
Advanced Cryptography
CS 655

Week 7: 
• Constructing Depth-Robust Graphs
• Sustained Space Complexity
• Bandwidth Hard-Functions

1Spring 2023

Homework 2 Due Thursday @ 11:59PM on Gradescope
Project Proposals due Tonight



Course Project Proposal

• Due Tonight by e-mail (jblocki@purdue.edu) 

• Project Proposal: 2 Pages
• Briefly the problem you plan to work on
• Briefly summarize prior work on the problem and how your project is 

different
• Identify several related papers that you plan to read as part of the project
• Briefly describe your plan to attack the problem
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A Few Project Ideas

• Pick a cryptographic scheme and try to find a tighter concrete security proof 
under idealized assumptions

• Example: Tighter security analysis for Password Authenticated Key Exchange (PAKE) 
protocols such as CPACE in the generic group+random oracle model?

• Pick a cryptographic scheme/protocol and analyze the security with respect 
pre-processing attacks or provide a memory-tight reduction

• Example: Memory-Tight Reduction for RSA-FDH under the One-More-RSA-Inversion 
problem?

• Example: Security of PAKE protocols against pre-processing attacks?
• Example: Security of AES-GCM vs pre-processing attacks?

• Pebbling Reduction for Salted iMHFs vs. Preprocessing Attackers
• Pebbling Reduction for Argon2 Round Function (in ideal permutation model)
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A Few Project Ideas

• Implement a Cryptographic Protocol/Attack
• Example: Implement Argon2 with different instantiations of 

round function
• Example: Implement partitioning oracle attack on AES-GCM. 

• Many other possibilities! Make sure your proposal is 
realistic. 

• It is ok to try something and fail i.e., a final project 
report documenting your unsuccessful attempts to solve 
a problem is acceptable as long as the attempts are 
clearly described 4



Recap: iMHFs

• Graph Pebbling Reduction [AS15]: Complexity of iMHF 𝑓𝑓𝐺𝐺,𝐻𝐻 is fully 
captured by pebbling cost of DAG G. 

• Informal Theorem [AS15]: Any algorithm A evaluating 𝑓𝑓𝐺𝐺,𝐻𝐻 in the 
parallel random oracle model has 𝐶𝐶𝐶𝐶𝐶𝐶(𝐴𝐴) ≈ 𝜆𝜆 × 𝐶𝐶𝐶𝐶(𝐺𝐺) where 
𝐻𝐻(𝑥𝑥) ∈ 0,1 𝜆𝜆

• Proof Sketch: Use execution trace from A to extract a legal pebbling 
of G such that for all rounds i we have 𝑃𝑃𝑖𝑖 ≈ 𝜎𝜎𝑖𝑖 /𝜆𝜆

5
#pebbles at time i #bits in A’s memory at time i



Recap: Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible
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Recap: Depth-Robustness is Sufficient! [ABP17]

Implications: There exists a constant indegree graph G with 

CC G ≥ Ω
𝑛𝑛2

log𝑛𝑛
.

[AB16]: We cannot do better (in an asymptotic sense) 

CC 𝐺𝐺 = O
𝑛𝑛2 log log𝑛𝑛

log𝑛𝑛
.

𝐊𝐊𝐊𝐊𝐊𝐊 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: Let G=(V,E) be (e,d)-depth robust then CC(G)≥ 𝑒𝑒𝑒𝑒.



DRSample

1 2 i… n

Indegree: 𝛿𝛿 = 2

Key Modification to Argon2i: New distribution for r(i)

Buckets:𝐵𝐵1, … ,𝐵𝐵log 𝑖𝑖
𝐵𝐵𝑗𝑗 = 𝑖𝑖 − 2𝑗𝑗 , 𝑖𝑖 − 2𝑗𝑗−1 − 1

…i-1i-2i-3i-8…
𝐵𝐵1

i-4

𝐵𝐵2𝐵𝐵3

i-5



DR-Sample: Meta-Graph

1 2 … n…2m𝑚𝑚…

𝐺𝐺𝑚𝑚

𝐺𝐺
𝑚𝑚 = 𝑂𝑂 log𝑛𝑛

Each meta-node u corresponds to m nodes 𝑢𝑢1, … ,𝑢𝑢𝑚𝑚 . 
Let   𝐹𝐹𝑢𝑢 = 𝑢𝑢1, … ,𝑢𝑢𝑚𝑚/3 and 𝐿𝐿𝑢𝑢 = 𝑢𝑢𝑚𝑚−𝑚𝑚3+1

, … ,𝑢𝑢𝑚𝑚 denote the first (resp. 

last third) of these nodes

𝐺𝐺𝑚𝑚 has edge (u,v) if and only if G has some edge (x,y) with x ∈ 𝐿𝐿𝑢𝑢 and y ∈ 𝐿𝐿𝑢𝑢



Recap: DRSample Analysis

• Let G be the DRSample graph. Define Meta-Graph 𝐺𝐺𝑚𝑚 with m = Ω log𝑁𝑁 and N′ =
Ω 𝑁𝑁

𝑚𝑚

Last Class: We assumed that 𝐺𝐺𝑚𝑚 was a 𝛿𝛿 −local expander and proved that any 
𝛿𝛿 −local expander with N′ = Ω 𝑁𝑁

𝑚𝑚
nodes is Ω 𝑁𝑁𝑁 ,Ω 𝑁𝑁𝑁 depth-robust 

• Meta-Graph 𝐺𝐺𝑚𝑚 is Ω 𝑁𝑁
𝑚𝑚

,Ω 𝑁𝑁
𝑚𝑚

−depth-robust with  m = Ω log𝑁𝑁

DRSample G is Ω 𝑁𝑁
𝑚𝑚

,Ω 𝑁𝑁 −depth-robust 

TODO: Prove that 𝐺𝐺𝑚𝑚 is a 𝛿𝛿 −local expander *  (*almost)
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𝛿𝛿 −bipartite expander

A

B 𝐴𝐴 = 𝐵𝐵 = 𝑛𝑛



𝛿𝛿 −bipartite expander

A

B

≥ 𝛿𝛿𝛿𝛿

𝐴𝐴 = 𝐵𝐵 = 𝑛𝑛

X ⊆ 𝐴𝐴



𝛿𝛿 −bipartite expander

< 𝛿𝛿𝛿𝛿

A

B

≥ 𝛿𝛿𝛿𝛿

𝐴𝐴 = 𝐵𝐵 = 𝑛𝑛

Y ⊆ 𝐵𝐵
(unreachable from X)

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵



𝛿𝛿 -local expander around v

1 2 v-2r+1 v… nv-r …… …v-r-1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

1 2 v+2r-1v… nv+r …… …v+r-1

We have 𝛿𝛿 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 if for every r



Not 𝛿𝛿 −bipartite expander? 

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

𝐴𝐴 = 𝐵𝐵 = 𝑟𝑟
Let A,B be a set of 2r consecutive 
nodes in meta-graph. 

If not 𝛿𝛿 −bipartite then there 
exists Y ⊆ 𝐵𝐵 and X ⊆ 𝐴𝐴
with size|Y|=𝛿𝛿𝛿𝛿 and |X|=𝛿𝛿𝛿𝛿 such 
that none of the edges from any 
meta-node in Y hit any node in X

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵



Not 𝛿𝛿 −bipartite expander? 

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Fix some subsets |Y|=𝛿𝛿𝛿𝛿 and
|X|=𝛿𝛿𝛿𝛿

Each individual edge from Y hits X 
with probability 

≈
𝛿𝛿

3 log𝑛𝑛

There are 𝑚𝑚
3

× 𝛿𝛿𝛿𝛿 edges 
(all picked independently) X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵



Not 𝛿𝛿 −bipartite expander? 

