised s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles for t = Ω 𝑛𝑛 rounds)

• Indegree still too high i.e., indeg 𝐷𝐷𝑚𝑚𝜀𝜀 = 𝑂𝑂(log𝑛𝑛)
• I promised constant indegree O(1)

66

Technical Ingredient #3

• Indegree Reduction [ABP17] deals with both problems simultaneously!

67

Technical Ingredient #3

• Indegree Reduction [ABP17] deals with both problems simultaneously!

Lemma [ABP17]: If 𝐷𝐷𝑚𝑚𝜀𝜀 is (𝑒𝑒,𝑑𝑑)-depth robust then 𝐽𝐽𝑚𝑚𝜀𝜀 is (𝑒𝑒,𝑑𝑑𝛿𝛿)-depth robust.
Furthermore, indeg Jmε = 2 and Jmε has 2𝑑𝑑𝑚𝑚 = 𝑂𝑂(𝑛𝑛) nodes.

68

The Final Construction

Theorem: Any (parallel)
pebbling requires
s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles
for t = Ω 𝑛𝑛 rounds

Technical Details in
paper

69

Consequences of new Depth-Robust Graphs
• Logic: “Parallel Black-White Pebbling”

• Application: CNF formulas with very memory costly refutation resolution
proofs.

• MHFS: Applications: Optimal CC for any graph of size n even though
only O(log(n)) in-degree

• 𝐶𝐶𝐶𝐶 𝐷𝐷𝑚𝑚𝜀𝜀 ≥ 1−𝜂𝜂 𝑛𝑛2

2
• Exact Constants!
• Complete DAG: 𝐶𝐶𝐶𝐶 𝐾𝐾𝑛𝑛 ≤ 𝑛𝑛2

2
(prior result is almost optimal!)

• Coding Theory: better locally detectable error detection codes
[BGGZ19]

• Improved Proof-of-Sequential work (temporarily. See “Simple Proofs
of Sequential Work” for construction without depth-robust graphs).

A Few Open Questions

• Practical Construction of iMHF with high sustained space complexity?
• Analyze/improve constant factors in bounds

• Computer Aided Analysis?

• Stronger Results for dMHFs? Hybrid Modes like Argon2id?
• Find constant indegree DAG with parallel space-time complexity

ST|| G = Ω 𝑛𝑛2 or show that no such DAG exists
• Note: [AB16] pebbling shows that 𝐶𝐶𝐶𝐶 G = 𝑂𝑂 𝑛𝑛2 log log 𝑛𝑛

log 𝑛𝑛
, but the pebbling

attack P still has ST||(𝑃𝑃) = Ω 𝑛𝑛2

71

A Few Open Questions

• Practical Construction of iMHF with high sustained space complexity?
• See upcoming crypto 2019 paper
• Data-Independent Memory Hard Functions: New Attacks and Stronger

Constructions (with Ben Harsha and Siteng Kang and Seunghoon Lee and Lu Xing
and Samson Zhou).

Theorem: Any pebbling of (practical) DAG G either has
1. Cumulative Cost 𝜔𝜔 𝑛𝑛2 , or
2. At least s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles for t = Ω 𝑛𝑛 rounds

72

Announcements & Reminders

• Homework 2 Due Tonight (2/23/2023)
• Midterm Next Week

• Informal Poll: Take Home vs. In-Class

• Course Presentation (Signup Sheet will be Announced Soon)

73

Bandwidth Hard Functions:
Reductions and Lower Bounds

Jeremiah Blocki (Purdue)
Ling Ren (MIT)

Samson Zhou (Purdue)

74

Offline Attacks

75

Username

jblocki

+

jblocki, 123456

HASH(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021
f584e3db87aa
72630a9a234
5c062

Salt

89d978034a3f6

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

76

Key Stretching

Hash Iteration Memory Hard Functions

Hash Function Cost: C

H

H𝛕𝛕 …

PBKDF2

77

What is the ASIC Advantage?

79

>200,000x faster than

$$ per eval(): capital + electricity

of lifetime eval()

What is the ASIC Advantage?

80

$$ per eval(): amortized capital + electricity

Memory-hard functions [Percival’09 (scrypt)]:

“A natural way to reduce the advantage provided by an

attacker’s ability to construct highly parallel circuits is

to increase the size of the circuit.”

Reducing ASIC Advantage

Size of the circuit:

• dominated by memory

• Reasonable approximation of amortized capital costs
81

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

vs.

