Homework 2 Due Thursday @ 11:59PM on Gradescope
Project Proposals due Tonight

Advanced Cryptography
CS 655

Week 7:

* Constructing Depth-Robust Graphs
e Sustained Space Complexity
 Bandwidth Hard-Functions

Spring 2023

Course Project Proposal

* Due Tonight by e-mail (jblocki@purdue.edu)

* Project Proposal: 2 Pages
e Briefly the problem you plan to work on

e Briefly summarize prior work on the problem and how your project is
different

* |dentify several related papers that you plan to read as part of the project
e Briefly describe your plan to attack the problem

mailto:jblocki@purdue.edu

A Few Project Ideas

e Pick a cryptographic scheme and try to find a tighter concrete security proof
under idealized assumptions

e Example: Tighter security analysis for Password Authenticated Key Exchange (PAKE)
protocols such as CPACE in the generic group+random oracle model?

 Pick a cryptographic scheme/protocol and analyze the security with respect
pre-processing attacks or provide a memory-tight reduction

 Example: Memory-Tight Reduction for RSA-FDH under the One-More-RSA-Inversion
problem?

e Example: Security of PAKE protocols against pre-processing attacks?
e Example: Security of AES-GCM vs pre-processing attacks?

e Pebbling Reduction for Salted iMHFs vs. Preprocessing Attackers

e Pebbling Reduction for Argon2 Round Function (in ideal permutation model)

A Few Project Ideas

* Implement a Cryptographic Protocol/Attack

 Example: Implement Argon2 with different instantiations of
round function

 Example: Implement partitioning oracle attack on AES-GCM.

e Many other possibilities! Make sure your proposal is
realistic.

e |tis ok to try something and fail i.e., a final project
report documenting your unsuccessful attempts to solve
a problem is acceptable as long as the attempts are
clearly described

Recap: IMHFs

* Graph Pebbling Reduction [AS15]: Complexity of iMHF f; 4 is fully
captured by pebbling cost of DAG G.

* Informal Theorem [AS15]: Any algorithm A evaluating f; g in the
parallel random oracle model has CMC(A) = A X CC(G) where
H(x) € {0,1}*

* Proof Sketch: Use execution trace from A to extract a legal pebbling
of G such that for all rounds i we have |P;| = |o;|/A

#pebbles at time i #bits in A’'s memory at time i

Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

0-0-6-0-0

Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

o0 00

Recap: Depth-Robustness is Sufficient! [ABP17]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then CC(G)= ed.

Implications: There exists a constant indegree graph G with

2
CC(G)ZQ(b)

logn

[AB16]: We cannot do better (in an asymptotic sense)
n‘loglogn
CC(G) =0

logn

DRSample

B B, B,
[l | : ! (—A—\
00 -0 000000 O

Indegree: 6 = 2
Key Modification to Argon2i: New distribution for r(i)

Buckets: By, ..., Blog i
B =[i—2/,i—2/"1-1]

DR-Sample: Meta-Graph
m = 0(logn)

Each meta-node u corresponds to m nodes Uy, ..., Uy, -
Let F, = {ul, ...,um/3} and L, = {um_mﬂ, ...,um} denote the first (resp.
3

last third) of these nodes

(r,,, has edge (u,v) if and only if G has some edge (x,y) withx € L,, andy € L,

Recap: DRSample Analysis

. Ig_lezlg[i)be the DRSample graph. Define Meta-Graph G,,, withm = Q(log N) and N' =
m

Last Class: We assumed that (,, Was a 0 —local expander and proved that any
& —local expander with N’ = Q(3 nodes is (Q(N) Q(N’)) depth-robust

* Meta-Graph (,,, is (Q (ﬂ) , Q) (ﬂ)) —depth-robust with m = Q(logN)

m m

=>» DRSample G is (Q (%) , Q(N)) —depth-robust

TODO: Prove that (7,,, is a 0 —local expander * (*almost)

0 —bipartite expander

<) Al = Bl =n
A

0 —bipartite expander

<) Al = Bl =n
S

XC A

0 —bipartite expander

YCEB

Al = [Bl =n

YCEB
(unreachable from X)

(6)-local expander around v

We have (6) — local exapnsion if for every r

\ }

Not & —bipartite expander?

YCEB Al =|B| =7
Let A,B be a set of 2r consecutive
B nodes in meta-graph.

If not & —bipartite then there
existsYE Band X<ES A

\}A A with size\YJ =dr and |X|=07 such
that none of the edges from any
meta-node in Y hit any node in X

Not & —bipartite expander?

Fix some subsets |Y|=6r and
IX|=0r

Each individual edge from Y hits X
with probability 5

~ 3logn

There are % X Or edges
(all picked independently)

Not & —bipartite expander?

Each individual %dge from Y hits X with
probability =

3logn

There are % X Or edges (independent)

m

S)?X(ST

Pr|Y Misses X] < (1 —

—r 82—
< e ré (9logN

)

Not & —bipartite expander?

Y CB Union Bound:

B Pr[3X,Ys.t.Y Misses X]

—r52(9 lgngN) (r)2
\> < exp(2) or

With

1 1
82 -
Z rd (9lOgN)+25rln(5)+2rln(1_5>

Not & —bipartite expander?

Union Bound:

YCEB

Pr[3X,Y s.t.Y Misses X|
< exp(2)
< exp(—2r)

I(DI1CE|3<6m11n(=) +1867%(1+In (=))) logN

7 = —16% e + 26r1n 1 + 2rln 1
9log N) 1—-6

Second Union Bound?

e Fixing any A=[u,...,u+r-1] and B=[u+r,...,u+2r-1] we say that A,B are
connected with bipartite expander with probability at least 1 —
exp(—2r)

e Ideal: Want to show that (;,,, is a 6 —local expander i.e.., this holds
foralluandallr
e Union bound over all meta-nodes u and all r?
e We can union bound over all r = log N and all u since

Z Z exp(—2r) <N 2 exp(—2r) <<%

u rzlogN r=log N

Second Union Bound?

* Fix: Let B, be the event that for some r < log N we do not have an
expander between A=[u,...,u+r-1] and B=[u+r,...,u+2r-1]

* Key Idea: Use concentration bounds to argue that),,, B,, < &N with
high probability (for some suitably small &)

=>» For at least N — eN meta-nodes u we do have local expansion
around u.

=>» This is sufficient to argue that meta-graph is depth-robust.

Second Union Bound?

* Fix: Let B, be the event that for some r < log N we do not have an
expander between A=[u,...,u+r-1] and B=[u+r,...,u+2r-1]

 Key Idea: Use concentration bounds to argue that),,, B, < &N with high
probability (for some suitably small &)

Problem? B,, and B, are not independent!

But, B, and B, are independentifu —v = log N

Solution: Partition random variables into log N buckets such that random
variables in each bucket are independent. Apply concentration bounds to

each bucket.

