
Advanced Cryptography
CS 655

Week 6: 
• Memory Hard Functions and Pebbling
• Pebbling Attacks
• Depth-Robust Graphs and Pebbling
• Constructing Depth-Robust Graphs

1Spring 2023

Homework 2 Released
Project Proposals due February 21



Course Project Proposal

• You may complete your project individually or as a group of size two.

• You are welcome to come up with your own project or talk to me for ideas.

• Project Proposal: 2 Pages
• Briefly the problem you plan to work on
• Briefly summarize prior work on the problem and how your project is different
• Identify several related papers that you plan to read as part of the project
• Briefly describe your plan to attack the problem
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A Few Project Ideas

• Pick a cryptographic scheme and try to find a tighter concrete security proof 
under idealized assumptions

• Example: Tighter security analysis for Password Authenticated Key Exchange (PAKE) 
protocols such as CPACE in the generic group+random oracle model?

• Pick a cryptographic scheme/protocol and analyze the security with respect 
pre-processing attacks or provide a memory-tight reduction

• Example: Memory-Tight Reduction for RSA-FDH under the One-More-RSA-Inversion 
problem?

• Example: Security of PAKE protocols against pre-processing attacks?
• Example: Security of AES-GCM vs pre-processing attacks?

• Pebbling Reduction for Salted iMHFs vs. Preprocessing Attackers
• Pebbling Reduction for Argon2 Round Function (in ideal permutation model)
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A Few Project Ideas

• Implement a Cryptographic Protocol/Attack
• Example: Implement Argon2 with different instantiations of 

round function
• Example: Implement partitioning oracle attack on AES-GCM. 

• Many other possibilities! Make sure your proposal is 
realistic. 

• It is ok to try something and fail i.e., a final project 
report documenting your unsuccessful attempts to solve 
a problem is acceptable as long as the attempts are 
clearly described 4



Motivation: Password Storage
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Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f584e
3db87aa72630a9a2
345c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input



Measuring Pebbling Costs [AS15]

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

Memory Used at Step iApproximates 
Amortized Area x Time 
Complexity of iMHF Cumulative Memory Cost
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Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)  

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

• Guessing two passwords doubles the attackers cost
CC 𝐺𝐺,𝐺𝐺 = 2 × CC(𝐺𝐺)

Memory Used at Step i

Approximates 
Amortized Area x Time 
Complexity of iMHF



Naïve: Pebbling Strategy
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Naïve: Pebbling Strategy

1 2 3 4 5

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}
P4 = {1, 2, 3, 4}
P5 = {1, 2, 3, 4, 5}



Naïve: Pebbling Strategy  (CC)

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}

1 2 3 4 5

P4 = {1,2, 3,4}
P5 = {1,2,3,4,5}

CC 𝐺𝐺 ≤�
𝑖𝑖=1
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𝑃𝑃𝑖𝑖

= 1 + 2 + 3 + 4 + 5
= 15



Naïve Pebbling Algorithms

• Naïve (Pebble in Topological Order)
• Never discard pebbles
• Legal Pebbling Strategy for any DAG!
• Pebbling Time: n
• Sequential: Place one new pebble on the graph in each round

Theorem: Any DAG G has  𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ ∑𝑖𝑖≤𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

Proof: Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 ? 
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Improved Pebbling

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}



Graphs with High CC

Theorem: Any DAG G has  𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ ∑𝑖𝑖≤𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

Proof: Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 ? 

Claim: The complete DAG has 𝐶𝐶𝐶𝐶 𝐺𝐺 ≥ ∑𝑖𝑖≤𝑛𝑛−1 𝑖𝑖 = 𝑛𝑛 𝑛𝑛−1
2

= Ω 𝑛𝑛2 ?

Proof: Consider the round immediately before we first place a pebble on 
node i+1. We must have had pebbles on all of the nodes {1,…,i}.

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 and low indegree? 



Why do we care about indegree?
In practice the random oracle is instantiated with a function 𝑯𝑯: 𝟎𝟎,𝟏𝟏 𝟐𝟐𝝀𝝀 → 𝟎𝟎,𝟏𝟏 𝝀𝝀

Label of node v is obtained by hashing labels of v’s parents.

