Homework 2 Released Project Proposals due February 21

Advanced Cryptography CS 655

Week 6:

- Memory Hard Functions and Pebbling
- Pebbling Attacks
- Depth-Robust Graphs and Pebbling
- Constructing Depth-Robust Graphs

Course Project Proposal

- You may complete your project individually or as a group of size two.
- You are welcome to come up with your own project or talk to me for ideas.
- Project Proposal: 2 Pages
 - Briefly the problem you plan to work on
 - Briefly summarize prior work on the problem and how your project is different
 - Identify several related papers that you plan to read as part of the project
 - Briefly describe your plan to attack the problem

A Few Project Ideas

- Pick a cryptographic scheme and try to find a tighter concrete security proof under idealized assumptions
 - Example: Tighter security analysis for Password Authenticated Key Exchange (PAKE) protocols such as CPACE in the generic group+random oracle model?
- Pick a cryptographic scheme/protocol and analyze the security with respect pre-processing attacks or provide a memory-tight reduction
 - **Example:** Memory-Tight Reduction for RSA-FDH under the One-More-RSA-Inversion problem?
 - **Example:** Security of PAKE protocols against pre-processing attacks?
 - **Example:** Security of AES-GCM vs pre-processing attacks?
- Pebbling Reduction for <u>Salted iMHFs</u> vs. Preprocessing Attackers
- Pebbling Reduction for Argon2 Round Function (in ideal permutation model)

A Few Project Ideas

- Implement a Cryptographic Protocol/Attack
 - Example: Implement Argon2 with different instantiations of round function
 - **Example:** Implement partitioning oracle attack on AES-GCM.
- Many other possibilities! Make sure your proposal is realistic.

 It is ok to try something and fail i.e., a final project report documenting your unsuccessful attempts to solve a problem is acceptable as long as the attempts are clearly described

Motivation: Password Storage

Offline Attacks: A Common Problem

 Password breaches at major companies have affected millions billions of user accounts.

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

Memory access pattern should not depend on input

Measuring Pebbling Costs [AS15]

Amortized Area x Time

Complexity of iMHF

Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)

Memory Used at Step i

• Guessing two passwords doubles the attackers cost $CC(G,G) = 2 \times CC(G)$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{1,2,3\}$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{1,2,3\}$ $P_{4} = \{1, 2, 3, 4\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{1,2,3\}$ $P_{4} = \{1, 2, 3, 4\}$ $P_{5} = \{1, 2, 3, 4, 5\}$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{1,2,3\}$ $P_{4} = \{1,2,3,4\}$ $P_{5} = \{1,2,3,4,5\}$

$$C(G) \le \sum_{i=1}^{5} |P_i|$$

= 1 + 2 + 3 + 4 + 5
= 15

Naïve Pebbling Algorithms

- Naïve (Pebble in Topological Order)
 - Never discard pebbles
 - Legal Pebbling Strategy for any DAG!
 - Pebbling Time: n

• Sequential: Place one new pebble on the graph in each round

Theorem: Any DAG G has $CC(G) \leq \sum_{i \leq n} i = \frac{n(n+1)}{2}$ **Proof:** Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with $CC(G) = \Omega(n^2)$?

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{3\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$ $P_{5} = \{5\}$

Graphs with High CC

Theorem: Any DAG G has $CC(G) \leq \sum_{i \leq n} i = \frac{n(n+1)}{2}$ **Proof:** Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with $CC(G) = \Omega(n^2)$?

Claim: The complete DAG has
$$CC(G) \ge \sum_{i \le n-1} i = \frac{n(n-1)}{2} = \Omega(n^2)$$
?

Proof: Consider the round immediately before we first place a pebble on node i+1. We must have had pebbles on all of the nodes {1,...,i}.

Question: Can we find a DAG G with $CC(G) = \Omega(n^2)$ and low indegree?

Why do we care about indegree?

In practice the random oracle is instantiated with a function $H: \{0, 1\}^{2\lambda} \to \{0, 1\}^{\lambda}$ Label of node v is obtained by hashing labels of v's parents.