Sustained Space Complexity

Joél Alwen (IST Austria/Wickr)

Jeremiah Blocki (Purdue)
Krzysztof Pietrzak (IST Austria)

| |S g4 AUSTRIA

Institute of Science and Technology

Motivation: Password Storage

jblocki, 123456

Username

89d978034a3f6 85e23cfe0021f584e
3db87aa72630a9a2
345c062

jblocki

SHA1(12345689d978034a316)=85e23cfe
0021f584e3db87aa72630a9a2345c062

25

Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions
of user accounts.

LastPassEXrTT sony € C Y

ASH LEY) . PPN AdultFriendFinder
MADISEN Linked[}] <

o 730005
rockyou 2Pkaiy

YAHOO! FA\Adobe =o===e= Ilvmgsocﬁll@

Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions

TECH

Yahoo Triples Estimate of Breached Accounts to 3 Billion

Company disclosed late last year that 2013 hack exposed private information of over 1 billion users

By Robert McMillan and Ryan Knutson

AS]- Updated Oct. 3, 2017 9:23 p.m. ET CiTR|x= |
4 .
M. >

A massive data breach at Yahoo in 2013 was far more extensive than previously disclosed,

Life is affecting all of its 3 billion user accounts, new parent company Verizon Communications

Inc. said on Tuesday.

The figure, which Verizon said was based on new information, is three times the 1 billion

1 when it first disclosed the breach in December 2016.

e g T
counts Yahoo sald were aifected when it first disclosed the breach 1n

I A\ RUUNG

Goal: Moderately Expensive Hash Function

~ast on PC and
nensive on ASIC?

t.p

PlayStation™

0aSSWOro

nasning
competition

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

0aSSWOro
a

qaghimgl | We recommend that
Compet_t\om you use Argon2...

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

0aSSWOro

qaghimgl | We recor?end that
Competmom you use Argon2...

There are two main versions of

(2013_2015) Argon2, Argon2i and Argon2d.

Argon2i is the safest against side-
channel attacks

https://password-hashing.net/

https://password-hashing.net/

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T

* Goal: force attacker to lock up large amounts of memory for duration
of computation

- Expensive even on customized hardware

Memory Hard Function (MHF)

d by memory costs
y Y i

A

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T

Memory Hard Function (MHF)

d by memory costs
y Y i

e Data Independent Memory Hard Function (iMHF)
e Memory access pattern should not depend on input

Memory Hard Function (MHF)

. Intumon' computatlon costs dominated by memory cost's' T

e Data Independent Memory Hard Function (|IVIH
 Memory access pattern should not depend on input

Data-Independent Memory Hard Function (iMHF)

IMHF f , defined by

e H:{0,1}%¢ —» {0,1}* (Random Oracle)

e DAG G (encodes data-dependencies)
e Maximum indegree: 6 = 0(1)

Input: pwd, salt G/'ab/a Output: fG,H(de'Salt)= L,

L, = H(pwd salt) = H(Ly Lq)

Evaluating an iIMHF (pebbling)

I

L, = H(p\l/vd, salt) Ly =H(Ly L)

—

Pebbling Rules: P=P,,...,P.C V s.t.
*P...C P.U{x € V|parents(x) c P.,,} (need dependent values)
*nE P, (must finish and output L)

Evaluating an iMHF (

0-0-6-0-0

)

Fvaluating an iMHF ()

0500

P, = {1} (data value L, stored in memory)

Pebbling Example

P, = {1)

P, ={1,2} (data values L, and L, stored in memory)

Pebbling Example

60500

Py =11}

P2 = {112}
P3 =13}

Pebbling Example

60 v 00

Py =11}
P2 = {112}
P3 =13}
P, =1{3,4}

Pebbling Example

0-0-0-0-'

Py =11}

P2 = {112}
P3 =13}
P, =1{3,4}
Ps = {5}

Measuring Cost: Attempt 1

e Space X Time (ST)-Complexity

ST(G) = min (tlg X maX\Pi\)

)2 iStT;
e Rich Theory

e Space-time tradeoffs t ST Cost

e But not appropriate for password hashing m

time .

space

\

/

Amortization and Parallelism

e Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

ST, =5, x1, = x [,=ST,

) f \

O

©

Q .

7 cost of computing cost of computing
fonce f three times

time

[AS15] 3 function £, (consisting of n RO calls) such that: ST(fX‘/ﬁ) = 0(ST(f))

Measuring Pebbling Costs [AS15]

lp
CC(6) = min) [Py
P
=1

Approximates Memory Used at Step |

Amortized Area x Time
Complexity of IMHF Cumulative Memory Cost

space

Measuring Pebbling Costs [AS15]

lp
CC(G =min2 P;
@ =min) IPL__

- Memory Used at Step |

[AS15] Costs scale linearly with #password guesses
CC(G, ...,G) = m X CC(G)
_'_I

m times

Pebbling Example: Cumulative Cost

0-0-0-0-'

P, = {1} 5

P, ={1,2} CC(G) <) |P|
P3 = {3} ;
e =1+2+1+2+1

= 7

Lessons from SCRYPT

SCRYPT [Per09]

* CON: Data-Dependent—> Side-Channel Concerns

®* PRO: Proven to have high CC [ACPRT17]
 CC(SCRYPT) = Q(n?)

2
e Contrast: any iMHF has CC at most O (n log log n)

logn

SilverFish
25MH Scrypt Miner

25MH/s @ 440w

e Maximally Memory Hard = Egalitarian?

What Happened?

e CC(SCRYPT) = Q(n?) the function can be computed
with low memory

* Each strategy below is easily feasible

e Evaluate with O(n) memory in O(n) time
e Evaluate with O(1/n) memory in O(n+/n) time
e Evaluate with O(1) memory in 0(n?) time

e SCRYPT ASIC miners opt for low memory + high
computation options

e Goal: Ensure that low memory options are
infeasible

SilverFish

25MH/s @ 440w

51

Sustained Space

e Using memory is more costly than doing computation (at least for
ASICs).

e |dea: Only charge for computational steps where a lot of memory
is being used.

e Definition: s-Sustained Space

“Time spent above memory threshold s”

s-Sustained Space

) /\\/\\/AL

time

Intuition:
trade-offs
are free.

space

Wanted: A Moderately Hard Function

e Desiderata:
e Cost for honest & adversary roughly same:

Honest Computational Model Adversarial Model
e Sequential Computation e Parallel Computation
e Single Evaluation e Amortization across many
e Cost measured in ST evaluations
Complexity e Cost measured in s-SS
(for some large s)

Main Theorem

* For any neN we give a function f, and prove that in the parallel
Random Oracle Model (PROM):

Honest Adversarial
e Sequential Algorithm E e V parallel algs. A
e Time(Z(f,)) =n » s-SS(A(f,)) = Q(n) per eval.
o ST(E(f,)) = n? for s = Q(n/log(n))

* Bonus: f, is an iIMHF.

