Homework 1 Due Tonight

Advanced Cryptography
CS 655

Week 5:

* Preprocessing: Bit-Fixing Model to Auxiliary Input
e Compression Arguments

e Memory Hard Functions and Pebbling

Spring 2023

Recap: Auxiliary-Input Attacker Model

 Auxiliary-Input Attacker Model A = (44, 45,)

e Random Oracle Version:

e Offline attacker A4 is unbounded and outputs an S-bit hint for online attacker A4,
after viewing entire truth table H(.)

e A, will try to win security games using this hint

e (S,T,p)-attacker
e A; outputs a S-bit hint
e A, makes at most T random oracle queries

» A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

* ((S,T,p),e)-security 2 Any (S, T, p) attacker wins with advantage at most ¢

Recap: Bit-Fixing Model

 Auxiliary-Input Attacker Model A = (44,45,)

e Random Oracle Version:

e Offline attacker A, fixes output of random oracle H(.) at P locations and then
outputs a S-bit hint.

e A, initially knows nothing about remaining unfixed values i.e., H(x) picked
randomly for x & P after A; generates hint

e (PT,p)-attacker
e A, fixes H on at most P locations and outputs S-bit hint
* A, makes at most T random oracle queries

* A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

 ((S,T,p), 8)-security = Any (S, T, p) attacker wins with advantage at most &

Bit-Fixing Model (Unruh)

* Pro: Much easier to prove lower bounds in Bit-Fixing Model

e Con: Bit-Fixing model is not a compelling model for pre-processing
attacks

 Usage: Lower bound in bit-fixing model =» Lower bound in Auxilliary-
Input Model

* This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications ©

e Other applications require a different approach (e.g., compression)

Typical Relationship: BF-RO and Al-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p),)-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

Example: Set y = 2724 and the advantage is €’ + 25+ 4+ 2724

Balancing: &’ usually increases with P i.e., as BF-attacker gets to fix
more and more points.

Typical Relationship: BF-RO and Al-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p),)-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

So far we have used this result (or similar results for Ideal-Ciphers,
Permutations etc...) as a black-box.

How is this result proved?

Preliminary Definitions

e Definition: A (N, M)-source is a random variable X with range [M]"

 Random Oracle H: [N] — [)M] can be viewed as a random variable X with
range [M]" e.g., if H:{0,1}" - {0,1}™ thenwe set M = 2™ and N = 2"

e Given I € [N] (inputs) and x € [M]N let x; € [M]!| denote the substring
specified by I e.g., value of random oracle on all inputsin I

e Dense-Source: X is (1 — §) dense if for every subset I € [N] (inputs) we
have Ho, (X;) = (1 — 8)|I[log, M = (1 — &) log, M

Minimum Entropy: Equivalent statement is that for all y € [M]"| we have Pr[X; = y] < |M|‘|I|(1‘5)

Preliminary Definitions

e Definition: A (N, M)-source is a random variable X with range [M]"

* Random Oracle H: [N] — [M] can be viewed as a random variable X
with range [M]"N e.g., if H: {0, 1}"* - {0, 1}™ then we set M = 2™
and N = 2"

* Dense-Source: X is (1 — §) —dense if for every subset I € [N]
(inputs) we have Hy, (X;) = (1 — &)|I|logy M = (1 — &) log, M/

e Example: Random oracle is (1 — §) —dense with § = 0.

Preliminary Definitions

e Definition: A (N, M)-source is a random variable X with range [M]"

* Dense-Source: X is (P,1 — §) —dense if there is a subset S € [N] of size
|S| < P such that for every subset I € [N \ S] we have

Ho(X) =1 —=8)]|I|log, M = (1 — 8)log, M
 Intuition: Fixed on P coordinates but dense on the rest

e Bit-Fixing Source: X is (P, 1) —dense i.e., fixed on P and uniform on the
rest

Preliminary: Leaky Source

* Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(X) for
some function f: [M]V— {0, 1}

* Bayesian Update: Conditional Distribution X, for all x in [M]N we have
Pr[X, = x] == Pr[X = x|f(X) = 7]
Challenge: It can be difficult to reason about the source X,

Entropy Deficiency: S, = NlogM — H,(X,)

In expectation we have E[S,] < S, but the actual value can vary depending on
z = f(X)

Proof Strategy

e Leaky-Source (Auxiliary-lnput)$°
some function f: [M]"V - {0, 1}°.
* Bayesian Update: Conditional Distribution X, for all x in [M]N we have
Pr|X, = x] = Pr[X = x|f(X) = z]
Challenge: It can be difficult to reason about the source X,
Entropy Deficiency: S, = NlogM — H,(X,) E[S,]<S