Node v has two parents (u and w)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘) One oracle to H used to compute label 

Node v has three parents (u, w, x)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑯𝑯 𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘 ,𝑳𝑳𝒙𝒙) Two oracle queries to H to 
compute label

Node v has four parents (u, w, x, y)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑯𝑯(𝑯𝑯 𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘 ,𝑳𝑳𝒙𝒙),𝑳𝑳𝒚𝒚) Three oracle queries to H 
to compute label

Node v has k parents  k-1 oracle queries to H to compute label

Running time to evaluate 𝒇𝒇𝑮𝑮,𝑯𝑯 is proportional to 𝒏𝒏 × 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝑮𝑮)



Desiderata

Find a DAG G on n nodes such that
1. Constant Indegree (𝛿𝛿 = 2)

• Running Time: 𝑛𝑛 𝛿𝛿 − 1 = 𝑛𝑛

2. CC(G) ≥ 𝑛𝑛2

𝜏𝜏
for some small value 𝜏𝜏. 

Maximize costs for fixed running time n 
(Users are impatient)



Outline

• Motivation
• Data Independent Memory Hard Functions (iMHFs)
• Our Attacks

• General Attack on Non Depth Robust DAGs
• Existing iMHFs are not Depth Robust
• Ideal iMHFs don’t exist

• Subsequent Results (Depth-Robustness is Sufficient)
• Open Questions



Depth-Robustness: A Necessary Property



Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible



Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.
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Example: (1,2)-reducible



Observation 1

31
Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

• If a DAG has no directed paths of length d then it can be pebbed in at 
most d rounds (parallel)



Observation 1
• If a DAG has no directed paths of length d then it can be pebbed in at 

most d rounds (parallel)
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Round 1



Observation 1
• If a DAG has no directed paths of length d then it can be pebbed in at 
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Observation 1
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Observation 1
• If a DAG has no directed paths of length d then it can be pebbed in at 

most d rounds (parallel)
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Observation 1
• If a DAG has no directed paths of length d then it can be pebbed in at 

most d rounds (parallel)
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Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

Round 1 Round 2 Round 3 Round 4 Round 5



Attacking (e,d)-reducible DAGs

• Input: |S| ≤e such that depth(G-S) = d, g > d

• Light Phase (g rounds): Discard most pebbles!
• Goal: Pebble the next g nodes in g (sequential) steps
• Low Memory (only keep pebbles on S and on parents of new nodes)
• Lasts a ``long” time

• Balloon Phase (d rounds): Greedily Recover Missing Pebbles
• Goal: Recover needed pebbles for upcoming light phase
• Expensive, but quick (at most d steps in parallel).



Light Phase

• Goal: Pebble all nodes between v+1 and v+g

38

v v+1 v+2 v+g

𝐺𝐺≤𝑣𝑣v-2v-1

u w

… …

𝐺𝐺≥𝑣𝑣
v+g+1 v+g+2

Precondition: Start with pebbles on 
parents!
If i<g and (u,v+i) is an edge then we start 
with a pebble on u.

We also keep pebbles on depth-reducing 
set S
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Light Phase

• Goal: Pebble all nodes between v+1 and v+g
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v v+1 v+2 v+g

𝐺𝐺≤𝑣𝑣v-2v-1

u w

… …
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Light Phase

• Goal: Pebble all nodes between v+1 and v+g
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v v+1 v+2 v+g

𝐺𝐺≤𝑣𝑣v-2v-1

u w

… …

𝐺𝐺≥𝑣𝑣
v+g+1 v+g+2

Precondition: Start with pebbles on 
parents!
If i<g and (u,v+i) is an edge then we start 
with a pebble on u.

We also keep pebbles on depth-reducing 
set S

Light Phase Time: g rounds Max Space Usage: 𝑶𝑶 𝒈𝒈 + 𝒆𝒆 Contribution to CC: 𝑶𝑶 𝒈𝒈𝟐𝟐 + 𝒈𝒈𝒈𝒈



Next Light Phase?

• Goal: Pebble all nodes between v+g+1 and v+2g
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v+g+1 v+g+2 v+2g

𝐺𝐺≤𝑣𝑣+𝑔𝑔v-g-2v+g-1

w

… …

𝐺𝐺≥𝑣𝑣
v+2g+1 v+2g+2

Precondition: Start with pebbles on 
parents!

This precondition may not be satisfied!