=7 runs in constant time and has data-independent memory access pattern

The Parallel Black Pebbling Game

Parallel Black Pebbling Game: Same as Black Pebbling, except can touch many pebbles
per iteration.

Goal: Place a pebble on the sink.

Rule 1: A node can be pebbled only if all parents contain a pebble.
Rule 2: A pebble can always be removed.

s-SS analogue: Count number of steps when at least s pebbles on graph.

Want G with...
1. Size(G)=n

2. In-degree(G) =2
s-SS Complexity
1-SS =3
2-SS=1

n
log(n)

-SS(G) = Q(n)

Technical Ingredient

n
m=my € ®(10gn)

Space-Complexity: () (ﬁ)

m=mn€®(

sinks

n

logn

) sources

1 [PTC/7]

e [PTC77] Built a constant
indegree DAG G with n nodes
and proves that any sequential
pebbling has at least one step in
which there are at least
Q(n/logn) pebbles on the
graph.

e [Hopcroft77] Any constant
indegree graph DAG G can be
pebbled with space at most
O(n/logn)

56

Technical Ingredient #1 [PTC/7/]

m=m, €0 (L) sinks
logn

e [PTC77] Built a constant indegree
DAG G space complexity Q(n/logn)
* Recursive Construction
e PTC,, contains 2 internal copies of PTC,

e Stronger Lemma used for Induction!
* For any sequential pebbling Py, ..., P;

We can find an interval [i, j] € [t] such
that both

1. |Py| = cymforeachk € [i,j]

2. Atleast c,m source nodes are
(re)pebbled during the interval

Space-Complexity: () (ﬁ)

n
m=m, €0 (—) sources
logn

57

Technical Ingredient #1 [PTC7/7/]

e [PTC77] Built a constant indegree DAG G space complexity Q(n/logn)

e Recursive Construction
* PTC,, contains 2 internal copies of PTC,

e Stronger Lemma used for Induction!

e For any parallel (sequentied) pebbling P;, ..., P;

 Can find aninterval [i,j] € [t] such that
1. |Py| = cyn/logn for eachk € [i,]] (lots of pebbles on the graph)
2. Atleast c,n/logn source nodes are (re)pebbled during the interval

e Implication (s = cyn/logn):s-SS(P)=j +1—i
e Sequential Pebbling: j+1—1i > c,n/logn (by(2)above)
e Parallel Pebbling: Could (re)pebble all c,n/logn in one step!

Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust forall S €V
s.t. |S| < e we have depth(G — 5) > d.

Otherwise, we say that G is (e,d)-reducible.

Example: (e=2,d=2)-reducible

000000

Block Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust forall S € V
s.t. |S| < e we have depth(G — 5) > d.

Otherwise, we say that G is (e,d)-reducible.

Example: (e=2,d=2)-reducible

000000

Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

e [EGS75] n node G with log(n) in-degree and (€)(n), {2(n))-depth-
robust
e Problem: Constants too smalle.g.,, e = 10™*nand d = 10~ ?n
* Problem: in-degree too high.

e [MMV13] e-extremely depth robust DAG G} with log?(n) in-
degree and (e,d)-DR for any e+d < n(1-¢).
* Problem: in-degree too high.

Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

* [MMV13] g-extremely depth robust DAG G with indegree
O(log“n polylog(logn)).

* Problem: in-degree too high.

* [NEW] e-extremely depth robust DAG D} with indegree O(log (n))
e Construction: similar to [EGS75]
 Many technical details to work out (see paper)

Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

e [NEW] e-extremely depth robust DAG D;with indegree O(log (n))
e Construction: similar to [EGS75]
 Many technical details to work out (see paper)

Useful Observation: Any subgraph of D;[S] of size |S| > en must contain a
path of length |S| — en

Proof: Otherwise DAG D} is not (e, d)-depth robust ford = |S| —enand e =
IV \ S| = n — |S]. Contradiction, D} is e-extremely depth robust and

et+d=n—en<(1-¢e)n.

Technical Ingredient #2

Definition: A DAG G is e-extremely depth robust if it is (e,d)-depth-
robust foralle +d < (1 — e)n.

Lemma: If legal (parallel) pebbling P.,...,P, of D, has at least one pebbling
round j with space s = |P;| > 2en then there are at least t = li;’i — en distinct

. . P
time rounds k with space |P,| = l—z’—l

Proof: Let i<j be last round before round j such that |P,| < l%'i and let S =

P;\ P;. Any node in S is (re)pebbled during the interval [ij].

—> (observation) the subgraph J:[S] contains a path of length t > l%’i — &n

— at least t pebbling rounds to reach configuration P from P,

PTC Overlay (Attempt 1)

n

m=mne®()sinks

logn

Space-Complexity: () (L

logn

OO -

n
_/ m=m, €0 (—) sources
logn

Lemma [PTC77] In any pebbling
of PTC, we can find an interval
li,7] € [t] such that
1. |Py| = cyn/lognfor each
k € [i,j] (lots of pebbles
on the graph)

2. Atleast c,n/logn source
nodes are (re)pebbled
during the interval

[NEW] Now requires Q(m)
rounds since D is &-
extremely depth robust

65

PTC Overlay (Attempt 1)

Lemma [PTC77] In any pebbling of PTC we can find an interval [, j] € [t] such that
1. |Py| = cyn/lognforeachk € [i,j] (lots of pebbles on the graph)
2. Atleast c,n/logn source nodes are (re)pebbled during the interval

[NEW] Overlay requires 2(m) rounds since DZ, is e-extremely depth robust

Problems:

* Requiress = Q(n/logn) pebbles fort = Q(n/logn) rounds
 |promiseds = Q(n/logn) pebbles for t = (.(n) rounds)

* Indegree still too highi.e., indeg(Dj5,) = O(logn)

e | promised constant indegree O(1)

Technical Ingredient #3

* Indegree Reduction [ABP17] deals with both problems simultaneously!

indeg(Df,) € ©(logn)

o_.(,é:ﬁb_.*@ m=mn€@(logn)

26
coples E copies copies

= indeg(J5,) = 2
#nodes = 20m € 0(n)

67

Technical Ingredient #3

* Indegree Reduction [ABP17] deals with both problems simultaneously!

indeg(Df5,) € ©(logn)

o_....ma...*omwnee(%)

8 = indeg(J5) = 2
#nodes = 26m € ©(n)

Lemma [ABP17]: If DS, is (e, d)-depth robust then J . is (e, d§)-depth robust.
Furthermore, indeg(J&,) = 2 and J&, has 2dm = 0(n) nodes.