• Goal: force attacker to lock up large amounts of memory for duration
of computation
Expensive even on customized hardware

82

Lot’s of Work on Memory Hard Functions
• [Percival’09 (scrypt)]
• Password Hashing Competition

• Argon2 (winner), Catena, Lyra2, yescrypt…
• Data-Independent (iMHF) vs Data-Dependent (dMHF)

• iMHF: harder to construct, but resistant to side-channel attacks like cache-timing

• [Boneh et al.’ 16 (Balloon Hash)]
• [Alwen & Serbinenko’ 15]

• Definitional issue with ST-complexity (amortization of costs)
• Cumulative Memory Complexity (stronger requirement to address amortization)

• [Alwen & Blocki’ 16, 17]
• Argon2i, Balloon Hash and other iMHFs have low cumulative memory complexity

83

Lot’s of Work on Memory Hard Functions
• [Alwen & Blocki’ 16, 17]

• Argon2i, Balloon Hash and other data-independent memory hard functions have
low cumulative memory complexity (cmc)

• [ABP17]
• Theoretical construction of iMHFs with asymptotically optimal cumulative memory

complexity

• [ABH17]
• First practical construction of iMHFs with asymptotically optimal cumulative

memory complexity

• [ABP18] Sustained Space Complexity

84

Reducing ASIC Advantage

85

(memory-hard) (bandwidth-hard)
$$ per eval(): amortized capital + electricity

How to Define Bandwidth
Hardness?

86

Energy Cost
• Graph labeling, compute H: 0,1 2𝑤𝑤 → 0,1 𝑤𝑤 in a DAG
• Give the adversary a cache
• Energy Cost

ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚 = Cb ×
#bits transfered to/from cache

𝑤𝑤
+ Cr × #evals H

87

H()
Bit in cache

Evaluating an iMHF (red-blue pebbling)

Pebbling: 𝑃𝑃=(B1,R1)…, (Bt,Rt) where
• Set of labels stored in memory at round i: Bi

• Set of labels stored in cache at round i: Ri (Cache-Size: Ri ≤ 𝑚𝑚)

Goal: place red pebble on last node (N) in in G

1
2

3
N=4 Output: LNInput:

pwd, salt
𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1

88

Evaluating an iMHF (red-blue pebbling)
Pebbling: 𝑃𝑃 = 𝐵𝐵0 = ∅,𝑅𝑅0 = ∅ , 𝐵𝐵1,𝑅𝑅1 , … , 𝐵𝐵𝑡𝑡,𝑅𝑅𝑡𝑡
• Bi set of labels stored in memory at time i
• Ri set of labels stored in cache at time i. (Cache-Size: Ri ≤ 𝑚𝑚)

Legal Pebbling Moves between Rounds:
• [Blue Move] Change the color of a pebble (cache-miss: store/load

value from memory)
• [Red Move] Place new red pebble on node v if parents 𝑣𝑣 ⊂ Ri

• [Discard Pebble] May discard pebble(s) at any time.
89

Red-Blue Pebbling Cost [RD17]
rbpeb 𝑃𝑃 = Cb × #Blue Moves in P + Cr × #Red Moves in 𝑃𝑃

rbpeb 𝐺𝐺,𝑚𝑚 = min
𝑃𝑃∈ℛℬ (𝐺𝐺,𝑚𝑚)

rbpeb 𝑃𝑃

Set of all legal red-blue
pebblings of DAG G
with cache-size m.

90

Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

rbpeb 𝑃𝑃 = Cb × #Blue Moves in P + Cr × #Red Moves in 𝑃𝑃

Attacker (ASIC):
rbpeb′ 𝑃𝑃′ = Cb′ × #Blue Moves in P′ + Cr′ × #Red Moves in 𝑃𝑃′

Attacker gets to play with potentially advantageous constants

1nJ ≈ Cb′ ≈ Cb ≈ Cr ≈ 10−3 × Cr′ ≈ 1pJ (Cr′≪ Cr)
91

Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

rbpeb 𝑃𝑃 = Cb × #Blue Moves in P + Cr × #Red Moves in 𝑃𝑃

Attacker (ASIC):
rbpeb′ 𝑃𝑃′ = Cb′ × #Blue Moves in P′ + Cr′ × #Red Moves in 𝑃𝑃′

Attacker gets to play with potentially advantageous constants
Cr′≪ Cr Cb′ = Θ Cb

How can I make sure
that the function is

energy intensive for
the attacker as well?