We may need to recover previously 
discarded pebbles on 𝐺𝐺≤𝑣𝑣+𝑔𝑔

v+g



Balloon Phase

• Goal: Recover previously discarded pebbles on 𝐺𝐺≤𝑣𝑣+𝑔𝑔
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v+g+1 v+g+2 v+2g

𝐺𝐺≤𝑣𝑣+𝑔𝑔v-g-2v+g-1

w

… …

𝐺𝐺≥𝑣𝑣
v+2g+1 v+2g+2

Precondition: Start with pebbles on depth-
reducing set such that 𝐺𝐺≤𝑣𝑣+𝑔𝑔 − 𝑆𝑆 has no 
directed path of length d.

Quickly recover all discarded pebbles in d 
rounds!

v+g

Balloon Phase Time: d rounds Max Space Usage: 𝒗𝒗 + 𝒈𝒈 ≤ 𝑵𝑵 Contribution to CC: 𝑶𝑶 𝒅𝒅𝒅𝒅



Attacking (e,d)-reducible DAGs



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑑𝑑 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Upper bounds pebbles
on nodes x ∈ 𝑆𝑆, where    

𝑆𝑆 = 𝑒𝑒
depth(G-S) ≤ 𝑑𝑑

#pebbling rounds



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Maintain pebbles on parents of next 
g nodes to be pebbled. Each node 
has at most  𝛿𝛿 incoming edges

#pebbling rounds



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

#balloon phases

Max #pebbles on G
In each round of balloon phase

Length of a balloon phase



Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Set 𝑔𝑔 = 𝑛𝑛𝑛𝑛

ER 𝐴𝐴 = O 𝑒𝑒𝑒𝑒 + 𝑛𝑛3𝑑𝑑 .

Main Theorem

In particular, ER 𝐴𝐴 = o 𝑛𝑛2 for e,d=o(n).



Question

Are existing iMHF candidates based on depth-
robust DAGs?



iMHF Candidates

• Catena [FLW15]
• Special Recognition at Password Hashing Competition
• Two Variants: Dragonfly and Double-Butterfly
• Security proofs in sequential space-time model

• Balloon Hashing [CBS16]
• Newer proposal (three variants in original proposal)

• Argon2  [BDK15]
• Winner of the Password Hashing Competition
• Argon2i (data-independent mode) is recommended for Password Hashing

• This Talk: Focus on Argon2i-A (version from Password Hashing Competition)
• Attack ideas do extend to Argon2i-B (latest version)



Attack Outline

• Show that any “layered DAG” is reducible
• Note: Catena DAGs are layered DAGs

• Show that an Argon2i DAG is almost a “layered DAG.”
• Turn Argon2i into layered DAG by deleting a few nodes
• Hence, an Argon2i DAG is also reducible.



Catena

• Catena Bit Reversal DAG (BRG𝜆𝜆
𝑛𝑛)

• 𝜆𝜆-layers of nodes (𝜆𝜆 ≤ 5)
• Edges between layers correspond to the bit-reversal operation
• Theorem[LT82]: sST(BRG1𝑛𝑛)= Ω 𝑛𝑛2

• Catena Butterfly (DBG𝜆𝜆
𝑛𝑛)

• 𝜆𝜆 = 𝑂𝑂(log𝑛𝑛)-layers of nodes
• Edges between layers correspond to FFT
• DBG𝜆𝜆

𝑛𝑛 is a “super-concentrator.”

• Theorem[LT82] => sST(BRG1𝑛𝑛)= Ω 𝑛𝑛2

log(𝑛𝑛)



𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…



𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…



𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…

Disallowed! All edges must go to a higher layer (except for (i,i+1))



Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered 
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.   

Proof: Let 𝐒𝐒 = 𝒊𝒊 × 𝒏𝒏𝟏𝟏/𝟑𝟑 𝒊𝒊 ≤ 𝒏𝒏𝟐𝟐/𝟑𝟑 any path p can spend at most 𝑛𝑛1/3

steps on layer i.

1 2 𝑛𝑛1/3
𝑛𝑛

𝜆𝜆 + 1
Layer 0… … 2𝑛𝑛1/3 …

𝑛𝑛1/3 𝑛𝑛1/3



Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered 
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.   

Proof: Let 𝐒𝐒 = 𝒊𝒊 × 𝒏𝒏𝟏𝟏/𝟑𝟑 𝒊𝒊 ≤ 𝒏𝒏𝟐𝟐/𝟑𝟑 any path p can spend at most 𝑛𝑛1/3

steps on layer i.

1 2 𝑛𝑛1/3
𝑛𝑛
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𝑛𝑛1/3 𝑛𝑛1/3



Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered 
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.   