The Final Construction

m=m, €0 (L) sinks
logn

Theorem: Any (parallel)
pebbling requires

s = Q(n/logn) pebbles
fort = Q(n) rounds

Technical Details in
paper

69

Consequences of new Depth-Robust Graphs

* Logic: “Parallel Black-White Pebbling”

. Applifcation: CNF formulas with very memory costly refutation resolution
proofs.

e MHFS: Applications: Optimal CC for any graph of size n even though
only O(log(n)) in-degree

(1-n)n?
+ CC(DE) =—F=

* Exact Constants! ,
e Complete DAG: CC(Kn) < % (prior result is almost optimal!)

e Coding Theory: better locally detectable error detection codes
[BGGZ19]

e Improved Proof-of-Sequential work (temporarily. See “Simple Proofs
of Sequential Work” for construction without depth-robust graphs).

A Few Open Questions

* Practical Construction of iIMHF with high sustained space complexity?

e Analyze/improve constant factors in bounds
e Computer Aided Analysis?

e Stronger Results for dMHFs? Hybrid Modes like Argon2id?

* Find constant indegree DAG with parallel space-time complexity
ST!II(G) = Q(n?) or show that no such DAG exists

2
» Note: [AB16] pebbling shows that CC(G) = 0 (” log log n
attack P still has ST!I(P) = Q(n?)

), but the pebbling

logn

A Few Open Questions

* Practical Construction of iMHF with high sustained space complexity?
* See upcoming crypto 2019 paper

e Data-Independent Memory Hard Functions: New Attacks and Stronger
Constructions (with Ben Harsha and Siteng Kang and Seunghoon Lee and Lu Xing
and Samson Zhou).

Theorem: Any pebbling of (practical) DAG G either has
1. Cumulative Cost w(n?), or
2. Atleasts = Q(n/logn) pebbles for t = (.(n) rounds

Announcements & Reminders

e Homework 2 Due Tonight (2/23/2023)

e Midterm Next Week
e Informal Poll: Take Home vs. In-Class

* Course Presentation (Signup Sheet will be Announced Soon)

Bandwidth Hard Functions:
Reductions and Lower Bounds

Jeremiah Blocki (Purdue)
Ling Ren (MIT)
Samson Zhou (Purdue)

H B Massachusetts
I I Institute of
Technology

Offline Attacks

jblocki, 123456

Username | Salt Hash

jblocki 85e23cfe0021
f584e3db87aa
72630a9a234
5c062

HASH(123456)=85e23cfe

0021f584e3db87aa72630a9a2345c062

75

Offline Attacks: A Common Problem

e Password breaches at major companies have affected mitiens billions
of user accounts.

LastPassEXEXz sonNy €Dy 232 Dropbox

ASHLEY

MADIS- - Linked T fOCliOU ZappOS@ 'mg u r

YAHOO! Fa\Adobe e ivingsocial blﬂ%

222myspace tumblr. dailymotion

76

Key Stretching

H _.
H T

Hash Iteration Memory Hard Functions

BCRYPT rexor2 sCrypt

7

What is the ASIC Advantage?

Advertised Capacity: >200,000x faster than §eruf
4.73 Thi/s —

SS per eval(): capital + electricity

of lifetime eval()

79

SS per eval(): amortized capital + electricity

80

Reducing ASIC Advantage

Memory-hard functions [Percival’09 (scrypt)]:
“A natural way to reduce the advantage provided by an
attacker’s ability to construct highly parallel circuits is

to increase the size of the circuit.”

Size of the circuit:
e dominated by memory

 Reasonable approximation of amortized capital costs

81

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory costs
AR

* Goal: force attacker to lock up large amounts of memory for duration
of computation

- Expensive even on customized hardware

82

Lot’s of Work on Memory Hard Functions

 [Percival’09 (scrypt)]

e Password Hashing Competition

e Argon2 (winner), Catena, Lyra2, yescrypt...
e Data-Independent (iMHF) vs Data-Dependent (dMHF)

* iMHF: harder to construct, but resistant to side-channel attacks like cache-timing

e [Boneh et al.” 16 (Balloon Hash)]
e [Alwen & Serbinenko’ 15]

e Definitional issue with ST-complexity (amortization of costs)
e Cumulative Memory Complexity (stronger requirement to address amortization)

e [Alwen & Blocki’ 16, 17]

e Argon2i, Balloon Hash and other iMHFs have low cumulative memory complexity

83

Lot’s of Work on Memory Hard Functions

e [Alwen & Blocki’ 16, 17]

e Argon2i, Balloon Hash and other data-independent memory hard functions have
low cumulative memory complexity (cmc)

e [ABP17]

* Theoretical construction of iIMHFs with asymptotically optimal cumulative memory
complexity

e [ABH17]

e First practical construction of iIMHFs with asymptotically optimal cumulative
memory complexity

 [ABP18] Sustained Space Complexity

84

Reducing ASIC Advantage

(memory-hard) (bandwidth-hard)
SS per eval(): amortized capital + electricity

85

How to Define Bandwidth
Hardness?

86

Energy Cost
* Graph labeling, compute H:{0,1}?* — {0,1}* in a DAG
 Give the adversary a cache
e Energy Cost

(#bits transfered to/from cache)
ecost(fG,H,mw) = (Cp X " + C, X (#evals H)

v
\

Bit in cache

87

Evaluating an iMHF (red-blue pebbling)

InpuLa/ab/:Wutput: Ly
. -

pwd, salt™}
L, = H(p\l/vd, salt) Ly =H(Ly L)

Pebbling: ﬁ=(Bl,R1)..., (B,,R,) where
 Set of labels stored in memory at round i: B,
» Set of labels stored in cache at round i: R. (Cache-Size: |R.| < m)

Goal: place red pebble on last node (N) inin G

88

Evaluating an iIMHF (red-blue pebbling)

PEbeIng }_)) — (BO — ®) RO — ®)) (Bll Rl)) e (Btl Rt)
* B.set of labels stored in memory at time i
* R set of labels stored in cache at time i. (Cache-Size: [R| < m)

Legal Pebbling Moves between Rounds:

 [Blue Move] Change the color of a pebble (cache-miss: store/load
value from memory)

* [Red Move] Place new red pebble on node v if parents(v) c R,
e [Discard Pebble] May discard pebble(s) at any time.

Red-Blue Pebbling Cost [RD17]
rbpeb(P) = C,, X (#Blue Moves in P) + C. X (#Red Moves in P)

rbpeb(G, m) = bpeb(P)
B

Set of all legal red-blue

pebblings of DAG G
with cache-size m.

Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

rbpeb(P) = C,, X (#Blue Moves in P) + C. X (#Red Moves in P)

Attacker (ASIC):
rbpeb’(P’) = C;, X (#Blue Moves in P") + C; X (#Red Moves in P’)

Attacker gets to play with potentially advantageous constants

In)]~C,~ C,=C. =102 X C.~ 1p] (C.«C,)

91

Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

How can | make sure

that the function iIs

— : 1 energy intensive for
rbpeb(P) = Cy X (#Blue MovesinP) + C. X (# e itacker e walls

Attacker (ASIC):
rbpeb’(P") = Cy, X (#Blue Moves in P’) + C, X (#Red CAU

Attacker gets to play with potentially advantageous cons
C/K C; C, = 0(Cp)

Life’s Not Fair

Getusedtoit. ©>

[Abadi et al.’05]
[Dwork et al.’03]

A Natural Approach

* An iMHF f; ,;is memory-bound if:
e Computable with at most B cache misses (resp. blue moves)

 Not computable with < ¢B cache misses (resp. blue moves) even using
a cache of size M

(definition for dMHFs is similar, but does not involve pebbling)

Problem: Hard to construct; must rule out all space-time tradeoffs

Theorem[Hopcroft’77]: If G has constant indegree then there is a black pebbling which

never requires more than S = O(N/log(N)) pebbles.

Corollary: If M= O(N/log(N)) we need 0 blue-moves

Bandwidth-hard functions [RD17]

e Observation: computation is not free (even for attacker)!
e Allows for slight relaxation of goal

* Definition: An iMHF f; , is bandwidth hard against attacker
with cache-size m if

Best Red-Blue Pebbling for Honest Party

rbpeb(G, m)
rbpeb’ (G, m)

= 0(1)

Best Red-Blue Pebbling for ASIC attacker

Sufficient Condition: rbpeb(G,m) = Q(N X Cy)

Prior State of Affairs (Bandwidth-Hardness)

Prior Results [RD17]: Key Open Questions:
* Proved that DAGs for several key Pebbling Reduction? Is it true that any
iIMHFs satisfy algorithm A computing f , in the

_ random oracle model can be described
rbpeb(G,m) = QN X Cp) (1) as a red-blue pebbling strategy?

(Thm: [AS15] holds for black pebblings)
Does equation (1) hold for

* Proved that dMHF scrypt is * Argon2i? (PHC Winner)
bandwidth-hard * e DRSample? (Maximal CMC [ABH17])

*vs restricted class of attackers * aATSample? (Maximal CMC [ABH17])

e Catena-BRG
e Balloon Hash

Pebbling Reduction [BRZ18]

Pebbling Reduction: Any algorithm A computing f; g in the random

oracle model can be described as a red-blue pebbling strategy with
comparable cost.

ecost(fG,H,m X W) > Q(rbpeb(G, 8m))

Arguably a reasonable upper bound on cache-size
Typical N = 220 (1KB Blocks) = (LGB RAM)

° Arg0n2| eCOSt (G, 6(1\,2/3)) — Q(N X Cb) N = 2%%/3 (1KB Blocks) = (10MB cache)
 DRSample: ecost(G, O(Nl_g)) = Q(N X C})
* aATSample: ecost (G, 5(N)) = Q(N X Cy)

Tolerates Larger Cache-Size

Additional Results [BRZ18]

Computational Complexity: NP-Hard to find ecost(G).
(Open Question: Approximate ecost(G)?)

Tight Relationship between parallel and sequential pebblings:
rbpeb(G, 2m) < rbpeb! (G, m)

(this relationship does not hold for black pebblings!)

Generic Connection Between Memory Hardness and Bandwidth

Hardness: Any MHF f(.) with high cumulative memory complexity must
have reasonably high energy cost.

Additional Results [BRZ18]

Generic Connection Between Memory Hardness and Bandwidth
Hardness: Any MHF f(.) with high cumulative memory complexity must
have reasonably high energy cost.

| cmc(f)
ecost(f,mw) = Q (mtm (t Cr + Gy (P m)))

Theorem [ABPRT17]: cmc(scrypt) = Q(N?)
Corollary: ecost(scrypt) = Q(N,/C, X Cy)
(first unconditional lower bound on energy cost of scrypt)

Bonus: More Contributions

ecost(f,mw) = Q (mtin (t Cr + Gy (CH;(/ZV(D _ m)))

Theorem [ABPRT17]: cmc(scrypt) = Q(N?)
Corollary: ecost(scrypt) = Q(N,/C, X Cy)
(first unconditional lower bound on energy cost of scrypt)

Comparison: [RD17] lower bound is slightly stronger Q(N X C,) for
restricted adversary class.

Recent: Unconditional proof that ecost(scrypt) = Q(N X C;,)

Pebbling Reduction

e Goal: Compute f; y i Goal: Pebble G
minimize minimize
ecost(fg 1, mw) rbpeb(G, m)

> g9, ®

100

Pebbling Reduction

e Goal: Compute f; y i Goal: Pebble G
minimize minimize

ecost(fG H) mw) rbpeb(G, m)

Easy Direction a/ b/

101

Pebbling Reduction

* Goal: Compute f; g e Goal: Pebble G
minimize

rbpeb(G, 0(m))

minimize
ecost(fe H mw)

Extractor Argument
(can’t compress
labels from RO)

:
> *(thw

102

Pebbling Reduction

* Prior pebbling reduction implies that total number of pebbles on
graph (red or blue) is proportional to overall state size (cache+)

* Challenge: Ex-post facto pebbling only gives us black pebbling P,...,P..
e Which pebbles should we color blue/red in each round?

e We cannot directly see what labels are transferred to/from cache (the labels
might be stored in encrypted form!)

* Recall: In ex-post facto pebbling P, denotes labels that appear “out of
the blue” in our simulation i.e., the next time these labels appear will
be as the input to a random oracle query.

Pebbling Reduction

* Prior pebbling reduction implies that total number of pebbles on graph
(red or blue) is proportional to overall state size (cache+)

* Challenge: Ex-post facto pebbling only gives us black pebbling P,,...,P..

* Recall: In ex-post facto pebbling P. denotes labels that appear “out of the
blue” in our simulation i.e., the next time these labels appear will be as the
input to a random oracle query.

* Intuition: We expect that at least |P,|-m of the labels in P, will have to be
transferred from cache in the future at cost (| P,|-m)Cy,.

Pebbling Reduction

* Challenge: Ex-post facto pebbling only gives us black pebbling P,,...,P..

 Recall: In ex-post facto pebbling P. denotes labels that appear “out of the blue” in
our simulation i.e., the next time these labels appear will be as the input to a
random oracle query.

* Intuition: We expect that at least |P,|-m of the labels in P, will have to be
transferred from cache in the future incurring cost (|P,|-m)Cy,.

e Suppose Not: If fewer than (LPi |-m)Cy, /2 bits are transferred to/from cache
after round i then extractor hint would include
e Cache State atroundi (mw) bits
* Bits transferered between cache/memory ((|P;|-m)Cy /2 bits)
» Additional information to extract labels (<(|P,|-m) C,, /2 bits)
e =» Contradiction! We would extract a random |P.|w-bit string with a much shorter hint

Pebbling Reduction

* Key Definition: QueryFirst(t,,t,)

* Data-labels L, that appear “out of

the blue” as input to RO query

before output during rounds [t,, t,]

e Dependent on execution trace of
attacker.