92

A Natural Approach

93

• An iMHF fG,H is memory-bound if:
• Computable with at most B cache misses (resp. blue moves)
• Not computable with < cB cache misses (resp. blue moves) even using

a cache of size M
(definition for dMHFs is similar, but does not involve pebbling)

[Abadi et al.’05]
[Dwork et al.’03]

Problem: Hard to construct; must rule out all space-time tradeoffs

Theorem[Hopcroft’77]: If G has constant indegree then there is a black pebbling which

never requires more than S = O(N/log(N)) pebbles.

Corollary: If M= O(N/log(N)) we need 0 blue-moves

Bandwidth-hard functions [RD17]
• Observation: computation is not free (even for attacker)!

• Allows for slight relaxation of goal

• Definition: An iMHF fG,H is bandwidth hard against attacker
with cache-size m if

rbpeb 𝐺𝐺,𝑚𝑚
rbpeb′ 𝐺𝐺,𝑚𝑚

= Θ 1

Sufficient Condition: rbpeb 𝐺𝐺,𝑚𝑚 = Ω 𝑁𝑁 × Cb
94

Best Red-Blue Pebbling for Honest Party

Best Red-Blue Pebbling for ASIC attacker

Prior State of Affairs (Bandwidth-Hardness)

Prior Results [RD17]:
• Proved that DAGs for several key

iMHFs satisfy
rbpeb 𝐺𝐺,𝑚𝑚 = Ω 𝑁𝑁 × Cb (1)

• Catena-BRG
• Balloon Hash

• Proved that dMHF scrypt is
bandwidth-hard *

*vs restricted class of attackers

Key Open Questions:
Pebbling Reduction? Is it true that any
algorithm A computing fG,H in the
random oracle model can be described
as a red-blue pebbling strategy?
(Thm: [AS15] holds for black pebblings)
Does equation (1) hold for
• Argon2i? (PHC Winner)
• DRSample? (Maximal CMC [ABH17])
• aATSample? (Maximal CMC [ABH17])

95

Pebbling Reduction [BRZ18]

Pebbling Reduction: Any algorithm A computing 𝑓𝑓𝐺𝐺,𝐻𝐻 in the random
oracle model can be described as a red-blue pebbling strategy with
comparable cost.

ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚 × 𝑤𝑤 ≥ Ω rbpeb 𝐺𝐺, 8𝑚𝑚

• Argon2i: ecost 𝐺𝐺, �𝑂𝑂 𝑁𝑁2/3 = Ω 𝑁𝑁 × Cb
• DRSample: ecost 𝐺𝐺,𝑂𝑂 𝑁𝑁1−𝜀𝜀 = Ω 𝑁𝑁 × Cb
• aATSample: ecost 𝐺𝐺, �𝑂𝑂 𝑁𝑁 = Ω 𝑁𝑁 × Cb Tolerates Larger Cache-Size

Arguably a reasonable upper bound on cache-size
Typical 𝑁𝑁 = 220 (1KB Blocks) = (1GB RAM)

𝑁𝑁 = 240/3 (1KB Blocks) = (10MB cache)

96

Additional Results [BRZ18]

Computational Complexity: NP-Hard to find ecost G .
(Open Question: Approximate ecost G ?)

Tight Relationship between parallel and sequential pebblings:
rbpeb 𝐺𝐺,2𝑚𝑚 ≤ rbpeb∥ 𝐺𝐺,𝑚𝑚

(this relationship does not hold for black pebblings!)
Generic Connection Between Memory Hardness and Bandwidth
Hardness: Any MHF f(.) with high cumulative memory complexity must
have reasonably high energy cost.

97

Additional Results [BRZ18]

Generic Connection Between Memory Hardness and Bandwidth
Hardness: Any MHF f(.) with high cumulative memory complexity must
have reasonably high energy cost.

ecost 𝑓𝑓,𝑚𝑚𝑚𝑚 ≥ Ω min
t

𝑡𝑡 Cr + Cb
cmc f
𝑡𝑡𝑡𝑡

−𝑚𝑚

Theorem [ABPRT17]: cmc scrypt = Ω N2

Corollary: ecost scrypt = Ω N Cr × Cb
(first unconditional lower bound on energy cost of scrypt)

98

Bonus: More Contributions

ecost 𝑓𝑓,𝑚𝑚𝑤𝑤 ≥ Ω min
t

𝑡𝑡 Cr + Cb
cmc f
𝑡𝑡𝑡𝑡

−𝑚𝑚

Theorem [ABPRT17]: cmc scrypt = Ω N2

Corollary: ecost scrypt = Ω N Cr × Cb
(first unconditional lower bound on energy cost of scrypt)
Comparison: [RD17] lower bound is slightly stronger Ω N × Cb for
restricted adversary class.
Recent: Unconditional proof that ecost scrypt = Ω N × Cb