Corollary:ER 𝐺𝐺 ≤ 𝑂𝑂 𝜆𝜆𝑛𝑛5/3 .

Attack Quality: QualityR 𝐴𝐴 = Ω 𝑛𝑛1/3

𝜆𝜆
.



Previous Attacks on Catena

• [AS15] CC(BRG1𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.5

• Gap between cumulative cost 𝑂𝑂 𝑛𝑛1.5 and sequential space-time cost Ω 𝑛𝑛2

• [BK15] ST(BRG𝜆𝜆
𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.8 for 𝜆𝜆 > 1.

• Our result                CC(BRG𝜆𝜆
𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.67 *

* Applies to all Catena variants.



Argon2i [BDK]

• Argon2: Winner of the password hashing competition[2015]

• Authors recommend Argon2i variant (data-independent) for 
password hashing. 



Argon2i

1 2 3 4 i… n



Argon2i

1 2 3 4 i… n

random predecessor r(i) < i

Indegree: 𝛿𝛿 = 2



Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛……
…



Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: E 𝑆𝑆2 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛

……
…



Argon2i is a layered DAG (almost) 
Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

Pr 𝑣𝑣 ∈ 𝑆𝑆2|𝑣𝑣 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 ≤
1
𝑖𝑖 𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 ∩ 𝑆𝑆2 ≤

𝑛𝑛3/4

𝑖𝑖

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛……
…



Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

+4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: E 𝑆𝑆2 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛

……



𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅: E 𝑆𝑆 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛 and depth(G-S)≤ 𝑛𝑛.

Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……
…



𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: G is (2𝑛𝑛3/4 log𝑛𝑛, 𝑛𝑛)-reducible with high probability.

Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……
…



Corollary: ER 𝐺𝐺 ≤ 𝑂𝑂 𝑛𝑛7/4 log𝑛𝑛 .

Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……

QualityR 𝐴𝐴 ≤ Ω 𝑛𝑛1/4

log 𝑛𝑛
.

…



Ideal iMHFs Don’t Exist

• Thm: If G has n nodes and constant in-degree δ=O(1) then G is :

𝑂𝑂 𝑛𝑛 log log 𝑛𝑛
log 𝑛𝑛

, 𝑛𝑛
log2 𝑛𝑛

-reducible.

• Thm: If G has n nodes and constant in-degree then:

∀ε > 0 ER 𝐺𝐺 = 𝑜𝑜
𝑛𝑛2

log(𝑛𝑛)1−ε
+ 𝑛𝑛𝑛𝑛



Practical Consequences (R = 3,000)





Drama: Are the attacks `Practical’

• Argon2i team: No, at least for realistic parameter ranges.

• Recent: Argon2i-B submitted to IRTF (Internet Research 
Task Force) for standardization.

• New Result [AB16b]: 
• New heuristics to reduce overhead by constant factor
• Simulate the attack on real instances



New Simulation Results                        [AB16b] 

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown 
line). 

Pessimistic Argon 2i-B 
parameter

Parameter setting could easily be 
chosen when following Argon2i-B 
guidelines

…



Outline

• Motivation
• Data Independent Memory Hard Functions (iMHFs)
• Attacks
• Constructing iMHFs (New!)

• Depth-Robustness is sufficient

• Conclusions and Open Questions



Depth-Robustness is Sufficient! [ABP16]

Implications: There exists a constant indegree graph G with 

CC G ≥ Ω
𝑛𝑛2

log𝑛𝑛
.

Previous Best [AS15]: Ω 𝑛𝑛2

log10 𝑛𝑛

[AB16]: For all constant indegree graphs CC G = 𝑂𝑂 𝑛𝑛2 log log 𝑛𝑛
log 𝑛𝑛

.

𝐊𝐊𝐊𝐊𝐊𝐊 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: Let G=(V,E) be (e,d)-depth robust then CC(G)≥ 𝑒𝑒𝑒𝑒.



Depth-Robustness is Sufficient! [ABP16]
Proof: Let P1,…Pt denote an (optimal) pebbling of G. For 0< i < d define

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯
one of the sets Si has size at most CC(G)/d. Now we claim that 

d ≥ depth(G-Si)
because any path in G-Si must have been completely pebbled at some 
point. Thus, it must have been pebbled entirely during some interval of 
length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G)≥ 𝑒𝑒𝑒𝑒.