* Partition time into intervals [t,, t,],
[1+t,, t5]... s.t

4m > |QueryFirst(t,t.,;)| >3m

e Claim 1: Attacker must transfer at
least mw bits to/from cache during
each interval [1+t,t,]

e Claim 2: Can find legal red-blue
pebbling in which

1.

The number of blue moves during
each interval [1+t,t.,,] is at most 4m

We never use more than 8m red
pebbles.

Pebbling Reduction

Claim 1: Attacker must transfer at
least mw bits to/from cache during
each interval [1+t,t.,,]

Proof Sketch: Suppose not then we
could use an extractor to extract
3m labels with a hint of size

(|h| — 2mw) < 3mw

The odds of this happening are
negligible!

e Extractor Hint:

* State 0., of PROM attacker cache
A at time 1+t

* ignore memory (€1+ti)
e At most mw bits

* List of messages passed to/from
cache during interval [1+t,t.,,]
e At most mw bits
e List of labels in QueryFirst(t,t.,,) to
extract (plus information to
recognize relevant queries)

« 0(m (log(n + q))) K mw

Extractor for Pebbling Reduction

* Given state of cache 04, and

list of messages passed to/from
memory we can simulate the
attacker.

e When the attacker submits the
ith random oracle query

* Check hint to see the ith query x is
of interest

e Otherwise forward query to
random oracle and forward the
response to the attacker

e Label appears “out of the blue”

 Making the query “ruins” label
L., we want to extract
° Lv — H(U' Lv—l' LT(V))
 How to identify such a query?
e Rely on hint.
 How to continue simulation

without making the RO query?

e L previously appeared out of the
blue.

e Thus, extractor can simply send the
response L,

Bandwidth Hardness of Candidate iMHFs

e Key Pebbling Lemma: Lower bounds
rbpeb(G,m, T, B, R) cost to pebble rbpeb(G,m, T, B,R)
target nodes T < [N] starting from > C.|lancestorsq_pyg,(T)]

configuration with

e Blue Pebbleson B € [N]\T .. :
+ Red Pebbles on R € [N\T e Intuition: If there is a path from v
, B to T which avoids the set R U B’
* Let B € B be blue moves that are then node v must be pebbled at
eventually converted to red pebbles. some point at cost C,..

rbpeb(G,m,T,B,R) = C,|B’]

110

Bandwidth Hardness of Candidate iMHFs

* Key Lemma (central to all proofs)

* Lower bounds rbpeb(G,m, T, B, R) cost to pebble target nodes T € [N]
starting from configuration with

e Blue Pebbleson B € [N]\T
e Red Pebbleson R € [N]\T

e letB' C B be blue moves that are eventually converted to red pebbles.

Lemma: VT,B,R € [N]\T

rbpeb(G,m,T,B,R) > LgniC%(CrIancestorsg_RUB,(T)| + C,|B'])

111

Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R € [N]|\T

rbpeb(G m,T,B,R) > gnlc%(C lancestorsq_pyug, (T)| + C,|B'|)

Partition the nodes [N |\ E] into () (%) intervals Ty, T, ..., each
containing 0(m) nodes.

rbpeb(G,m) > Bchn[ln\Tl (rbpeb(G, m,T;, B, R))

121 ¢ |IR|sm

1 B IRl <m rn, 1T 1T
7 Q(m) nodes

Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R € [N]\T
rbpeb(G,m,T,B,R) = my
] We lower bound this quantity
for three IMHF candidates

e NT. Argon2i, DRSample and .
Partition the nodes [N]\ [;] I aATSample alning

Q(m) nodes.

> i '
rbpeb(G,m) > 5 rbpeb

|
<m

,m,T;,B,R))

121 gtIR
> >, min (min (C;lancestorss_pus (Tl + Gy ')

(21 s.t.|R|sm

113

Bandwidth Hardness of Candidate iMHFs

Theorem: [N]\ E‘ into (%) intervals Ty, T,, ..., each containing Q(m) nodes
then rbpeb(G,m) =

B,Rrgn[ll\%\Ti (gllgr}?(CrIancestorSG_RUB,(Ti)| + C,|B |))

121 s.t.|R|sm

2
Argon2iif m = O(NE_E) then for each interval T; of 0(m) nodes we have

2
g L 41y (}_gllg%(cr|anceSt0rsG—RUB/(T)|+ Cy|B |)) =0 (mln {N C,, NBCb})

s.t.|R|sm

Bandwidth Hardness of Candidate iMHFs

Theorem: [N]\ E] into () (%) inte
then rbpeb(G,m) =

o ((m) nodes

Amortized: Q(1) blue moves
per node in interval (best

mun (m possible)

/4 B.RE[N|\T; \B/
121 st |R|sm

2
Argon2i if m = O(NE_g) then for each interval T; of Q0(m) nodes we%a

B,Rrgn[ll\%\Ti (lgllg%(cr|Cl7’lCBSt07‘SG_RUB,(T)| + CblB D) = () (mln {N Cr:

s.t.|R|sm

\LJ

115

Bandwidth Hardness of Candidate iMHFs

Theorem: [N]\ E] into () (%) interva
then rbpeb(G,m) =

o (0(m) nodes

1
Amortized: Q(NE) red moves
min (ml per node In interval (expensive

121 s.t.|R|sm

2
Argon2i if m = O(NE_S) then for each interval T; of Q(m) nodes @ have

min (min (C,-lancestorsq_pyg, (T;)| + CbIB'I)) =0 (min @NEC},})

B,RS[N]|\T; \B/ CB
s.t.|R|sm

116

Bandwidth Hardness of Candidate iMHFs

Argon2i

min (mm (Cylancestors (T)| + Cp|B’ I)) (min {N C N%C })
B,RS[N|\T; \B/ CB G—RUB/ b T b
s.t.|R|sm

We must pay this cost () () tlmes for each interval T;
4
rbpeb \G, N"S =0 (min {N§Cr, NCb})

Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R € [N]|\T

rbpeb(G,m,T,B,R) > énicrll;(C,,.IancestorsG_RUB,(T)| + C,|B'|)

DRSample: For any constant p < 1 ifm = O(NP)

5 x2in - (min (C;lancestorsg_rus, (T)| + Gy |B'D)

s.t.|R|sm
ol

min {N%JrgCr, NP Cb})

Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R C [N]\T

rbpeb(G m, T B, E Amortized (: Q(NOD
A red moves per node in interval

(expensive even if

DRSample: For any constant [

min (min (encestorsc_RUB,(Ti)I + CbIB'I))

B,RC[N|\T; \B/ CB

t.|R|<
:;Rar:iln{r;]vpcb})

119

Bandwidth Hardness of Candidate iMHFs

Lemma: VT,B,R S [N]\T Amortized: Q(1) blue moves
rbpeb(G,m, T, B, F per node in interval (best
possible)