99

Pebbling Reduction

• Goal: Compute 𝑓𝑓𝐺𝐺,𝐻𝐻

minimize
ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚

• Goal: Pebble G
minimize

rbpeb 𝐺𝐺,𝑚𝑚

H()
1

2
3

N=4
1

100

Pebbling Reduction

• Goal: Compute 𝑓𝑓𝐺𝐺,𝐻𝐻

minimize
ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚

• Goal: Pebble G
minimize

rbpeb 𝐺𝐺,𝑚𝑚

H()
1

2
3

N=4
1Easy Direction

101

Pebbling Reduction

• Goal: Compute 𝑓𝑓𝐺𝐺,𝐻𝐻

minimize
ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚

• Goal: Pebble G
minimize

rbpeb 𝐺𝐺,𝑂𝑂(𝑚𝑚)

H()
1

2
3

N=4
1Extractor Argument

(can’t compress
labels from RO)

102

Pebbling Reduction

• Prior pebbling reduction implies that total number of pebbles on
graph (red or blue) is proportional to overall state size (cache+RAM)

• Challenge: Ex-post facto pebbling only gives us black pebbling P1,…,Pt.
• Which pebbles should we color blue/red in each round?
• We cannot directly see what labels are transferred to/from cache (the labels

might be stored in encrypted form!)

• Recall: In ex-post facto pebbling Pi denotes labels that appear “out of
the blue” in our simulation i.e., the next time these labels appear will
be as the input to a random oracle query.

103

Pebbling Reduction

• Prior pebbling reduction implies that total number of pebbles on graph
(red or blue) is proportional to overall state size (cache+RAM)

• Challenge: Ex-post facto pebbling only gives us black pebbling P1,…,Pt.

• Recall: In ex-post facto pebbling Pi denotes labels that appear “out of the
blue” in our simulation i.e., the next time these labels appear will be as the
input to a random oracle query.

• Intuition: We expect that at least |Pi|-m of the labels in Pi will have to be
transferred from cache in the future at cost (|Pi|-m)Cb.

104

Pebbling Reduction

• Challenge: Ex-post facto pebbling only gives us black pebbling P1,…,Pt.

• Recall: In ex-post facto pebbling Pi denotes labels that appear “out of the blue” in
our simulation i.e., the next time these labels appear will be as the input to a
random oracle query.

• Intuition: We expect that at least |Pi|-m of the labels in Pi will have to be
transferred from cache in the future incurring cost (|Pi|-m)Cb.

• Suppose Not: If fewer than (|Pi|-m)Cb/2 bits are transferred to/from cache
after round i then extractor hint would include

• Cache State at round i (mw) bits
• Bits transferered between cache/memory ((|Pi|-m)Cb/2 bits)
• Additional information to extract labels (≪(|Pi|-m) Cb/2 bits)
•  Contradiction! We would extract a random |Pi|w-bit string with a much shorter hint

105

Pebbling Reduction

• Key Definition: QueryFirst(t1,t2)
• Data-labels 𝐿𝐿𝑣𝑣 that appear “out of

the blue” as input to RO query
before output during rounds [t1, t2]

• Dependent on execution trace of
attacker.

• Partition time into intervals [t1, t2],
[1+t2, t3]… s.t

4m > |QueryFirst(ti,ti+1)| > 3m

• Claim 1: Attacker must transfer at
least mw bits to/from cache during
each interval [1+ti,ti+1]

• Claim 2: Can find legal red-blue
pebbling in which

1. The number of blue moves during
each interval [1+ti,ti+1] is at most 4m

2. We never use more than 8m red
pebbles.

107

Pebbling Reduction

Claim 1: Attacker must transfer at
least mw bits to/from cache during
each interval [1+ti,ti+1]
Proof Sketch: Suppose not then we
could use an extractor to extract
3m labels with a hint of size

(h − 2𝑚𝑚𝑚𝑚) ≪ 3mw

The odds of this happening are
negligible!