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Each individual edge from Y hits X with 
probability ≈ 𝛿𝛿

3 log 𝑛𝑛

There are 𝑚𝑚
3

× 𝛿𝛿𝛿𝛿 edges (independent)

Pr Y Misses 𝑋𝑋 ≤ 1 − 𝛿𝛿
3 log 𝑛𝑛

𝑚𝑚
3×𝛿𝛿𝛿𝛿

≤ 𝑒𝑒−𝑟𝑟𝛿𝛿
2( 𝑚𝑚
9 log 𝑁𝑁)

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵



Not 𝛿𝛿 −bipartite expander? 

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Union Bound: 

Pr ∃𝑋𝑋, Y s. t. Y Misses 𝑋𝑋

≤ 𝑒𝑒−𝑟𝑟𝛿𝛿
2 𝑚𝑚
9 log 𝑁𝑁 𝑟𝑟

𝛿𝛿𝛿𝛿

2

≤ exp 𝑧𝑧
WithX ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

z = −𝑟𝑟𝛿𝛿2
𝑚𝑚

9 log𝑁𝑁
+ 2𝛿𝛿𝛿𝛿 ln

1
𝛿𝛿

+ 2𝑟𝑟 ln
1

1 − 𝛿𝛿



Not 𝛿𝛿 −bipartite expander? 

𝛿𝛿𝑟𝑟

A

B

𝛿𝛿𝑟𝑟

Union Bound: 

Pr ∃𝑋𝑋, Y s. t. Y Misses 𝑋𝑋
≤ exp 𝑧𝑧

≤ exp −2𝑟𝑟
Pick 𝑚𝑚 ≥
(18𝛿𝛿−1ln 1

𝛿𝛿
+ 18𝛿𝛿−2(1 + ln 1

1−𝛿𝛿
)) log𝑁𝑁

X ⊆ 𝐴𝐴

Y ⊆ 𝐵𝐵

z = −𝑟𝑟𝛿𝛿2
𝑚𝑚

9 log𝑁𝑁
+ 2𝛿𝛿𝛿𝛿 ln

1
𝛿𝛿

+ 2𝑟𝑟 ln
1

1 − 𝛿𝛿



Second Union Bound?

• Fixing any A=[u,…,u+r-1] and B=[u+r,…,u+2r-1] we say that A,B are 
connected with bipartite expander with probability at least 1 −
exp −2𝑟𝑟

• Ideal: Want to show that 𝐺𝐺𝑚𝑚 𝑖𝑖𝑖𝑖 𝑎𝑎 𝛿𝛿 −local expander i.e.., this holds 
for all u and all r

• Union bound over all meta-nodes u and all r?
• We can union bound over all 𝑟𝑟 ≥ log𝑁𝑁 and all u since 

�
𝑢𝑢

�
𝑟𝑟≥log 𝑁𝑁

exp −2𝑟𝑟 ≤𝑁𝑁 �
𝑟𝑟≥log 𝑁𝑁

exp −2𝑟𝑟 ≪
2
𝑁𝑁
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Second Union Bound?

• Fix: Let 𝑩𝑩𝒖𝒖 be the event that for some 𝑟𝑟 < log𝑁𝑁 we do not have an 
expander between A=[u,…,u+r-1] and B=[u+r,…,u+2r-1] 

• Key Idea: Use concentration bounds to argue that ∑𝑢𝑢𝑩𝑩𝒖𝒖 ≤ 𝜀𝜀𝜀𝜀 with 
high probability (for some suitably small 𝜀𝜀)

For at least N − 𝜀𝜀𝜀𝜀 meta-nodes u we do have local expansion 
around u.

This is sufficient to argue that meta-graph is depth-robust.
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Second Union Bound?

• Fix: Let 𝑩𝑩𝒖𝒖 be the event that for some 𝑟𝑟 < log𝑁𝑁 we do not have an 
expander between A=[u,…,u+r-1] and B=[u+r,…,u+2r-1] 

• Key Idea: Use concentration bounds to argue that ∑𝑢𝑢𝑩𝑩𝒖𝒖 ≤ 𝜀𝜀𝜀𝜀 with high 
probability (for some suitably small 𝜀𝜀)

Problem? 𝑩𝑩𝒖𝒖 and 𝑩𝑩𝒖𝒖+𝟏𝟏 are not independent!
But, 𝑩𝑩𝒖𝒖 and 𝑩𝑩𝒗𝒗 are independent if 𝒖𝒖 − 𝒗𝒗 ≥ 𝒍𝒍𝒍𝒍𝒍𝒍 𝑵𝑵
Solution: Partition random variables into 𝒍𝒍𝒍𝒍𝒍𝒍 𝑵𝑵 buckets such that random 
variables in each bucket are independent. Apply concentration bounds to 
each bucket. 
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Sustained Space Complexity
Joël Alwen (IST Austria/Wickr)

Jeremiah Blocki (Purdue)
Krzysztof Pietrzak (IST Austria)
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Motivation: Password Storage

25

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f584e
3db87aa72630a9a2
345c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Goal: Moderately Expensive Hash Function

Fast on PC and 
Expensive on ASIC?



https://password-hashing.net/

(2013-2015)

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…
There are two main versions of 
Argon2, Argon2i and Argon2d. 
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/


Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Goal: force attacker to lock up large amounts of memory for duration 
of computation
Expensive even on customized hardware
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• Memory access pattern should not depend on input
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Data-Independent Memory Hard Function (iMHF)

1
2

3
4

Output: fG,H (pwd,salt)= L4
Input: pwd, salt

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

iMHF fG,H defined by 
• H: 0,1 2𝑘𝑘 → 0,1 𝑘𝑘 (Random Oracle)
• DAG G                           (encodes data-dependencies)

• Maximum indegree:  𝛿𝛿 = O 1

1



Evaluating an iMHF (pebbling)

Pebbling Rules :  𝑃𝑃=P1,…,Pt⊂ 𝑉𝑉 s.t.
• Pi+1⊂ Pi ∪ 𝑥𝑥 ∈ 𝑉𝑉 parents 𝑥𝑥 ⊂ Pi+1 (need dependent values)
• n∈ Pt                                                                                           (must finish and output Ln)

1
2

3
4 Output: L4Input:

pwd, salt

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1



Evaluating an iMHF (pebbling)

1 2 3 4 51 3 4 5



1 2 3 4 5

P1 = {1}                 (data value L1 stored in memory)

Evaluating an iMHF (pebbling)



Pebbling Example

1 2 3 4 5

P1 = {1}
P2 = {1,2}                   (data values L1 and L2 stored in memory)



Pebbling Example

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5



Pebbling Example

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}



Pebbling Example

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}



Measuring Cost: Attempt 1

• Space × Time (ST)-Complexity

ST 𝐺𝐺 = min
𝑃𝑃

𝑡𝑡𝑃𝑃 × max
𝑖𝑖≤𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖
• Rich Theory

• Space-time tradeoffs 
• But not appropriate for password hashing

time

sp
ac

e

m

t

ST Cost



Amortization and Parallelism

• Problem: for parallel computation ST-complexity can scale badly in the number of 
evaluations of a function.