Node v has two parents (u and w) $\Rightarrow L_v = H(L_u, L_w) \Rightarrow$ One oracle to H used to compute label

Node v has three parents (u, w, x) $\Rightarrow L_v = H(H(L_u, L_w), L_x) \Rightarrow$ Two oracle queries to H to compute label

Node v has four parents (u, w, x, y) $\Rightarrow L_v = H(H(H(L_u, L_w), L_x), L_y) \Rightarrow$ Three oracle queries to H to compute label

Node v has k parents \rightarrow k-1 oracle queries to H to compute label

Running time to evaluate $f_{G,H}$ is proportional to $n \times indeg(G)$

Desiderata

Find a DAG G on n nodes such that

- 1. Constant Indegree ($\delta = 2$)
 - Running Time: $n(\delta 1) = n$

2. CC(G)
$$\geq \frac{n^2}{\tau}$$
 for some small value τ .

Outline

- Motivation
- Data Independent Memory Hard Functions (iMHFs)

• Our Attacks

- General Attack on Non Depth Robust DAGs
- Existing iMHFs are not Depth Robust
- Ideal iMHFs don't exist
- Subsequent Results (Depth-Robustness is Sufficient)
- Open Questions

Depth-Robustness: A Necessary Property

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$ s.t. $|S| \leq e$ and depth(G-S) \leq d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$ s.t. $|S| \leq e$ and depth(G-S) \leq d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Attacking (e,d)-reducible DAGs

- Input: $|S| \le e$ such that depth(G-S) = d, g > d
- Light Phase (g rounds): Discard most pebbles!
 - Goal: Pebble the next g nodes in g (sequential) steps
 - Low Memory (only keep pebbles on S and on parents of new nodes)
 - Lasts a ``long" time
- Balloon Phase (d rounds): Greedily Recover Missing Pebbles
 - Goal: Recover needed pebbles for upcoming light phase
 - Expensive, but quick (at most d steps in parallel).

Next Light Phase?

• **Goal:** Pebble all nodes between v+g+1 and v+2g

Balloon Phase

• **Goal:** Recover previously discarded pebbles on $G_{\leq \nu+q}$

Attacking (e,d)-reducible DAGs

Algorithm 1: GenPeb (G, S, g, d)

Arguments: $G = (V, E), S \subseteq V, g \in [depth(G - S), n], d \ge depth(G - S)$ 1 for i = 1 to n do Pebble node *i*. $\mathbf{2}$ $l \leftarrow |i/g| * g + d + 1$ 3 if i mod $g \in [d]$ then Balloon Phase 4 $d' \leftarrow d - (i \mod g) + 1$ 5 $N \leftarrow \mathsf{need}(l, l+g, d')$ 6 Pebble every $v \in N$ which has all parents pebbled. 7 Remove pebble from any $v \notin K$ where $K \leftarrow S \cup \text{keep}(i, i+g) \cup \{n\}$. 8 else // Light Phase 9 $K \leftarrow S \cup \mathsf{parents}(i, i+g) \cup \{n\}$ 10 Remove pebbles from all $v \notin K$. 11 12end 13 end

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-reducible then is an (efficient) attack A such that

$$E_{R}(A) \le en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR.$$

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-reducible then is an (efficient) attack A such that

$$E_{R}(A) \leq en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR.$$

Upper bounds pebbles on nodes $x \in S$, where |S| = edepth(G-S) $\leq d$

#pebbling rounds

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-reducible then is an (efficient) attack A such that

$$E_{R}(A) \leq en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR.$$

Maintain pebbles on parents of next g nodes to be pebbled. Each node has at most δ incoming edges

#pebbling rounds

#balloon phases

Length of a balloon phase

Max #pebbles on G In each round of balloon phase

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-node robust then is an (efficient) attack A such that

$$E_{R}(A) \le en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR$$

Set
$$g = \sqrt{nd}$$

$$\mathrm{E}_{\mathrm{R}}(A) = \mathrm{O}\big(en + \sqrt{n^3d}\big)\,.$$

In particular, $E_R(A) = o(n^2)$ for e,d=o(n).

iMHF Candidates

- Catena [FLW15]
 - Special Recognition at Password Hashing Competition
 - Two Variants: Dragonfly and Double-Butterfly
 - Security proofs in sequential space-time model
- Balloon Hashing [CBS16]
 - Newer proposal (three variants in original proposal)
- Argon2 [BDK15]
 - Winner of the Password Hashing Competition
 - Argon2i (data-independent mode) is recommended for Password Hashing
- This Talk: Focus on Argon2i-A (version from Password Hashing Competition)
 - Attack ideas do extend to Argon2i-B (latest version)

Attack Outline

- Show that any "layered DAG" is reducible
 - Note: Catena DAGs are layered DAGs
- Show that an Argon2i DAG is *almost* a "layered DAG."
 - Turn Argon2i into layered DAG by deleting a few nodes
 - Hence, an Argon2i DAG is also reducible.