• Extractor Hint:
• State 𝝈𝝈𝟏𝟏+𝒕𝒕𝒊𝒊 of PROM attacker cache

A at time 1+ti
• ignore memory 𝝃𝝃𝟏𝟏+𝒕𝒕𝒊𝒊
• At most mw bits

• List of messages passed to/from
cache during interval [1+ti,ti+1]

• At most mw bits
• List of labels in QueryFirst(ti,ti+1) to

extract (plus information to
recognize relevant queries)

• 𝑂𝑂 𝑚𝑚 log(𝑛𝑛 + 𝑞𝑞) ≪ 𝑚𝑚𝑚𝑚

108

Extractor for Pebbling Reduction

• Given state of cache 𝝈𝝈𝟏𝟏+𝒕𝒕𝒊𝒊 and
list of messages passed to/from
memory we can simulate the
attacker.

• When the attacker submits the
ith random oracle query

• Check hint to see the ith query x is
of interest

• Otherwise forward query to
random oracle and forward the
response to the attacker

• Label appears “out of the blue”
• Making the query “ruins” label
𝐿𝐿𝑣𝑣 we want to extract

• 𝐿𝐿𝑣𝑣 = 𝐻𝐻(𝑣𝑣, 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑉𝑉))
• How to identify such a query?

• Rely on hint.
• How to continue simulation

without making the RO query?
• 𝐿𝐿𝑣𝑣 previously appeared out of the

blue.
• Thus, extractor can simply send the

response 𝐿𝐿𝑣𝑣

109

Bandwidth Hardness of Candidate iMHFs

• Key Pebbling Lemma: Lower bounds
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 cost to pebble
target nodes 𝑇𝑇 ⊆ [𝑁𝑁] starting from
configuration with

• Blue Pebbles on 𝐵𝐵 ⊆ [𝑁𝑁]\T
• Red Pebbles on 𝑅𝑅 ⊆ [𝑁𝑁]\T

• Let 𝐵𝐵′ ⊆ 𝐵𝐵 be blue moves that are
eventually converted to red pebbles.

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅
≥ 𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇

• Intuition: If there is a path from v
to T which avoids the set 𝑅𝑅 ∪ 𝐵𝐵𝐵
then node v must be pebbled at
some point at cost 𝐶𝐶𝑟𝑟.

110

Bandwidth Hardness of Candidate iMHFs

• Key Lemma (central to all proofs)
• Lower bounds rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 cost to pebble target nodes 𝑇𝑇 ⊆ [𝑁𝑁]

starting from configuration with
• Blue Pebbles on 𝐵𝐵 ⊆ [𝑁𝑁]\T
• Red Pebbles on 𝑅𝑅 ⊆ [𝑁𝑁]\T

• Let 𝐵𝐵′ ⊆ 𝐵𝐵 be blue moves that are eventually converted to red pebbles.

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

111

Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Partition the nodes [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each
containing Ω 𝑚𝑚 nodes.

rbpeb 𝐺𝐺,𝑚𝑚 ≥�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇𝑖𝑖 ,𝐵𝐵,𝑅𝑅

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3
𝑁𝑁
2

𝑁𝑁1
Ω 𝑚𝑚 nodes

…
𝑅𝑅 ≤ 𝑚𝑚𝐵𝐵

112

Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Partition the nodes [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing
Ω 𝑚𝑚 nodes.

rbpeb 𝐺𝐺,𝑚𝑚 ≥�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇𝑖𝑖 ,𝐵𝐵,𝑅𝑅

≥�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

We lower bound this quantity
for three iMHF candidates
Argon2i, DRSample and

aATSample

113

Bandwidth Hardness of Candidate iMHFs

Theorem: [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing Ω 𝑚𝑚 nodes
then rbpeb 𝐺𝐺,𝑚𝑚 ≥

�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Argon2i if 𝑚𝑚 = 𝑂𝑂 𝑁𝑁
2
3−𝜀𝜀 then for each interval 𝑇𝑇𝑖𝑖 of Ω 𝑚𝑚 nodes we have

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏

114

Bandwidth Hardness of Candidate iMHFs

Theorem: [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing Ω 𝑚𝑚 nodes
then rbpeb 𝐺𝐺,𝑚𝑚 ≥

�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Argon2i if 𝑚𝑚 = 𝑂𝑂 𝑁𝑁
2
3−𝜀𝜀 then for each interval 𝑇𝑇𝑖𝑖 of Ω 𝑚𝑚 nodes we have

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏

Amortized: Ω 1 blue moves
per node in interval (best

possible)

115

Bandwidth Hardness of Candidate iMHFs

Theorem: [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing Ω 𝑚𝑚 nodes
then rbpeb 𝐺𝐺,𝑚𝑚 ≥

�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Argon2i if 𝑚𝑚 = 𝑂𝑂 𝑁𝑁
2
3−𝜀𝜀 then for each interval 𝑇𝑇𝑖𝑖 of Ω 𝑚𝑚 nodes we have

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏

Amortized: Ω 𝑁𝑁
1
3 red moves

per node in interval (expensive
even if 𝐶𝐶𝑟𝑟 ≪ 𝐶𝐶𝑏𝑏

116

Bandwidth Hardness of Candidate iMHFs

Argon2i

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏

We must pay this cost Ω 𝑁𝑁
𝑚𝑚

times for each interval 𝑇𝑇𝑖𝑖

rbpeb 𝐺𝐺,𝑁𝑁
2
3−𝜀𝜀 = Ω min 𝑁𝑁

4
3𝐶𝐶𝑟𝑟 ,𝑁𝑁𝐶𝐶𝑏𝑏

117

Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 ancestorsG−R∪B′ T + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

DRSample: For any constant 𝜌𝜌 < 1 if m = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏

118

Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 ancestorsG−R∪B′ T + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

DRSample: For any constant 𝜌𝜌 < 1 ifm = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏

Amortized (𝜌𝜌 = 0.8): Ω 𝑁𝑁0.1

red moves per node in interval
(expensive even if 𝐶𝐶𝑟𝑟 ≪ 𝐶𝐶𝑏𝑏

119

Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 ancestorsG−R∪B′ T + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

DRSample: For any constant 𝜌𝜌 < 1 ifm = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏

Amortized: Ω 1 blue moves
per node in interval (best

possible)

120

Bandwidth Hardness of Candidate iMHFs

DRSample: For any constant 𝜌𝜌 < 1 ifm = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏

If m = 𝑂𝑂 𝑁𝑁𝜌𝜌 must pay this cost Ω 𝑁𝑁
𝑁𝑁𝜌𝜌

times

rbpeb 𝐺𝐺,𝑁𝑁𝜌𝜌 = Ω min 𝑁𝑁
3
2−

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝐶𝐶𝑏𝑏

121

Comparison between Argon2i and DRSample

• Argon2i is maximally bandwidth
hard if attacker’s cache size is
𝑚𝑚 = 𝑜𝑜 𝑁𝑁2/3 

• Arguably a reasonable assumption
in practice

• Argon2i is not maximally
memory hard 

• But it does beat out other entrants
in the Password Hashing
Competition 

• DRSample is both maximally
memory hard and maximally
bandwidth hard 
• Even if attackers cache size is 𝑚𝑚 =
𝑂𝑂 𝑁𝑁1−𝜀𝜀

• aATSample is also maximally
memory hard and maximally
bandwidth hard 
• Even if attackers cache size is 𝑚𝑚 =
𝑂𝑂 𝑁𝑁

log 𝑁𝑁

122

Scrypt is maximally
memory-hard

IST Austria

Joël
Alwen

UCSB Boston U.

Binyi
Chen

Krzysztof
Pietrzak

Leonid
Reyzin

IST Austria
(work done at

IST Austria)

Stefano
Tessaro

UCSB

[Percival 2009]: scrypt
x0 x1 x2 x3 x4 x5 x6 … xn

Repeat n times: xi=H(xi-1)
Input: x0

s1 s2 s3 s4 s5 s6 … sn

Repeat n times: si=H(si-1⊕xj) for j = si-1 mod n
s0=xn

Output: sn

H: {0,1}* → {0,1}w random oracle

s0

Data-Dependent Memory Access
 Pebbling Attacks Don’t apply

scrypt in the wild

• Used in several cryptocurrencies, most notably
Litecoin (a top-4 cryptocurrency by market cap)

• Idea behind password-hashing winner Argon2d

• Attempts to standardize within IETF (RFC 7914)

Memory-Hard Functions
Goal: Find moderately hard F for which
special-purpose hardware, parallelism, and amortization do not help.

Proposal [Percival 2009]: make a function that needs a lot of memory

(memory is always general, unlike computation)

Make sure parallelism cannot help
(force evaluation to cost the same)

Complexity measure: memory × time

What’s the best we can hope for?

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

The naïve algorithm stores every xi value.
Time: 2n. Memory: ≤n. Total: ≤2n2 (in w-bit units).