[AS15] ∃ function fn (consisting of n RO calls) such that: 𝑆𝑆𝑆𝑆 𝑓𝑓× 𝑛𝑛 = 𝑂𝑂(𝑆𝑆𝑆𝑆 𝑓𝑓 )

time

sp
ac

e S1

T1

ST1 = S1 × T1 ≈ S3 × T3 = ST3
S3

T3

cost of computing
f once

cost of computing
f three times



Measuring Pebbling Costs [AS15]

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖
Memory Used at Step iApproximates 

Amortized Area x Time 
Complexity of iMHF Cumulative Memory Cost

iterations

sp
ac

e



Measuring Pebbling Costs [AS15]

CC 𝐺𝐺 = min
𝑃𝑃
�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

[AS15] Costs scale linearly with #password guesses
CC 𝐺𝐺, … ,𝐺𝐺 = m × CC(𝐺𝐺)

𝑚𝑚 times

Memory Used at Step i



Pebbling Example: Cumulative Cost

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}

CC 𝐺𝐺 ≤�
𝑖𝑖=1

5

𝑃𝑃𝑖𝑖

= 1 + 2 + 1 + 2 + 1
= 7



Lessons from SCRYPT

SCRYPT [Per09]
• CON: Data-Dependent Side-Channel Concerns
• PRO: Proven to have high CC [ACPRT17]

• CC(SCRYPT) = Ω 𝑛𝑛2

• Contrast: any iMHF has CC at most  𝑂𝑂 𝑛𝑛2 log log 𝑛𝑛
log 𝑛𝑛

• Maximally Memory Hard  Egalitarian?

50



What Happened?

• CC(SCRYPT) = Ω 𝑛𝑛2 the function can be computed 
with low memory

• Each strategy below is easily feasible
• Evaluate with O 𝑛𝑛 memory in 𝑂𝑂 𝑛𝑛 time
• Evaluate with O 𝑛𝑛 memory in 𝑂𝑂 𝑛𝑛 𝑛𝑛 time
• Evaluate with O 1 memory in 𝑂𝑂 𝑛𝑛2 time

• SCRYPT ASIC miners opt for low memory + high 
computation options

• Goal: Ensure that low memory options are 
infeasible

51



Sustained Space
• Using memory is more costly than doing computation (at least for 

ASICs).
• Idea: Only charge for computational steps where a lot of memory 

is being used.
• Definition: s-Sustained Space

“Time spent above memory threshold s”

s-Sustained Space

time

sp
ac

e

s

Intuition: 
trade-offs 
are free.

FACT: 
CC > 𝑠𝑠𝑠𝑠



Wanted: A Moderately Hard Function
• Desiderata:

• Cost for honest & adversary roughly same:

Adversarial Model
• Parallel Computation
• Amortization across many 

evaluations
• Cost measured in s-SS

(for some large s)

Honest Computational Model
• Sequential Computation
• Single Evaluation
• Cost measured in ST 

Complexity



Main Theorem
• For any n∊ℕ we give a function fn and prove that in the parallel 

Random Oracle Model (PROM):

• Bonus: fn is an iMHF. 
⇒E runs in constant time and has data-independent memory access pattern

Honest

• Sequential Algorithm E

• Time(E(fn)) = n

• ST(E(fn)) = n2

Adversarial

• ∀ parallel algs. A

• s-SS(A(fn)) = Ω(n) per eval.

for s = Ω(n/log(n)) 



The Parallel Black Pebbling Game

Parallel Black Pebbling Game: Same as Black Pebbling, except can touch many pebbles 
per iteration.

s-SS analogue: Count number of steps when at least s pebbles on graph.

s-SS Complexity
1-SS = 3
2-SS = 1

G

Goal: Place a pebble on the sink.
Rule 1: A node can be pebbled only if all parents contain a pebble.
Rule 2: A pebble can always be removed.

Want G with…

1. Size(G) = n

2. In-degree(G) = 2

3. 𝑛𝑛
log(𝑛𝑛)

-SS(G) = Ω(n)



Technical Ingredient #1 [PTC77]

• [PTC77] Built a constant 
indegree DAG G with n nodes 
and proves that any sequential 
pebbling has at least one step in 
which there are at least 
Ω 𝑛𝑛/ log𝑛𝑛 pebbles on the 
graph.

• [Hopcroft77] Any constant 
indegree graph DAG G can be 
pebbled with space at most 
𝑂𝑂 𝑛𝑛/ log𝑛𝑛
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Technical Ingredient #1 [PTC77]

• [PTC77] Built a constant indegree 
DAG G space complexity Ω 𝑛𝑛/ log𝑛𝑛

• Recursive Construction
• PTC2n contains 2 internal copies of PTCn

• Stronger Lemma used for Induction!
• For any sequential pebbling 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡
We can find an interval 𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such 
that both
1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑚𝑚 for each k ∈ 𝑖𝑖, 𝑗𝑗
2. At least 𝑐𝑐2𝑚𝑚 source nodes are 

(re)pebbled during the interval
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Technical Ingredient #1 [PTC77]

• [PTC77] Built a constant indegree DAG G space complexity Ω 𝑛𝑛/ log𝑛𝑛
• Recursive Construction

• PTC2n contains 2 internal copies of PTCn

• Stronger Lemma used for Induction!
• For any parallel (sequential) pebbling 𝑃𝑃𝑡𝑡, … ,𝑃𝑃𝑡𝑡
• Can find an interval 𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such that 

1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑛𝑛/ log𝑛𝑛 for each k ∈ 𝑖𝑖, 𝑗𝑗 (lots of pebbles on the graph)
2. At least 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 source nodes are (re)pebbled during the interval

• Implication (s = 𝑐𝑐1𝑛𝑛/ log𝑛𝑛): s-SS(P) ≥ 𝑗𝑗 + 1 − 𝑖𝑖
• Sequential Pebbling: 𝑗𝑗 + 1 − 𝑖𝑖 ≥ 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 (by (2) above)
• Parallel Pebbling: Could (re)pebble all 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 in one step! 
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Depth Robustness [ABP17]

Definition: A DAG G=(V,E) is (e,d)-depth-robust for all 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 we have depth 𝐺𝐺 − 𝑆𝑆 > d.

Otherwise, we say that G is (e,d)-reducible.

1 2 3 4 5

Example: (e=2,d=2)-reducible

6



Block Depth Robustness [ABP17]

1 2 3 4 5

Example: (e=2,d=2)-reducible

6

Definition: A DAG G=(V,E) is (e,d)-depth-robust for all 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 we have depth 𝐺𝐺 − 𝑆𝑆 > d.

Otherwise, we say that G is (e,d)-reducible.



Technical Ingredient #2

• [EGS75] n node G with log(n) in-degree and (Ω(n), Ω(n))-depth-
robust

• Problem: Constants too small e.g., 𝑒𝑒 = 10−4𝑛𝑛 and 𝑑𝑑 = 10−2𝑛𝑛
• Problem: in-degree too high.

• [MMV13] 𝜀𝜀-extremely depth robust DAG  𝐺𝐺𝑛𝑛𝜀𝜀 with log2(n) in-
degree and (e,d)-DR for any e+d < n(1-ε).

• Problem: in-degree too high.
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Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.



Technical Ingredient #2

• [MMV13] 𝜀𝜀-extremely depth robust DAG  𝐺𝐺𝑛𝑛𝜀𝜀 with indegree 
𝑂𝑂 log2𝑛𝑛 polylog log𝑛𝑛 .

• Problem: in-degree too high.

• [NEW] 𝜀𝜀-extremely depth robust DAG 𝐷𝐷𝑛𝑛𝜀𝜀 with indegree O(log (n)) 
• Construction: similar to [EGS75]
• Many technical details to work out (see paper)
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Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.