Catena

- Catena Bit Reversal DAG (BRG $^n_{\lambda}$)
 - λ -layers of nodes ($\lambda \leq 5$)
 - Edges between layers correspond to the bit-reversal operation
 - Theorem[LT82]: $sST(BRG_1^n) = \Omega(n^2)$
- Catena Butterfly (DBG^n_λ)
 - $\lambda = O(\log n)$ -layers of nodes
 - Edges between layers correspond to FFT
 - DBG^n_{λ} is a "super-concentrator."
 - Theorem[LT82] => sST(BRG_1^n) = $\Omega\left(\frac{n^2}{\log(n)}\right)$

λ -Layered DAG (Catena)

 λ -Layered DAG (Catena)

Disallowed! All edges must go to a higher layer (except for (i,i+1))

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ -Layered DAG then G is $(n^{2/3}, n^{1/3}(\lambda + 1))$ -reducible.

Proof: Let $S = \{i \times n^{1/3} | i \le n^{2/3}\}$ any path p can spend at most $n^{1/3}$ steps on layer i.

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ -Layered DAG then G is $(n^{2/3}, n^{1/3}(\lambda + 1))$ -reducible.

Proof: Let $\mathbf{S} = \{\mathbf{i} \times \mathbf{n}^{1/3} | \mathbf{i} \le \mathbf{n}^{2/3}\}$ any path p can spend at most $n^{1/3}$ steps on layer i. $2n^{1/3}$ $n^{1/3}$ Layer 0

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ -Layered DAG then G is $(n^{2/3}, n^{1/3}(\lambda + 1))$ -reducible.

Corollary:
$$E_R(G) \leq O(\lambda n^{5/3}).$$

Attack Quality: Quality_R(
$$A$$
) = $\Omega\left(\frac{n^{1/3}}{\lambda}\right)$.

Previous Attacks on Catena

- [AS15] $CC(BRG_1^n) \le O(n^{1.5})$
 - Gap between cumulative cost $O(n^{1.5})$ and sequential space-time cost $\Omega(n^2)$
- [BK15] $ST(BRG^n_{\lambda}) \le O(n^{1.8})$ for $\lambda > 1$.
- Our result $\operatorname{CC}(\operatorname{BRG}^n_{\lambda}) \leq O(n^{1.67}) *$

* Applies to all Catena variants.

Argon2i [BDK]

• Argon2: Winner of the password hashing competition[2015]

 Authors recommend Argon2i variant (data-independent) for password hashing.

Argon2i

$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow i \rightarrow n$

Indegree: $\delta = 2$

Definition: $S_2 = \{ v_i | v_{r(i)} \text{ and } v_i \text{ in same layer} \}$

Claim: $E[S_2] = O(n^{3/4} \log n)$

Definition: $S_2 = \{ v_i | v_{r(i)} \text{ and } v_i \text{ in same layer} \}$

Definition: $S_2 = \{ v_i | v_{r(i)} \text{ and } v_i \text{ in same layer} \}$

Claim: $E[S_2] = O(n^{3/4} \log n)$

Let $S = S_1 + S_2$

Fact: $E[S] = O(n^{3/4} \log n)$ and depth(G-S) $\leq \sqrt{n}$.

Let $S = S_1 + S_2$

Theorem: G is $(2n^{3/4} \log n, \sqrt{n})$ -reducible with high probability.

Let $S = S_1 + S_2$

Corollary: $\operatorname{ER}(G) \leq O(n^{7/4} \log n)$.

Quality_R(A) $\leq \Omega\left(\frac{n^{1/4}}{\log n}\right)$.

Ideal iMHFs Don't Exist

• Thm: If G has n nodes and constant in-degree δ =O(1) then G is :

$$\left(O\left(\frac{n\log\log n}{\log(n)}\right), \frac{n}{\log^2 n}\right)$$
-reducible.