DRSample: For any constant [

, nin - (min (C,lancgggorsg—rus (TD1 + C,1B'D)

S.t.IR(Sm @

= () \min {N%Jr%(]r)

120

Bandwidth Hardness of Candidate iMHFs

DRSample: For any constant p < 1 ifm = O(NP)

5200 (gplgr}g(CrIancestorSG_RUB,(Ti)I + Cy|B I))

t.|R|<
o loin (¥ wec)

If m = O(NP) must pay this cost) (%) times

rbpeb(G, NP) = Q) (min {N%_gCr, NCb})

Comparison between Argon2i and DRSample

e Argon2i is maximally bandwidth
hard if attacker’s cache size is
m = o(N?/3) ©
e Arguably a reasonable assumption
In practice

e Argon2iis not maximally
memory hard ®

e But it does beat out other entrants
in the Password Hashing
Competition ©

DRSample is both maximally
memory hard and maximally
bandwidth hard ©

e Even if attackers cache sizeism =
O(Nl—e)

aATSample is also maximally
memory hard and maximally

bandwidth hard ©
e Even if attackers cache sizeism =

0 (lo:N)

Joél
Alwen
IST Austria

Scrypt is maximally
memory-hard

Binyi Krzysztof Leonid Stefano
Chen Pietrzak Reyzin Tessaro
UCSB IST Austria Boston U. UCSB

(work done at
IST Austria)

[Percival 2009]: scrypt
e O

H: {0,1}" — {0,1}¥ random oracle

InPUt: Xo Data-Dependent Memory Access
. =>» Pebbling Attacks Don’t apply
Repeat n times: x.=H(x ,)

So=X,
Repeat n times: s;=H(s, ;®x;) for j =s;; mod n
Output: s,

scrypt in the wild

e Used in several cryptocurrencies, most notably
Litecoin (a top-4 cryptocurrency by market cap)

 |dea behind password-hashing winner Argon2d

e Attempts to standardize within IETF (RFC 7914)

Memory-Hard Functions

Goal: Find moderately hard F for which
special-purpose hardware, parallelism, and amortization do not help.

Proposal [Percival 2009]: make a function that needs a lot of memory

(memory is always general, unlike computation)

Make sure parallelism cannot help
(force evaluation to cost the same)

Complexity measure: memory x time

What's the best we can hope for?

H: {0,1} — {0,1}* random oracle

s e s

Upper bound on cc(scrypt):

The naive algorithm stores every x. value.
Time: 2n. Memory: <n. Total: <2n? (in w-bit units).
Note: any function that has an n-step sequential algorithm
has cc < n?/2 (because memory < time)

No function so far has been proven to have cc of n?

(several candidates were proposed during
password-hashing competition 2013-15; some have been broken)

Data-Independent Memory Hard Functions

OO0 8000820008000
=0 OO CROmOmOO0-0=0

Observation: any function whose memory access pattern
is independent of the input
can be represented as a fixed graph

Sequential algorithm of time n = n nodes
Term: iIMHF (Data-independent Memory Hard Function)

[Alwen-Blocki 16]: for any iMHF, cc < n? log log n/ log n

scrypt is a very simple dMHF
Q: can scrypt beat this IMHF bound?

Our Result

H: {0,1} — {0,1}* random oracle

TRy

Theorem: in the parallel RO model, cc(scrypt) = Q (n?)

The first ever construction works!

Talk Outline

‘/I\/Iemory—hard functions for password hashing

‘/Design of scrypt

‘/How to measure cost: cumulative complexity (cc)

‘/I\/Iain Result: cc(scrypt) is highest possible n?
in parallel RO model

Before proving: can we simplify scrypt?

How quickly can you play this game?

E)—>(> O>O=O—=>O>O=>O>0O—=0O-0—=0O—%)
You have x, and whatever storage you want

| give you uniform challenge ¢ from 1 to n

You return X,

If you store nothing but x,: n/2 H-queries per challenge

How quickly can you play this game?
O @ =@~ @ —>(—%)

You have x, and whatever storage you want

| give you uniform challenge ¢ from 1 to n

You return X,

If you store nothing but x,: n/2 H-queries per challenge

If you store p hash values: n/(2p) H-queries per challenge

If you store something other than hash values?

Result for the scrypt one-shot game

O OaOn =000 LO00=0n S0 0D
You have x, and whatever storage you want

| give you uniform challenge i from 1 to n

You return x

Prior result 1: if you store p labels, expected time >n/(2p)

Prior result 2 [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
same if you store “entangled” labels
(such as XOR or more general linear functions)

but not portions of labels, XORs of portions, etc.

Our result: same for arbitrary storage of pw bits!
(where w is label length = output length of H)

Claim: time >n/(2p) if storage pw
O O OO OO OSSO OO O

Basic idea of the argument (inspired by [Alwen-Serbinenko]):

if A is too fast, then
we can extract many labels from A’s storage w/o querying H

but can’t extract more than p labels b/c RO not compressible

Extracting labels from A's memory

¥ =) OO0 0O-0=00—0O—>%)
Imagine: run A on every possible challenge and record queries

c=23 c=24 c=25 c=26
X5 Xqg X5 Xq4 X51 X1, X309 X
A
1(6)£15 1(6)i15)£13 X26
X7 X16 X7 X6 X14

X22 122 X7

X23 X23 £8

’123 1‘24

Xo4 X5

Extracting labels from A's memory
o> OO O OOt

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
U l l l | l |
Xe Xis X6 X1s5 X13 X526
Vo Vo |
X7 X X7 Xi6 X14
X322 122 T7
X33 X33 Xg
X3 X4
| |

Xo4 X5

Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
U l l l | l |
Xe Xis X6 X1s5 X13 X526
Vo Vo |
X7 X X7 Xi6 X14
X322 122 T7
X33 X33 Xg
X3 X4
| |

Xo4 X5

Extracting labels from A's memory

OnOny RO O OaOnOs o M Op O S Oud

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
)is)i14)i 314 121)i12)i)is
X6 X5 X6 Xis X22 Xq3 X31 Xg
1(6)£15 1(6)i15)£13 X26
X7 X16 X7 X6 X14
Lemmma 1: all blue labels can be extracted from memory of A

without querying H

Proof: Make a predictor for H that runs A in parallel
on all challenges, one step at a time,
predicting blue values by querying H only when needed

Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < |memory|/w)

Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < pw/w)

Extracting labels from A's memory
@ O @@~ @&

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < p)

memory pw = time > n/(2p)

OnOny RO O OaOnOs o M Op O S Oud

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < p)

Lemma 2: Time to answer c > distance from nearest blue
Proof: induction

memory pw = time > n/(2p)

OnOny RO O OaOnOs o M Op O S Oud

Mark blue any label whose earliest appearance is not from H

c=23 c=24 c=25 c=26
X5 X4 X5 Xiq X21 X142 X30 X5
| l l l | l |
Xe Xis X6 Xis X13 X726
Vo l | |

X7 X X7 Xi6 X14

Lemmma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| < p)

Lemma 2: Time to answer ¢ > distance from nearest blue
Conclusion: storage pw = time > n/(2p)

Talk Outline

‘/Memory—hard functions for password hashing

‘/Design of scrypt

‘/How to measure cost: cumulative complexity (cc)

‘/ scrypt: very simple dMHF (and iMHF won’t work)

Main Result: cc(scrypt) is highest possible n?
in parallel RO model

Proof in two parts

v/1. memory vs. time to answer one random challenge
2. cumulative complexity of n challenges

How to go from this...