Technical Ingredient #2

• [NEW] 𝜀𝜀-extremely depth robust DAG 𝐷𝐷𝑛𝑛𝜀𝜀with indegree O(log (n)) 
• Construction: similar to [EGS75]
• Many technical details to work out (see paper)

Useful Observation: Any subgraph of 𝐷𝐷𝑛𝑛𝜀𝜀[𝑆𝑆] of size 𝑆𝑆 > 𝜀𝜀𝑛𝑛 must contain a 
path of length 𝑆𝑆 − 𝜀𝜀𝜀𝜀
Proof: Otherwise DAG 𝐷𝐷𝑛𝑛𝜀𝜀 is not 𝑒𝑒, d -depth robust for d = 𝑆𝑆 − 𝜀𝜀𝜀𝜀 and 𝑒𝑒 =
𝑉𝑉 ∖ 𝑆𝑆 = 𝑛𝑛 − 𝑆𝑆 . Contradiction, 𝐷𝐷𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust and 

𝑒𝑒 + 𝑑𝑑 = 𝑛𝑛 − 𝜀𝜀𝜀𝜀 ≤ 1 − 𝜀𝜀 𝑛𝑛.
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Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.



Technical Ingredient #2

Lemma: If legal (parallel) pebbling P1,…,Pt of 𝐷𝐷𝑛𝑛𝜀𝜀 has at least one pebbling 
round j with space s = 𝑃𝑃𝑗𝑗 > 2𝜀𝜀𝑛𝑛 then there are at least t = 𝑃𝑃𝑗𝑗

2
− 𝜀𝜀𝜀𝜀 distinct

time rounds k with space 𝑃𝑃𝑘𝑘 ≥ 𝑃𝑃𝑗𝑗
2
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Definition: A DAG 𝐺𝐺𝑛𝑛𝜀𝜀 is 𝜀𝜀-extremely depth robust if it is (e,d)-depth-
robust for all 𝑒𝑒 + 𝑑𝑑 ≤ 1 − 𝜀𝜀 𝑛𝑛.

Proof: Let i<j be last round before round j such that 𝑃𝑃𝑖𝑖 < 𝑃𝑃𝑗𝑗
2

and let 𝑆𝑆 =
𝑃𝑃𝑗𝑗 ∖ 𝑃𝑃𝑖𝑖. Any node in S is (re)pebbled during the interval [i,j].
 (observation) the subgraph 𝐽𝐽𝑛𝑛𝜀𝜀[𝑆𝑆] contains a path of length t ≥ 𝑃𝑃𝑗𝑗

2
− 𝜀𝜀𝜀𝜀

 at least t pebbling rounds to reach configuration 𝑃𝑃𝑗𝑗 from 𝑃𝑃𝑖𝑖



PTC Overlay (Attempt 1)
Lemma [PTC77] In any pebbling 
of PTCn we can find an interval 
𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such that 

1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑛𝑛/ log𝑛𝑛for each 
k ∈ 𝑖𝑖, 𝑗𝑗 (lots of pebbles 
on the graph)

2. At least 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 source 
nodes are (re)pebbled 
during the interval

[NEW] Now requires Ω 𝑚𝑚
rounds since 𝐷𝐷𝑛𝑛𝜀𝜀 is 𝜀𝜀-
extremely depth robust
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PTC Overlay (Attempt 1)
Lemma [PTC77] In any pebbling of PTCn we can find an interval 𝑖𝑖, 𝑗𝑗 ⊆ [𝑡𝑡] such that 

1. 𝑃𝑃𝑘𝑘 ≥ 𝑐𝑐1𝑛𝑛/ log 𝑛𝑛for each k ∈ 𝑖𝑖, 𝑗𝑗 (lots of pebbles on the graph)
2. At least 𝑐𝑐2𝑛𝑛/ log𝑛𝑛 source nodes are (re)pebbled during the interval

[NEW] Overlay requires Ω 𝑚𝑚 rounds since 𝐷𝐷𝑚𝑚𝜀𝜀 is 𝜀𝜀-extremely depth robust

Problems:
• Requires s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles for t = Ω 𝑛𝑛/ log𝑛𝑛 rounds 

• I promised s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles for t = Ω 𝑛𝑛 rounds)

• Indegree still too high i.e., indeg 𝐷𝐷𝑚𝑚𝜀𝜀 = 𝑂𝑂(log𝑛𝑛)
• I promised constant indegree O(1)
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Technical Ingredient #3

• Indegree Reduction [ABP17] deals with both problems simultaneously!
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Technical Ingredient #3

• Indegree Reduction [ABP17] deals with both problems simultaneously!

Lemma [ABP17]: If 𝐷𝐷𝑚𝑚𝜀𝜀 is (𝑒𝑒,𝑑𝑑)-depth robust then 𝐽𝐽𝑚𝑚𝜀𝜀 is (𝑒𝑒,𝑑𝑑𝛿𝛿)-depth robust. 
Furthermore, indeg Jmε = 2 and Jmε has 2𝑑𝑑𝑚𝑚 = 𝑂𝑂(𝑛𝑛) nodes.  
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The Final Construction

Theorem: Any (parallel) 
pebbling requires 
s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles 
for t = Ω 𝑛𝑛 rounds

Technical Details in 
paper 
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Consequences of new Depth-Robust Graphs
• Logic: “Parallel Black-White Pebbling”

• Application: CNF formulas with very memory costly refutation resolution 
proofs.

• MHFS: Applications: Optimal CC for any graph of size n even though 
only O(log(n)) in-degree

• 𝐶𝐶𝐶𝐶 𝐷𝐷𝑚𝑚𝜀𝜀 ≥ 1−𝜂𝜂 𝑛𝑛2

2
• Exact Constants! 
• Complete DAG: 𝐶𝐶𝐶𝐶 𝐾𝐾𝑛𝑛 ≤ 𝑛𝑛2

2
(prior result is almost optimal!)

• Coding Theory: better locally detectable error detection codes 
[BGGZ19]

• Improved Proof-of-Sequential work (temporarily. See “Simple Proofs 
of Sequential Work” for construction without depth-robust graphs).



A Few Open Questions

• Practical Construction of iMHF with high sustained space complexity?
• Analyze/improve constant factors in bounds

• Computer Aided Analysis?

• Stronger Results for dMHFs? Hybrid Modes like Argon2id? 
• Find constant indegree DAG with parallel space-time complexity 

ST|| G = Ω 𝑛𝑛2 or show that no such DAG exists
• Note: [AB16] pebbling shows that  𝐶𝐶𝐶𝐶 G = 𝑂𝑂 𝑛𝑛2 log log 𝑛𝑛

log 𝑛𝑛
, but the pebbling 

attack P still has ST||(𝑃𝑃) = Ω 𝑛𝑛2
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A Few Open Questions

• Practical Construction of iMHF with high sustained space complexity?
• See upcoming crypto 2019 paper
• Data-Independent Memory Hard Functions: New Attacks and Stronger 

Constructions (with Ben Harsha and Siteng Kang and Seunghoon Lee and Lu Xing 
and Samson Zhou).

Theorem: Any pebbling of (practical) DAG G either has
1. Cumulative Cost 𝜔𝜔 𝑛𝑛2 , or
2. At least s = Ω 𝑛𝑛/ log𝑛𝑛 pebbles for t = Ω 𝑛𝑛 rounds 
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Announcements & Reminders

• Homework 2 Due Tonight (2/23/2023)
• Midterm Next Week

• Informal Poll: Take Home vs. In-Class

• Course Presentation (Signup Sheet will be Announced Soon)
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Bandwidth Hard Functions: 
Reductions and Lower Bounds

Jeremiah Blocki (Purdue)
Ling Ren (MIT)

Samson Zhou (Purdue)
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Offline Attacks

75

Username

jblocki

+

jblocki, 123456

HASH(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021
f584e3db87aa
72630a9a234
5c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions 
of user accounts.
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Key Stretching

Hash Iteration Memory Hard Functions

Hash Function Cost: C

H

H𝛕𝛕 …

PBKDF2
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What is the ASIC Advantage?

79

>200,000x faster than

$$ per eval():         capital                    +      electricity  

# of lifetime eval()



What is the ASIC Advantage?