Online attacker gets hint z = f(X) for

* Step 1: Show that any leaky source X, is y-close to a source Y, which is a
convex combination of (P’,1 — §)-dense sources.

e Convex Combination: Let Dy, ..., D, each be (P’, 1 — §)-dense sources. Y, has the

form sample a source i < k'with probability p; then sample from (P’, 1 — §)-dense
sources D;

[] [] S 1 1
« Number of Fixed Points: P’ < 2228 /v
6 log M

Proof Strategy

* Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(X) for some
function f: [M]V - {0,1}°.
* Bayesian Update: Conditional Distribution X, for all x in [M]N we have
Pr[X, = x] :=Pr[X = x|f(X) = Z]
Challenge: It can be difficult to reason about the source X,
Entropy Deficiency: S, = NlogM — H,, (X)) E[S,]<S

 Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished from a
P'-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries.

Pr[D¥ = 1] < Pr[DY = 1] x MT¢
And
Pr[®X = 1] - Pr[D¥ = 1]| < TSlogM

Proof Strategy

* Step 1: Show that any leaky source X, is y-close to a source Y, which is a
convex combination of (P’,1 — §)-dense sources.

e DefineY = X, .IfYis (1 — §)-dense then we are done. Otherwis?, let I be
the largest subset for which there exists a violation i.e., y; € [M]"s t.

PI‘[YI — yl] > 2—(1—5)|I| log M
 Let Y' denote distribution of Y conditioned on Y; = y;

e Claim1:Y'is (P, 1 — 6) dense with P’ = ||
* Proof Sketch: If there is a subset J < [N\I] and y, € [M]V] s.t.
pr[y]’ — Yj] > 2—(1-6)|J|log M
Then we could take I' =1 U J and
Pr|Y; = y,] = PrlY,; = y,] PF[Y] =y;|¥; =)’1] > 2~(1=0)l" log M
This contradicts the maximality of I'!

Proof Strategy

* Step 1: Show that any leaky source X, is y-close to a source Y, which is a
convex combination of (P’,1 — §)-dense sources.

e DefineY = X, .IfYis (1 — §)-dense then we are done. Otherwis?, let I be
the largest subset for which there exists a violation i.e., y; € [M]"s t.

Pr[Y; = y,] > 7—(1-8)|I| logM
 Let Y' denote distribution of Y conditioned on Y; = y;
e Claim1:Y'is (P, 1 — 6) dense with P’ = ||

° i . 5z
Claim 2: |I]| < G log 11

* Proof Sketch: On one hand we have H,,(Y;) = |I|logM — S, (def of S)
* On the other hand H,,(¥Y[) < —logy (2~ (=908 M) = (1 — §)|I|log M
e Claim 2 follows immediately by combining the above two inequalities.

Proof Strategy

e Step 1: Show that ani/ leaky source X, is y-close to a source Y, which is a convex
combination of (P’ §)-dense sources.

e DefineY = X, . If Yis (1 — §)-dense then we are done. Oth?rW|se let I be the
largest subset for which there exists a violation i. e., y; € st

PI‘[YI —)’1] > 2~ (1-6)|I] logM
 Let Y’ denote distribution of Y conditioned on Y; = v,
° s ne V/ / _ ; I — i 5z
Claim: Y is (P',1 — &) dense with P* = |I| with |I| < (8 log M)
* Key Idea (Recursion!): Y, uses (P 1 — &) dense source Y’ with probability
r Y; = y;] and samples fromY,’ ‘with probability 1 — Pr|Y; = y,]

e Y, is also convex combination of finitely many (P, 1 — §)-dense sources which is
gamma close to Y4, the distribution of Y con itioned on [V]

Proof Strategy

e Step 1: Show that a;ni/ leaky source X, is y-close to a source Y, which is a convex
combination of (P’,1 — §)-dense sources.

* Key Idea (Recursion!): Y, uses (P’, 1 — &) dense source Y’ with probability Pr[¥; = y;]
and samp(les fromY,’ with probability 1 — Pr[¥; = y;] 1=

e Y, is also convex combination of finitel¥ many (P’,1 — §)-dense sources which is
gamma close to Y4, the distribution of Y conditioned on¥Y; # vy,

e Each step of recursion decreases size of support =» finite termination

* Recurse as long as Pr[X € Supp(Yy)] >y

SZ+logyl

e Claim: Y, is (P',1 — §) dense with P’ < @ log M)

* Process ends with Pr[X € Supp(Yfinal)] < y = replace Yfnq; with uniform distribution

Proof Strategy

e Step 2: Show that a (P, 1 — §)-dense source X’ cannot be
distinguished from corresponding P’-bit fixing source Y’ (uniform on
non-fixed coordinates) by a distinguisher making at most T (adaptive)
gueries to the source.