Proof by Picture

P1, P2,…,Pi-1,Pi,Pi+1,…,Pi+d-1,Pi+d,Pi+d+1,…,Pi+2d-1,Pi+2d,….

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯

d rounds d rounds

Claim: Si ≥ 𝑒𝑒



Implication

𝐶𝐶𝐶𝐶(𝐺𝐺) ≥�
𝑡𝑡

𝑃𝑃𝑡𝑡 ≥�
𝑖𝑖=1

𝑑𝑑

𝑆𝑆𝑖𝑖 ≥�
𝑖𝑖=1

𝑑𝑑

𝑒𝑒 ≥ 𝑒𝑒𝑒𝑒

Claim: Si ≥ 𝑒𝑒



Contradiction by Picture

Path: W in G-Si

21 3

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖

d-1 d

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

2 3

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

1 d-1 d

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

… d-1 d1

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

Step i+2: W-{1,2} contains no pebbles

2

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

d1

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

Step i+d-1: W-{1,…,d-1} contains no pebbles

2

Step i+2: W-{1,2} contains no pebbles

... d-1

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

d1

Step i+d: W contains no pebbles since 𝑃𝑃𝑖𝑖+𝑑𝑑 ⊂ 𝑆𝑆𝑖𝑖

Step i+d-1: W-{1,…,d-1} contains no pebbles

2 ... d-1

Contradiction!
d was never pebbled.

∴ 𝑆𝑆𝑖𝑖 ≥ 𝑒𝑒



Positive Result: Consequences
𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 [𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀]: Let G=(V,E) be (e,d)-depth robust then ER 𝐺𝐺 ≥ 𝑒𝑒𝑒𝑒.

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓[𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄]: There is an Ω 𝑛𝑛 ,Ω 𝑛𝑛 -depth robust DAG G with 
indegree 𝛿𝛿 = 𝑂𝑂 log𝑛𝑛 . 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 There is a DAG G with maximum indegree 𝛿𝛿 = 2
and ER 𝐺𝐺 = Ω 𝑛𝑛2

log 𝑛𝑛
.  Furthermore, there is a sequential pebbling 

algorithm N with cost ER 𝑁𝑁 = 𝑂𝑂 𝑛𝑛2

log 𝑛𝑛
.



More New Results

MHF Upper Bound Lower Bound

Argon2i-A �𝑂𝑂 𝑛𝑛1.71 [ABP16]
�𝑂𝑂 𝑛𝑛1.75 [This work]

�Ω 𝑛𝑛1.66 [ABP16]

Catena �𝑂𝑂 𝑛𝑛1.618 [ABP16]
𝑂𝑂 𝑛𝑛1.67 [This work]

�Ω 𝑛𝑛1.5 [ABP16]

SCRYPT
(data dependent)

O(n2)   [Naïve, P12] Ω(n2) [ACPRT16]

Idea: Apply our attack recursively during balloon phases



(e,d)-reducible curve for Argon2i-A

e

De
pt

h 
(d

)

Reducible

Depth Robust

Gap: O(polylog(n))

𝑒𝑒 = 𝑛𝑛0.75 log𝑛𝑛, d = 𝑛𝑛

𝑒𝑒 = 𝑛𝑛0.9 log𝑛𝑛, d = 𝑛𝑛0.2



Recursive Attack

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒𝑒𝑒 +
𝑛𝑛
𝑒𝑒
𝑛𝑛𝑛𝑛

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒𝑒𝑒 +
𝑛𝑛
𝑒𝑒
𝐶𝐶𝐶𝐶(𝐺𝐺′)

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒1𝑛𝑛 +
𝑛𝑛
𝑒𝑒1

𝑒𝑒2𝑑𝑑1 +
𝑛𝑛
𝑒𝑒2
𝑑𝑑2𝑛𝑛

….



Conclusions

• Depth-robustness is a necessary  and sufficient for secure iMHFs
• [AB16] [ABP16]

• Big Challenge: Improved Constructions of Depth-Robust Graphs
• We already have constructions in theory [EGS77, PR80, …]
• But constants matter!



More Open Questions

• Computational Complexity of Pebbling
• NP-Hard to determine CC(G)               [BZ16]
• Hardness of Approximation?

• What is CC(Argon2i-B)?
• Upper Bound: O(n1.8)                            [AB16b]
• Recursive attack: O(n1.77)    [BZ16b]+[ABP16]
• Lower Bound: Ω(n1.66) [BZ16b]

Large Gap Remains



Thanks for Listening
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