80

$$ per eval():  amortized capital + electricity



Memory-hard functions [Percival’09 (scrypt)]:

“A natural way to reduce the advantage provided by an

attacker’s ability to construct highly parallel circuits is

to increase the size of the circuit.”

Reducing ASIC Advantage

Size of the circuit:

• dominated by memory

• Reasonable approximation of amortized capital costs
81



Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

vs. 

• Goal: force attacker to lock up large amounts of memory for duration 
of computation
Expensive even on customized hardware
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Lot’s of Work on Memory Hard Functions
• [Percival’09 (scrypt)]
• Password Hashing Competition

• Argon2 (winner), Catena, Lyra2, yescrypt…
• Data-Independent (iMHF) vs Data-Dependent (dMHF)

• iMHF: harder to construct, but resistant to side-channel attacks like cache-timing

• [Boneh et al.’ 16 (Balloon Hash)]
• [Alwen & Serbinenko’ 15] 

• Definitional issue with ST-complexity (amortization of costs)
• Cumulative Memory Complexity (stronger requirement to address amortization)

• [Alwen & Blocki’ 16, 17]
• Argon2i, Balloon Hash and other iMHFs have low cumulative memory complexity
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Lot’s of Work on Memory Hard Functions
• [Alwen & Blocki’ 16, 17]

• Argon2i, Balloon Hash and other data-independent memory hard functions have 
low cumulative memory complexity (cmc)

• [ABP17]
• Theoretical construction of iMHFs with asymptotically optimal cumulative memory 

complexity

• [ABH17]
• First practical construction of iMHFs with asymptotically optimal cumulative 

memory complexity

• [ABP18] Sustained Space Complexity
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Reducing ASIC Advantage

85

(memory-hard) (bandwidth-hard)
$$ per eval():  amortized capital + electricity



How to Define Bandwidth 
Hardness?
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Energy Cost
• Graph labeling, compute H: 0,1 2𝑤𝑤 → 0,1 𝑤𝑤 in a DAG
• Give the adversary a cache
• Energy Cost

ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚 = Cb ×
#bits transfered to/from cache

𝑤𝑤
+ Cr × #evals H
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H()
Bit in cache



Evaluating an iMHF (red-blue pebbling)

Pebbling:  𝑃𝑃=(B1,R1)…, (Bt,Rt) where
• Set of labels stored in memory at round i: Bi

• Set of labels stored in cache at round i: Ri (Cache-Size: Ri ≤ 𝑚𝑚)

Goal: place red pebble on last node (N) in in G

1
2

3
N=4 Output: LNInput:

pwd, salt
𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1
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Evaluating an iMHF (red-blue pebbling)
Pebbling:  𝑃𝑃 = 𝐵𝐵0 = ∅,𝑅𝑅0 = ∅ , 𝐵𝐵1,𝑅𝑅1 , … , 𝐵𝐵𝑡𝑡,𝑅𝑅𝑡𝑡
• Bi set of labels stored in memory at time i
• Ri set of labels stored in cache at time i. (Cache-Size: Ri ≤ 𝑚𝑚)

Legal Pebbling Moves between Rounds:
• [Blue Move] Change the color of a pebble (cache-miss: store/load 

value from memory)
• [Red Move] Place new red pebble on node v if parents 𝑣𝑣 ⊂ Ri

• [Discard Pebble] May discard pebble(s) at any time.
89



Red-Blue Pebbling Cost [RD17]
rbpeb 𝑃𝑃 = Cb × #Blue Moves in P + Cr × #Red Moves in 𝑃𝑃

rbpeb 𝐺𝐺,𝑚𝑚 = min
𝑃𝑃∈ℛℬ (𝐺𝐺,𝑚𝑚)

rbpeb 𝑃𝑃

Set of all legal red-blue 
pebblings of DAG G
with cache-size m.
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Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

rbpeb 𝑃𝑃 = Cb × #Blue Moves in P + Cr × #Red Moves in 𝑃𝑃

Attacker (ASIC): 
rbpeb′ 𝑃𝑃′ = Cb′ × #Blue Moves in P′ + Cr′ × #Red Moves in 𝑃𝑃′

Attacker gets to play with potentially advantageous constants

1nJ ≈ Cb′ ≈ Cb ≈ Cr ≈ 10−3 × Cr′ ≈ 1pJ ( Cr′≪ Cr)
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Red-Blue Pebbling Cost Inequity [RD17]
Honest Party (CPU):

rbpeb 𝑃𝑃 = Cb × #Blue Moves in P + Cr × #Red Moves in 𝑃𝑃

Attacker (ASIC): 
rbpeb′ 𝑃𝑃′ = Cb′ × #Blue Moves in P′ + Cr′ × #Red Moves in 𝑃𝑃′

Attacker gets to play with potentially advantageous constants
Cr′≪ Cr Cb′ = Θ Cb

How can I make sure 
that the function is 

energy intensive for 
the attacker as well?

92



A Natural Approach

93

• An iMHF fG,H is memory-bound if: 
• Computable with at most B cache misses (resp. blue moves)
• Not computable with < cB cache misses (resp. blue moves) even using 

a cache of size M
(definition for dMHFs is similar, but does not involve pebbling)

[Abadi et al.’05] 
[Dwork et al.’03]

Problem: Hard to construct; must rule out all space-time tradeoffs

Theorem[Hopcroft’77]: If G has constant indegree then there is a black pebbling which 

never requires more than S = O(N/log(N)) pebbles.

Corollary: If M= O(N/log(N)) we need 0 blue-moves



Bandwidth-hard functions [RD17]
• Observation: computation is not free (even for attacker)!

• Allows for slight relaxation of goal

• Definition: An iMHF fG,H is bandwidth hard against attacker 
with cache-size m if 

rbpeb 𝐺𝐺,𝑚𝑚
rbpeb′ 𝐺𝐺,𝑚𝑚

= Θ 1

Sufficient Condition:   rbpeb 𝐺𝐺,𝑚𝑚 = Ω 𝑁𝑁 × Cb
94

Best Red-Blue Pebbling for Honest Party

Best Red-Blue Pebbling for ASIC attacker



Prior State of Affairs (Bandwidth-Hardness)

Prior Results [RD17]:
• Proved that DAGs for several key 

iMHFs satisfy 
rbpeb 𝐺𝐺,𝑚𝑚 = Ω 𝑁𝑁 × Cb (1)

• Catena-BRG
• Balloon Hash

• Proved that dMHF scrypt is 
bandwidth-hard *

*vs restricted class of attackers

Key Open Questions: 
Pebbling Reduction? Is it true that any 
algorithm A computing fG,H in the 
random oracle model can be described 
as a red-blue pebbling strategy?
(Thm: [AS15] holds for black pebblings)
Does equation (1) hold for
• Argon2i? (PHC Winner)
• DRSample?  (Maximal CMC [ABH17])
• aATSample? (Maximal CMC [ABH17])
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Pebbling Reduction [BRZ18]

Pebbling Reduction: Any algorithm A computing 𝑓𝑓𝐺𝐺,𝐻𝐻 in the random 
oracle model can be described as a red-blue pebbling strategy with 
comparable cost.

ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚 × 𝑤𝑤 ≥ Ω rbpeb 𝐺𝐺, 8𝑚𝑚

• Argon2i:     ecost 𝐺𝐺, �𝑂𝑂 𝑁𝑁2/3 = Ω 𝑁𝑁 × Cb
• DRSample:    ecost 𝐺𝐺,𝑂𝑂 𝑁𝑁1−𝜀𝜀 = Ω 𝑁𝑁 × Cb
• aATSample:  ecost 𝐺𝐺, �𝑂𝑂 𝑁𝑁 = Ω 𝑁𝑁 × Cb Tolerates Larger Cache-Size

Arguably a reasonable upper bound on cache-size
Typical 𝑁𝑁 = 220 (1KB Blocks) = (1GB RAM)

𝑁𝑁 = 240/3 (1KB Blocks) = (10MB cache)
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Additional Results [BRZ18]

Computational Complexity: NP-Hard to find ecost G .
(Open Question: Approximate ecost G ?)