Upper bound on cc(scrypt):

Note: any function that has an n-step sequential algorithm
has cc ≤ n2/2 (because memory ≤ time)

No function so far has been proven to have cc of n2

(several candidates were proposed during
password-hashing competition 2013-15; some have been broken)

Data-Independent Memory Hard Functions

Observation: any function whose memory access pattern
is independent of the input
can be represented as a fixed graph

[Alwen-Blocki 16]: for any iMHF, cc ≤ n2 log log n/ log n

Term: iMHF (Data-independent Memory Hard Function)
Sequential algorithm of time n ⇒ n nodes

scrypt is a very simple dMHF
Q: can scrypt beat this iMHF bound?

Our Result

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Theorem: in the parallel RO model, cc(scrypt) = Ω (n2)

The first ever construction works!

Talk Outline
Memory-hard functions for password hashing

Design of scrypt

How to measure cost: cumulative complexity (cc)

Main Result: cc(scrypt) is highest possible n2

in parallel RO model

Before proving: can we simplify scrypt?

How quickly can you play this game?

I give you uniform challenge c from 1 to n

You return xc

You have x0 and whatever storage you want

If you store nothing but x0: n/2 H-queries per challenge

x0 xn

How quickly can you play this game?

If you store nothing but x0: n/2 H-queries per challenge

If you store p hash values: n/(2p) H-queries per challenge

If you store something other than hash values?

x0 xn

I give you uniform challenge c from 1 to n

You return xc

You have x0 and whatever storage you want

Result for the scrypt one-shot game
x0 xn

Prior result 1: if you store p labels, expected time ≥n/(2p)

I give you uniform challenge i from 1 to n

You return xi

You have x0 and whatever storage you want

Prior result 2 [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
same if you store “entangled” labels
(such as XOR or more general linear functions)

Our result: same for arbitrary storage of pw bits!
(where w is label length = output length of H)

but not portions of labels, XORs of portions, etc.

Claim: time ≥n/(2p) if storage pw
x0 xn

Basic idea of the argument (inspired by [Alwen-Serbinenko]):
if A is too fast, then
we can extract many labels from A’s storage w/o querying H

but can’t extract more than p labels b/c RO not compressible

Extracting labels from A’s memory
x0 xn

Imagine: run A on every possible challenge and record queries

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x22

x23

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x22

x23

x23

x24

x21 x12

c=25

x22 x13

x13

x14

x7

x8

x30 x5

c=26

x31 x6

x26

… …

x24

x25

Extracting labels from A’s memory
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x22

x23

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x22

x23

x23

x24

x21 x12

c=25

x22 x13

x13

x14

x7

x8

x30 x5

c=26

x31 x6

x26

x24

… …

x25

Extracting labels from A’s memory
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x22

x23

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x22

x23

x23

x24

x21 x12

c=25

x22 x13

x13

x14

x7

x8

x30 x5

c=26

x31 x6

x26

x24

… …

x25

x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H

Proof: Make a predictor for H that runs A in parallel
on all challenges, one step at a time,
predicting blue values by querying H only when needed

Extracting labels from A’s memory

x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ |memory|/w)

Extracting labels from A’s memory

x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ pw/w)

Extracting labels from A’s memory

x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ p)

Extracting labels from A’s memory

memory pw ⇒ time ≥ n/(2p)
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ p)

Lemma 2: Time to answer c ≥ distance from nearest blue
Proof: induction

memory pw ⇒ time ≥ n/(2p)
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ p)

Lemma 2: Time to answer c ≥ distance from nearest blue
Conclusion: storage pw ⇒ time ≥ n/(2p)

Talk Outline
Memory-hard functions for password hashing

Design of scrypt

How to measure cost: cumulative complexity (cc)

Main Result: cc(scrypt) is highest possible n2

in parallel RO model

scrypt: very simple dMHF (and iMHF won’t work)

Proof in two parts

2. cumulative complexity of n challenges
1. memory vs. time to answer one random challenge

How to go from this…

x0 x1 x2 x3 x4 x5 x6 … xn

Single random challenge: memory ≥

H: {0,1}* → {0,1}w random oracle

nw
2

1
time•

… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute si

Know only that
orange is inversely
proportional to red

Prior work [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
“potential” argument to get  (n2 / log2n)

nw
2

1
time•

… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

Idea: apply bound k
steps before si-1 is

known: purple
is inversely proportional

to red+k

nw
2

1
time•

k

… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

nw
2

1
time•

… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

nw
2

1
time•

… to cc(n challenges)

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that
orange is inversely
proportional to red

nw
2

1
time•

nw
2

nw
2

Adding up memory used during previous challenge:

ti ti+1 ti + ti-1
(+ ++ …1 1 1) ≥ (ln (ti+ti-1) – ln ti)