• Thm: If G has n nodes and constant in-degree then:

$$\forall \varepsilon > 0 \quad \mathrm{E}_{\mathrm{R}}(G) = o\left(\frac{n^2}{\log(n)^{1-\varepsilon}} + nR\right)$$
Practical Consequences (R = 3,000)

Drama: Are the attacks `Practical'

- Argon2i team: No, at least for realistic
- Recent: Argon2i-B submitted to IR1 Task Force) for standardization.
- New Result [AB16b]:
 - New heuristics to reduce overhead by constant factor
 - Simulate the attack on real instances

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown line).

Outline

- Motivation
- Data Independent Memory Hard Functions (iMHFs)
- Attacks
- Constructing iMHFs (New!)
 - Depth-Robustness is *sufficient*
- Conclusions and Open Questions

Depth-Robustness is Sufficient! [ABP16]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then $CC(G) \ge ed$.

Implications: There exists a constant indegree graph G with

$$CC(G) \ge \Omega\left(\frac{n^2}{\log n}\right).$$

Previous Best [AS15]:
$$\Omega\left(\frac{n^2}{\log^{10} n}\right)$$

[AB16]: For all constant indegree graphs
$$CC(G) = O\left(\frac{n^2 \log \log n}{\log n}\right)$$
.

Depth-Robustness is Sufficient! [ABP16]

Proof: Let P₁,...P_t denote an (optimal) pebbling of G. For 0< i < d define

$$S_i = P_i \cup P_{d+i} \cup P_{2d+i} \cup \cdots$$

one of the sets S_i has size at most CC(G)/d. Now we claim that

 $d \ge depth(G-S_i)$

because any path in G-S_i must have been completely pebbled at some point. Thus, it must have been pebbled entirely during some interval of length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G) $\ge ed$.

Proof by Picture

 $S_i = P_i \cup P_{d+i} \cup P_{2d+i} \cup \cdots$

Claim: $|S_i| \ge e$

Step i: W contains no pebbles since $P_i \subset S_i$

Step i: W contains no pebbles since $P_i \subset S_i$

Step i+1: W-{1} contains no pebbles

Step i: W contains no pebbles since $P_i \subset S_i$

```
Step i+1: W-{1} contains no pebbles
Step i+2: W-{1,2} contains no pebbles
```


Step i: W contains no pebbles since $P_i \subset S_i$

```
Step i+1: W-{1} contains no pebbles
Step i+2: W-{1,2} contains no pebbles
Step i+d-1: W-{1,...,d-1} contains no pebbles
```


Step i+d-1: W-{1,...,d-1} contains no pebbles

Positive Result: Consequences

Theorem [ABP16]: Let G=(V,E) be (e,d)-depth robust then $E_R(G) \ge ed$.

Theorem[**EGS75**]: There is an $(\Omega(n), \Omega(n))$ -depth robust DAG G with indegree $\delta = O(\log n)$.

Theorem [**ABP16**] There is a DAG G with maximum indegree $\delta = 2$ and $E_R(G) = \Omega\left(\frac{n^2}{\log n}\right)$. Furthermore, there is a sequential pebbling algorithm N with cost $E_R(N) = O\left(\frac{n^2}{\log n}\right)$.

More New Results

MHF	Upper Bound	Lower Bound
Argon2i-A	$\tilde{O}(n^{1.71})$ [ABP16] $\tilde{O}(n^{1.75})$ [This work]	$\widetilde{\Omega}(n^{1.66})$ [ABP16]
Catena	$\tilde{O}(n^{1.618})$ [ABP16] $O(n^{1.67})$ [This work]	$\widetilde{\Omega}(n^{1.5})$ [ABP16]
SCRYPT (data dependent)	O(n ²) [Naïve, P12]	$\Omega(n^2)$ [ACPRT16]

Idea: Ápply our attack recursively during balloon phases

(e,d)-reducible curve for Argon2i-A

Recursive Attack

Conclusions

- Depth-robustness is a necessary and sufficient for secure iMHFs
 - [AB16] [ABP16]
- Big Challenge: Improved Constructions of Depth-Robust Graphs
 - We already have constructions in theory [EGS77, PR80, ...]
 - But constants matter!

More Open Questions

- Computational Complexity of Pebbling
 - NP-Hard to determine CC(G) [BZ16]
 - Hardness of Approximation?
- What is CC(Argon2i-B)?
 - Upper Bound: O(n^{1.8})
 - Recursive attack: O(n^{1.77})
 - Lower Bound: $\Omega(n^{1.66})$

[AB16b] [BZ16b]+[ABP16] [BZ16b]

Large Gap Remains