Tight Relationship between parallel and sequential pebblings:
rbpeb 𝐺𝐺,2𝑚𝑚 ≤ rbpeb∥ 𝐺𝐺,𝑚𝑚

(this relationship does not hold for black pebblings!)
Generic Connection Between Memory Hardness and Bandwidth 
Hardness: Any MHF f(.) with high cumulative memory complexity must 
have reasonably high energy cost.
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Additional Results [BRZ18]

Generic Connection Between Memory Hardness and Bandwidth 
Hardness: Any MHF f(.) with high cumulative memory complexity must 
have reasonably high energy cost.

ecost 𝑓𝑓,𝑚𝑚𝑚𝑚 ≥ Ω min
t

𝑡𝑡 Cr + Cb
cmc f
𝑡𝑡𝑡𝑡

−𝑚𝑚

Theorem [ABPRT17]: cmc scrypt = Ω N2

Corollary: ecost scrypt = Ω N Cr × Cb
(first unconditional lower bound on energy cost of scrypt)

98



Bonus: More Contributions

ecost 𝑓𝑓,𝑚𝑚𝑤𝑤 ≥ Ω min
t

𝑡𝑡 Cr + Cb
cmc f
𝑡𝑡𝑡𝑡

−𝑚𝑚

Theorem [ABPRT17]: cmc scrypt = Ω N2

Corollary: ecost scrypt = Ω N Cr × Cb
(first unconditional lower bound on energy cost of scrypt)
Comparison: [RD17] lower bound is slightly stronger Ω N × Cb for 
restricted adversary class.
Recent: Unconditional proof that ecost scrypt = Ω N × Cb
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Pebbling Reduction

• Goal: Compute 𝑓𝑓𝐺𝐺,𝐻𝐻

minimize
ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚

• Goal: Pebble G
minimize 

rbpeb 𝐺𝐺,𝑚𝑚

H()
1

2
3

N=4
1
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Pebbling Reduction

• Goal: Compute 𝑓𝑓𝐺𝐺,𝐻𝐻

minimize
ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚

• Goal: Pebble G
minimize 

rbpeb 𝐺𝐺,𝑚𝑚

H()
1

2
3

N=4
1Easy Direction
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Pebbling Reduction

• Goal: Compute 𝑓𝑓𝐺𝐺,𝐻𝐻

minimize
ecost 𝑓𝑓𝐺𝐺,𝐻𝐻 ,𝑚𝑚𝑚𝑚

• Goal: Pebble G
minimize 

rbpeb 𝐺𝐺,𝑂𝑂(𝑚𝑚)

H()
1

2
3

N=4
1Extractor Argument

(can’t compress 
labels from RO) 
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Pebbling Reduction

• Prior pebbling reduction implies that total number of pebbles on 
graph (red or blue) is proportional to overall state size (cache+RAM)

• Challenge: Ex-post facto pebbling only gives us black pebbling P1,…,Pt. 
• Which pebbles should we color blue/red in each round? 
• We cannot directly see what labels are transferred to/from cache (the labels 

might be stored in encrypted form!)

• Recall: In ex-post facto pebbling Pi denotes labels that appear “out of 
the blue” in our simulation i.e., the next time these labels appear will 
be as the input to a random oracle query. 
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Pebbling Reduction

• Prior pebbling reduction implies that total number of pebbles on graph 
(red or blue) is proportional to overall state size (cache+RAM)

• Challenge: Ex-post facto pebbling only gives us black pebbling P1,…,Pt. 

• Recall: In ex-post facto pebbling Pi denotes labels that appear “out of the 
blue” in our simulation i.e., the next time these labels appear will be as the 
input to a random oracle query. 

• Intuition: We expect that at least |Pi|-m of the labels in Pi will have to be 
transferred from cache in the future at cost (|Pi|-m)Cb.  
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Pebbling Reduction

• Challenge: Ex-post facto pebbling only gives us black pebbling P1,…,Pt. 

• Recall: In ex-post facto pebbling Pi denotes labels that appear “out of the blue” in 
our simulation i.e., the next time these labels appear will be as the input to a 
random oracle query. 

• Intuition: We expect that at least |Pi|-m of the labels in Pi will have to be 
transferred from cache in the future incurring cost (|Pi|-m)Cb.  

• Suppose Not: If fewer than (|Pi|-m)Cb/2 bits are transferred to/from cache 
after round i then extractor hint would include

• Cache State at round i (mw) bits
• Bits transferered between cache/memory  ((|Pi|-m)Cb/2 bits)
• Additional information to extract labels (≪(|Pi|-m) Cb/2 bits)
•  Contradiction! We would extract a random |Pi|w-bit string with a much shorter hint
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Pebbling Reduction

• Key Definition: QueryFirst(t1,t2)
• Data-labels 𝐿𝐿𝑣𝑣 that appear “out of 

the blue” as input to RO query 
before output during rounds [t1, t2]

• Dependent on execution trace of 
attacker.

• Partition time into intervals [t1, t2],
[1+t2, t3]… s.t 

4m > |QueryFirst(ti,ti+1)| > 3m

• Claim 1: Attacker must transfer at 
least mw bits to/from cache during 
each interval [1+ti,ti+1]

• Claim 2: Can find legal red-blue 
pebbling in which 

1. The number of blue moves during 
each interval [1+ti,ti+1] is at most 4m

2. We never use more than 8m red
pebbles.
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Pebbling Reduction

Claim 1: Attacker must transfer at 
least mw bits to/from cache during 
each interval [1+ti,ti+1]
Proof Sketch: Suppose not then we 
could use an extractor to extract 
3m labels with a hint of size 

( h − 2𝑚𝑚𝑚𝑚) ≪ 3mw

The odds of this happening are 
negligible!

• Extractor Hint:
• State 𝝈𝝈𝟏𝟏+𝒕𝒕𝒊𝒊 of PROM attacker cache 

A at time 1+ti
• ignore memory 𝝃𝝃𝟏𝟏+𝒕𝒕𝒊𝒊
• At most mw bits

• List of messages passed to/from 
cache during interval [1+ti,ti+1]

• At most mw bits
• List of labels in QueryFirst(ti,ti+1) to 

extract (plus information to  
recognize relevant queries)

• 𝑂𝑂 𝑚𝑚 log(𝑛𝑛 + 𝑞𝑞) ≪ 𝑚𝑚𝑚𝑚
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Extractor for Pebbling Reduction

• Given state of cache 𝝈𝝈𝟏𝟏+𝒕𝒕𝒊𝒊 and 
list of messages passed to/from 
memory we can simulate the 
attacker.

• When the attacker submits the 
ith random oracle query

• Check hint to see the ith query x is 
of interest

• Otherwise forward query to 
random oracle and forward the 
response to the attacker

• Label appears “out of the blue”
• Making the query “ruins” label 
𝐿𝐿𝑣𝑣 we want to extract

• 𝐿𝐿𝑣𝑣 = 𝐻𝐻(𝑣𝑣, 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑉𝑉))
• How to identify such a query?

• Rely on hint.
• How to continue simulation 

without making the RO query?
• 𝐿𝐿𝑣𝑣 previously appeared out of the 

blue. 
• Thus, extractor can simply send the 

response 𝐿𝐿𝑣𝑣

109



Bandwidth Hardness of Candidate iMHFs

• Key Pebbling Lemma:  Lower bounds 
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 cost to pebble 
target nodes 𝑇𝑇 ⊆ [𝑁𝑁] starting from 
configuration with

• Blue Pebbles on 𝐵𝐵 ⊆ [𝑁𝑁]\T
• Red Pebbles on 𝑅𝑅 ⊆ [𝑁𝑁]\T

• Let 𝐵𝐵′ ⊆ 𝐵𝐵 be blue moves that are 
eventually converted to red pebbles.