… to cc(n challenges)

time

m
em

or
y

nw
2

nw
2

Adding up memory used during previous challenge:

ti ti+1 ti + ti-1
(+ ++ …1 1 1) ≥ (ln (ti+ti-1) – ln ti)

Adding up over all challenges i from 1 to n:
½nw (ln (t1+t2) – ln t2 + ln (t2+t3) – ln t3+ … + ln (tn-1+ tn) – ln tn)

≥ ½nw (n ln 2) ≥ Ω(n2w)

Talk Outline
Memory-hard functions for password hashing

Design of scrypt

How to measure cost: cumulative complexity (cc)

Main Result: cc(scrypt) is highest possible n2

in parallel RO model

scrypt: very simple dMHF (and iMHF won’t work)

Proof in two parts

2. cumulative complexity of n challenges
1. memory vs. time to answer one random challenge

Thanks for Listening

182

	Advanced Cryptography�CS 655
	Course Project Proposal
	A Few Project Ideas	
	A Few Project Ideas	
	Recap: iMHFs	
	Recap: Depth Robustness
	Recap: Depth Robustness
	Recap: Depth-Robustness is Sufficient! [ABP17]
	DRSample
	DR-Sample: Meta-Graph
	Recap: DRSample Analysis
	𝛿−bipartite expander
	𝛿−bipartite expander
	𝛿−bipartite expander
	 𝛿 -local expander around v
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Second Union Bound?
	Second Union Bound?
	Second Union Bound?
	Sustained Space Complexity
	Motivation: Password Storage
	Offline Attacks: A Common Problem
	Offline Attacks: A Common Problem
	Goal: Moderately Expensive Hash Function
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Data-Independent Memory Hard Function (iMHF)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Pebbling Example
	Pebbling Example
	Pebbling Example
	Pebbling Example
	Measuring Cost: Attempt 1
	Amortization and Parallelism
	Measuring Pebbling Costs [AS15]
	Measuring Pebbling Costs [AS15]
	Pebbling Example: Cumulative Cost
	Lessons from SCRYPT
	What Happened?
	Sustained Space
	Wanted: A Moderately Hard Function
	Main Theorem
	The Parallel Black Pebbling Game
	Technical Ingredient #1 [PTC77]
	Technical Ingredient #1 [PTC77]
	Technical Ingredient #1 [PTC77]
	Depth Robustness [ABP17]
	Block Depth Robustness [ABP17]
	Technical Ingredient #2
	Technical Ingredient #2
	Technical Ingredient #2
	Technical Ingredient #2
	PTC Overlay (Attempt 1)
	PTC Overlay (Attempt 1)
	Technical Ingredient #3
	Technical Ingredient #3
	The Final Construction
	Consequences of new Depth-Robust Graphs
	A Few Open Questions	
	A Few Open Questions	
	Announcements & Reminders	
	Bandwidth Hard Functions: Reductions and Lower Bounds
	Offline Attacks
	Offline Attacks: A Common Problem
	Key Stretching
	What is the ASIC Advantage?
	What is the ASIC Advantage?
	Slide Number 81
	Memory Hard Function (MHF)
	Lot’s of Work on Memory Hard Functions
	Lot’s of Work on Memory Hard Functions
	Reducing ASIC Advantage
	How to Define Bandwidth Hardness?
	Energy Cost
	Evaluating an iMHF (red-blue pebbling)
	Evaluating an iMHF (red-blue pebbling)
	Red-Blue Pebbling Cost [RD17]
	Red-Blue Pebbling Cost Inequity [RD17]
	Red-Blue Pebbling Cost Inequity [RD17]
	A Natural Approach		
	Bandwidth-hard functions [RD17]
	Prior State of Affairs (Bandwidth-Hardness)
	Pebbling Reduction [BRZ18]
	Additional Results [BRZ18]
	Additional Results [BRZ18]
	Bonus: More Contributions
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Extractor for Pebbling Reduction
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Comparison	 between Argon2i and DRSample
	Slide Number 123
	[Percival 2009]: scrypt
	scrypt in the wild
	Memory-Hard Functions
	What’s the best we can hope for?
	Data-Independent Memory Hard Functions
	Our Result
	Talk Outline
	How quickly can you play this game?
	How quickly can you play this game?
	Result for the scrypt one-shot game
	Claim: time n/(2p) if storage pw
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	memory pw  time  n/(2p)
	memory pw  time  n/(2p)
	Talk Outline
	How to go from this…
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	Talk Outline
	Thanks for Listening