H: {0,1} — {0,1}* random oracle

(=0 =g (0 0 s = = =)

nw 1
o

Single random challenge: memory > _
2 time

. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

T =

Single random challenge: memory >

2 time

Know only that
/f\ }/orange is inversely
I .
proportional to red
\ /\ . \ —T

2mory

Prior work [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]:
“potential” argument to get & (n?/ log?n)

|4 < \

t. to compute s; | time

... to cc(n challenges)

H: {0,1} — {0,1}* random oracle
o

Single random chall >, 2
ingle random challenge: memory > .
5 & Y 2 ° time
Know erhxthat

Idea: apply bound k e
orange is inversely

steps before s, is .
proportional to red

|

known: purple I

is inversely proportic%l\ |
| |

to re8I+k : |

/ L]
| 1, to compute s, [t to computes; | time

.. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

@ =

Single random challenge: memory >

time

Know erhxthat

orange is inversely
proportional to red

memory

VA

| t,, to compute s, [t to computes; | time

.. to cc(n challenges)
H: {0,1} — {0,1}* random oracle

@ =

Single random challenge: memory >

time

Know erhxthat

orange is inversely
proportional to red

memory

\

| t,, to compute s, [t to computes; | time

. to cc(n challenges)

Adding up memory used during previous challenge:

nw (1 1
—— + —— [N] > —
-\t " + e+ t +t) _2 (In(t+t ;) —Int)

Single random chall >, 2
ingle random challenge: memory > .
& & Y 2 ° time
Know erhxthat

orange is inversely
proportional to red

memory

{VERYVA

| T, tocompute s, ;| t to computes; | time

.. to cc(n challenges)

Adding up memory used during previous challenge:

nw (1 1
—— + —— [N] > —
-\t " + e+ t +t) _2 (In(t+t ;) —Int)

Adding up over all challenges i from 1 to n:
2nw (In (t;+t,) —Int, +In (t,+t;) —Int;+ .. +In (t, 1+) —Int)
> Ynw (n In 2) > Q(n’w)

memory

Y -

| | | time

Talk Outline

‘/Memory—hard functions for password hashing

‘/Design of scrypt

‘/How to measure cost: cumulative complexity (cc)

v~ scrypt: very simple dMHF (and iMHF won’t work)

Main Result: cc(scrypt) is highest possible n?
in parallel RO model

Proof in two parts

v/1. memory vs. time to answer one random challenge
V2. cumulative complexity of n challenges

Thanks for Listening

g %
"W

	Advanced Cryptography�CS 655
	Course Project Proposal
	A Few Project Ideas	
	A Few Project Ideas	
	Recap: iMHFs	
	Recap: Depth Robustness
	Recap: Depth Robustness
	Recap: Depth-Robustness is Sufficient! [ABP17]
	DRSample
	DR-Sample: Meta-Graph
	Recap: DRSample Analysis
	𝛿−bipartite expander
	𝛿−bipartite expander
	𝛿−bipartite expander
	 𝛿 -local expander around v
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Not 𝛿−bipartite expander?
	Second Union Bound?
	Second Union Bound?
	Second Union Bound?
	Sustained Space Complexity
	Motivation: Password Storage
	Offline Attacks: A Common Problem
	Offline Attacks: A Common Problem
	Goal: Moderately Expensive Hash Function
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Data-Independent Memory Hard Function (iMHF)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Pebbling Example
	Pebbling Example
	Pebbling Example
	Pebbling Example
	Measuring Cost: Attempt 1
	Amortization and Parallelism
	Measuring Pebbling Costs [AS15]
	Measuring Pebbling Costs [AS15]
	Pebbling Example: Cumulative Cost
	Lessons from SCRYPT
	What Happened?
	Sustained Space
	Wanted: A Moderately Hard Function
	Main Theorem
	The Parallel Black Pebbling Game
	Technical Ingredient #1 [PTC77]
	Technical Ingredient #1 [PTC77]
	Technical Ingredient #1 [PTC77]
	Depth Robustness [ABP17]
	Block Depth Robustness [ABP17]
	Technical Ingredient #2
	Technical Ingredient #2
	Technical Ingredient #2
	Technical Ingredient #2
	PTC Overlay (Attempt 1)
	PTC Overlay (Attempt 1)
	Technical Ingredient #3
	Technical Ingredient #3
	The Final Construction
	Consequences of new Depth-Robust Graphs
	A Few Open Questions	
	A Few Open Questions	
	Announcements & Reminders	
	Bandwidth Hard Functions: Reductions and Lower Bounds
	Offline Attacks
	Offline Attacks: A Common Problem
	Key Stretching
	What is the ASIC Advantage?
	What is the ASIC Advantage?
	Slide Number 81
	Memory Hard Function (MHF)
	Lot’s of Work on Memory Hard Functions
	Lot’s of Work on Memory Hard Functions
	Reducing ASIC Advantage
	How to Define Bandwidth Hardness?
	Energy Cost
	Evaluating an iMHF (red-blue pebbling)
	Evaluating an iMHF (red-blue pebbling)
	Red-Blue Pebbling Cost [RD17]
	Red-Blue Pebbling Cost Inequity [RD17]
	Red-Blue Pebbling Cost Inequity [RD17]
	A Natural Approach		
	Bandwidth-hard functions [RD17]
	Prior State of Affairs (Bandwidth-Hardness)
	Pebbling Reduction [BRZ18]
	Additional Results [BRZ18]
	Additional Results [BRZ18]
	Bonus: More Contributions
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Pebbling Reduction
	Extractor for Pebbling Reduction
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Bandwidth Hardness of Candidate iMHFs
	Comparison	 between Argon2i and DRSample
	Slide Number 123
	[Percival 2009]: scrypt
	scrypt in the wild
	Memory-Hard Functions
	What’s the best we can hope for?
	Data-Independent Memory Hard Functions
	Our Result
	Talk Outline
	How quickly can you play this game?
	How quickly can you play this game?
	Result for the scrypt one-shot game
	Claim: time n/(2p) if storage pw
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	Extracting labels from A’s memory
	memory pw  time  n/(2p)
	memory pw  time  n/(2p)
	Talk Outline
	How to go from this…
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	… to cc(n challenges)
	Talk Outline
	Thanks for Listening