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅
≥ 𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇

• Intuition: If there is a path from v 
to T which avoids the set 𝑅𝑅 ∪ 𝐵𝐵𝐵
then node v must be pebbled at 
some point at cost 𝐶𝐶𝑟𝑟.
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Bandwidth Hardness of Candidate iMHFs

• Key Lemma (central to all proofs)
• Lower bounds rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 cost to pebble target nodes 𝑇𝑇 ⊆ [𝑁𝑁]

starting from configuration with
• Blue Pebbles on 𝐵𝐵 ⊆ [𝑁𝑁]\T
• Red Pebbles on 𝑅𝑅 ⊆ [𝑁𝑁]\T

• Let 𝐵𝐵′ ⊆ 𝐵𝐵 be blue moves that are eventually converted to red pebbles.

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵
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Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Partition the nodes [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each 
containing Ω 𝑚𝑚 nodes.

rbpeb 𝐺𝐺,𝑚𝑚 ≥�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇𝑖𝑖 ,𝐵𝐵,𝑅𝑅

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3
𝑁𝑁
2

𝑁𝑁1
Ω 𝑚𝑚 nodes

…
𝑅𝑅 ≤ 𝑚𝑚𝐵𝐵
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Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Partition the nodes [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing 
Ω 𝑚𝑚 nodes.

rbpeb 𝐺𝐺,𝑚𝑚 ≥�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇𝑖𝑖 ,𝐵𝐵,𝑅𝑅

≥�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

We lower bound this quantity 
for three iMHF candidates 
Argon2i, DRSample and 

aATSample
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Bandwidth Hardness of Candidate iMHFs

Theorem: [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing Ω 𝑚𝑚 nodes 
then rbpeb 𝐺𝐺,𝑚𝑚 ≥

�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Argon2i if 𝑚𝑚 = 𝑂𝑂 𝑁𝑁
2
3−𝜀𝜀 then for each interval 𝑇𝑇𝑖𝑖 of Ω 𝑚𝑚 nodes we have

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏
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Bandwidth Hardness of Candidate iMHFs

Theorem: [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing Ω 𝑚𝑚 nodes 
then rbpeb 𝐺𝐺,𝑚𝑚 ≥

�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Argon2i if 𝑚𝑚 = 𝑂𝑂 𝑁𝑁
2
3−𝜀𝜀 then for each interval 𝑇𝑇𝑖𝑖 of Ω 𝑚𝑚 nodes we have

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏

Amortized: Ω 1 blue moves 
per node in interval (best 

possible)
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Bandwidth Hardness of Candidate iMHFs

Theorem: [𝑁𝑁]\ 𝑁𝑁
2

into Ω 𝑁𝑁
𝑚𝑚

intervals 𝑇𝑇1,𝑇𝑇2, … , each containing Ω 𝑚𝑚 nodes 
then rbpeb 𝐺𝐺,𝑚𝑚 ≥

�
𝑖𝑖≥1

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

Argon2i if 𝑚𝑚 = 𝑂𝑂 𝑁𝑁
2
3−𝜀𝜀 then for each interval 𝑇𝑇𝑖𝑖 of Ω 𝑚𝑚 nodes we have

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏

Amortized: Ω 𝑁𝑁
1
3 red moves 

per node in interval (expensive 
even if 𝐶𝐶𝑟𝑟 ≪ 𝐶𝐶𝑏𝑏
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Bandwidth Hardness of Candidate iMHFs

Argon2i

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵 = Ω min 𝑁𝑁 𝐶𝐶𝑟𝑟 ,𝑁𝑁
2
3𝐶𝐶𝑏𝑏

We must pay this cost Ω 𝑁𝑁
𝑚𝑚

times for each interval 𝑇𝑇𝑖𝑖

rbpeb 𝐺𝐺,𝑁𝑁
2
3−𝜀𝜀 = Ω min 𝑁𝑁

4
3𝐶𝐶𝑟𝑟 ,𝑁𝑁𝐶𝐶𝑏𝑏
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Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 ancestorsG−R∪B′ T + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

DRSample: For any constant 𝜌𝜌 < 1 if m = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏
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Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 ancestorsG−R∪B′ T + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

DRSample: For any constant 𝜌𝜌 < 1 ifm = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏

Amortized (𝜌𝜌 = 0.8): Ω 𝑁𝑁0.1

red moves per node in interval 
(expensive even if 𝐶𝐶𝑟𝑟 ≪ 𝐶𝐶𝑏𝑏
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Bandwidth Hardness of Candidate iMHFs

Lemma: ∀𝑇𝑇,𝐵𝐵,𝑅𝑅 ⊆ [𝑁𝑁]\T
rbpeb 𝐺𝐺,𝑚𝑚,𝑇𝑇,𝐵𝐵,𝑅𝑅 ≥ min

𝐵𝐵𝐵 ⊆𝐵𝐵
𝐶𝐶𝑟𝑟 ancestorsG−R∪B′ T + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

DRSample: For any constant 𝜌𝜌 < 1 ifm = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏

Amortized: Ω 1 blue moves 
per node in interval (best 

possible)
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Bandwidth Hardness of Candidate iMHFs

DRSample: For any constant 𝜌𝜌 < 1 ifm = 𝑂𝑂 𝑁𝑁𝜌𝜌

min
𝐵𝐵,𝑅𝑅⊆[𝑁𝑁]\𝑇𝑇𝑖𝑖
𝑠𝑠.𝑡𝑡. 𝑅𝑅 ≤𝑚𝑚

min
𝐵𝐵𝐵 ⊆𝐵𝐵

𝐶𝐶𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺−𝑅𝑅∪𝐵𝐵𝐵 𝑇𝑇𝑖𝑖 + 𝐶𝐶𝑏𝑏 𝐵𝐵𝐵

= Ω min 𝑁𝑁
1
2+

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝜌𝜌𝐶𝐶𝑏𝑏

If m = 𝑂𝑂 𝑁𝑁𝜌𝜌 must pay this cost Ω 𝑁𝑁
𝑁𝑁𝜌𝜌

times

rbpeb 𝐺𝐺,𝑁𝑁𝜌𝜌 = Ω min 𝑁𝑁
3
2−

𝜌𝜌
2𝐶𝐶𝑟𝑟 ,𝑁𝑁𝐶𝐶𝑏𝑏
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Comparison between Argon2i and DRSample

• Argon2i is maximally bandwidth 
hard if attacker’s cache size is 
𝑚𝑚 = 𝑜𝑜 𝑁𝑁2/3 

• Arguably a reasonable assumption 
in practice 

• Argon2i is not maximally 
memory hard 

• But it does beat out other entrants 
in the Password Hashing 
Competition 

• DRSample is both maximally 
memory hard and maximally 
bandwidth hard 
• Even if attackers cache size is 𝑚𝑚 =
𝑂𝑂 𝑁𝑁1−𝜀𝜀

• aATSample is also maximally 
memory hard and maximally 
bandwidth hard 
• Even if attackers cache size is 𝑚𝑚 =
𝑂𝑂 𝑁𝑁

log 𝑁𝑁
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Scrypt is maximally
memory-hard

IST Austria

Joël
Alwen

UCSB Boston U. 

Binyi
Chen

Krzysztof
Pietrzak

Leonid
Reyzin

IST Austria
(work done at

IST Austria)

Stefano
Tessaro
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[Percival 2009]: scrypt
x0 x1 x2 x3 x4 x5 x6 … xn

Repeat n times: xi=H(xi-1)
Input: x0

s1 s2 s3 s4 s5 s6 … sn

Repeat n times: si=H(si-1⊕xj) for j = si-1 mod n
s0=xn

Output: sn

H: {0,1}* → {0,1}w random oracle

s0

Data-Dependent Memory Access
 Pebbling Attacks Don’t apply



scrypt in the wild

• Used in several cryptocurrencies, most notably
Litecoin (a top-4 cryptocurrency by market cap)

• Idea behind password-hashing winner Argon2d

• Attempts to standardize within IETF (RFC 7914)



Memory-Hard Functions
Goal: Find moderately hard F for which 
special-purpose hardware, parallelism, and amortization do not help.

Proposal [Percival 2009]: make a function that needs a lot of memory

(memory is always general, unlike computation)

Make sure parallelism cannot help
(force evaluation to cost the same)

Complexity measure: memory × time



What’s the best we can hope for?

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

The naïve algorithm stores every xi value.
Time: 2n. Memory: ≤n. Total: ≤2n2 (in w-bit units).

Upper bound on cc(scrypt): 

Note: any function that has an n-step sequential algorithm 
has cc ≤ n2/2 (because memory ≤ time)

No function so far has been proven to have cc of n2

(several candidates were proposed during 
password-hashing competition 2013-15; some have been broken)



Data-Independent Memory Hard Functions

Observation: any function whose memory access pattern 
is independent of the input 
can be represented as a fixed graph

[Alwen-Blocki 16]: for any iMHF, cc ≤ n2 log log n/ log n 

Term: iMHF (Data-independent Memory Hard Function)
Sequential algorithm of time n ⇒ n nodes

scrypt is a very simple dMHF
Q: can scrypt beat this iMHF bound?



Our Result

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Theorem: in the parallel RO model, cc(scrypt) = Ω (n2) 

The first ever construction works!



Talk Outline
Memory-hard functions for password hashing

Design of scrypt

How to measure cost: cumulative complexity (cc)

Main Result: cc(scrypt) is highest possible n2

in parallel RO model 

Before proving: can we simplify scrypt?



How quickly can you play this game?

I give you uniform challenge c from 1 to n

You return xc

You have x0 and whatever storage you want

If you store nothing but x0: n/2 H-queries per challenge

x0 xn



How quickly can you play this game?

If you store nothing but x0: n/2 H-queries per challenge

If you store p hash values: n/(2p) H-queries per challenge

If you store something other than hash values?

x0 xn

I give you uniform challenge c from 1 to n

You return xc

You have x0 and whatever storage you want



Result for the scrypt one-shot game  
x0 xn

Prior result 1: if you store p labels, expected time ≥n/(2p)  

I give you uniform challenge i from 1 to n

You return xi

You have x0 and whatever storage you want

Prior result 2 [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]: 
same if you store “entangled” labels
(such as XOR or more general linear functions) 

Our result: same for arbitrary storage of pw bits! 
(where w is label length = output length of H)

but not portions of labels, XORs of portions, etc.



Claim: time ≥n/(2p) if storage pw 
x0 xn

Basic idea of the argument (inspired by [Alwen-Serbinenko]): 
if A is too fast, then
we can extract many labels from A’s storage w/o querying H

but can’t extract more than p labels b/c RO not compressible



Extracting labels from A’s memory
x0 xn

Imagine: run A on every possible challenge and record queries

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x22

x23

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x22

x23

x23

x24

x21 x12

c=25

x22 x13

x13

x14

x7

x8

x30 x5

c=26

x31 x6

x26

… …

x24

x25



Extracting labels from A’s memory
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x22

x23

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x22

x23

x23

x24

x21 x12

c=25

x22 x13

x13

x14

x7

x8

x30 x5

c=26

x31 x6

x26

x24

… …

x25



Extracting labels from A’s memory
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x22

x23

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x22

x23

x23

x24

x21 x12

c=25

x22 x13

x13

x14

x7

x8

x30 x5

c=26

x31 x6

x26

x24

… …

x25



x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H

Proof: Make a predictor for H that runs A in parallel
on all challenges, one step at a time,
predicting blue values by querying H only when needed

Extracting labels from A’s memory



x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ |memory|/w)

Extracting labels from A’s memory



x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ pw/w)

Extracting labels from A’s memory



x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ p)

Extracting labels from A’s memory



memory pw ⇒ time ≥ n/(2p)
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ p)

Lemma 2: Time to answer c ≥ distance from nearest blue
Proof: induction



memory pw ⇒ time ≥ n/(2p)
x0 xn

Mark blue any label whose earliest appearance is not from H

x5 x14

c=23

x6 x15

x6 x15

x7 x16

x5 x14

c=24

x6 x15

x6 x15

x7 x16

x21 x12

c=25

x22 x13

x13

x14

x30 x5

c=26

x31 x6

x26

… …

Lemma 1: all blue labels can be extracted from memory of A
without querying H (so |blue set| ≤ p)

Lemma 2: Time to answer c ≥ distance from nearest blue
Conclusion: storage pw ⇒ time ≥ n/(2p)



Talk Outline
Memory-hard functions for password hashing

Design of scrypt

How to measure cost: cumulative complexity (cc)

Main Result: cc(scrypt) is highest possible n2

in parallel RO model 

scrypt: very simple dMHF (and iMHF won’t work)

Proof in two parts 

2. cumulative complexity of n challenges 
1. memory vs. time to answer one random challenge 



How to go from this…

x0 x1 x2 x3 x4 x5 x6 … xn

Single random challenge: memory ≥

H: {0,1}* → {0,1}w random oracle

nw
2

1
time•



… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute si

Know only that 
orange is inversely 
proportional to red

Prior work [Alwen Chen Kamath Kolmogorov Pietrzak Tessaro ‘16]: 
“potential” argument to get  (n2 / log2n)

nw
2

1
time•



… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that 
orange is inversely 
proportional to red

Idea: apply bound k 
steps before  si-1 is 

known: purple
is inversely proportional 

to red+k

nw
2

1
time•

k



… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that 
orange is inversely 
proportional to red

nw
2

1
time•



… to cc(n challenges)

x0 x1 x2 x3 x4 x5 x6 … xn

s1 s2 s3 s4 s5 s6 … sn

H: {0,1}* → {0,1}w random oracle

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that 
orange is inversely 
proportional to red

nw
2

1
time•



… to cc(n challenges)

Single random challenge: memory ≥

time

m
em

or
y

ti to compute siti-1 to compute si-1

Know only that 
orange is inversely 
proportional to red

nw
2

1
time•

nw
2

nw
2

Adding up memory used during previous challenge: 

ti ti+1 ti + ti-1
( + ++ …1 1 1 ) ≥ (ln (ti+ti-1) – ln ti)



… to cc(n challenges)

time

m
em

or
y

nw
2

nw
2

Adding up memory used during previous challenge: 

ti ti+1 ti + ti-1
( + ++ …1 1 1 ) ≥ (ln (ti+ti-1) – ln ti)

Adding up over all challenges i from 1 to n: 
½nw ( ln (t1+t2) – ln t2 + ln (t2+t3) – ln t3+ … + ln (tn-1+ tn) – ln tn)

≥ ½nw (n ln 2) ≥ Ω(n2w)



Talk Outline
Memory-hard functions for password hashing

Design of scrypt

How to measure cost: cumulative complexity (cc)

Main Result: cc(scrypt) is highest possible n2

in parallel RO model 

scrypt: very simple dMHF (and iMHF won’t work)

Proof in two parts 

2. cumulative complexity of n challenges 
1. memory vs. time to answer one random challenge 



Thanks for Listening
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