Pr[D¥ = 1] < Pr[®" = 1] x MT$
And
Pr[©X = 1] — Pr[D" =1]| < TSlogM

Claim 3. Forany (FP',1—38)-dense source X' and its corresponding P'-bit-fizing source Y7, it holds
that for any (adaptive) distinguisher D that queries at most T coordinates of its oracle,

‘P[ﬂle] —P[‘}_:ﬂ’”zl]‘ < Té-logl,

and

P[D* =1] < MTP.P[DY =1].

Proof Strategy

e Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished
from a P’-bit fixing source Y’ by a distinguisher making at most T (adaptive)
qgueries to the source.

Pr[D¥ = 1] < Pr[®" = 1] x M"¢
And

Pr[®X = 1] — Pr[®" = 1]| < TS logM

Proof Intuition:

WLOG we can assume D is deterministic (otherwise we can fix the random coins that

maximizes the advantage of the distinguisher for D) and only queries on non-fixed
points.

Transcript 7 is a list of all of the query/answer pairs that distinguisher © makes.

Proof Strategy

 Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished from a
P'-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries to
the source.

Pr[D¥ = 1] < Pr[DY = 1] x MT¢
And
Pr[®X" = 1] - Pr[D¥ = 1]| < TSlogM

Proof Intuition: Transcript 7 is a list of all of the query/answer pairs that distinguisher © makes.

e Let Ty, (resp. Ty,) denote random variable over transcripts resulting from interaction with
source X’ (resp.Y’).

* Note: The support of Ty, contains the support of Ty,
e For every transcript 7 in the support of Ty, we have
Pr[Ty = 1] < 2-(=9TlogM gnq Pr[T, =] =27TleM
Pr[T,: = t] < MTO Pr[Ty: = 1]

Proof Strategy

* Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished
from a P'-bit fixing source Y’ by a distinguisher making at most T (adaptive)
qgueries to the source.

Pr[D¥ = 1] < MT® x Pr[D¥ = 1]
And
Pr[®X = 1] — Pr[®" = 1]| < TS logM

Proof Intuition: For every transcript 7 in the support of Ty, we have
PriTyr =1] < 2-(1=0)TlogM gnd Pr(Ty =t] =27T log M
Pr[Ty = 1] < MTO Pr[Ty: = 7]
Let 75 denote the set of all transcripts where © outputs 1.
Pr[DX =1] = z Pr(T, =t] < MT° z Pr[Ty: = 7] = M™® x Pr[®"" = 1]

TEID TEI

Claim 3. Forany (P, 1—4)-dense source X' and its corresponding FP'-bit-fiving source Y, it holds
that for any (adaptive) distinguisher T} that queries at most T coordinates of its oracle,

PIDX =1] —P[DY =1]| < T3 loghs,

and also P[Tys = 7] = py/ (7). Towards proving the first part of the lemma, cbserve that

and
‘P[‘Dxi _ 1] . P[DY«’ _ l]‘ < SD(TXHTY“’)
and a = > max {0, P[Tyx = 7] — P[Ty = 7]}
— Z max {0, px:(7) — py(7)}
TETX
- PR ~ prel(7)
= T;a px/(7) {D’l pxx(’r)}

< 1-M"T < Té logM,

where the first sum is over all poasible transcripts and where the last inequality uses 27% > 1 — x
for = = 0.

R =N

< 1— M1 < T§. log M,

where the first sum iz over all possible transcripta and where the last inequality uses 2% > 1 — =
for = = 0.

Lemma 1. Let X be distributed uniformly over [M]Y and Z = f(X)), where f: [M]Y — {0,1}°
ts an arbitrary function. For any v > 0 and P € N, there exists a family {E}EE{DJ}S of conver
combinations Y, of P-bit-fizing (N, M)-sources such that for any distinguisher D taking an S-bit
input and guerying at most T < P coordinates of its oracle,

(S +1loglfy)-T

P[DX(#(X)) =1] — P[PV (#(X) =1]| < 3

+

and

PIDE(H(X) =1] < 9(S+2leg LT/ F P[D¥ex (£(X)) = 1] + 2y.

Let Y/ be obtained by replacing every X’ by the corresponding Y’ in X.. Setting 4, = (5, +
log1/~)/(Plog M), Claims 2 and 3 imply

‘P[sz(z) —1] - P[D¥(2) = 1}‘ < 5 “ﬁilm A (2)

as well as

P[D%(2) = 1] < 2S:HelMT/P pIpYi() = 1] 4+ . (3)

IMoreover, note that for the above cholce of &, P/ = P, i.e., the sources Y/ are fixed on at most P
coordinates, as deaired.

Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°
ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M)-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

(S +1loglfy)-T

P[DX(F(X)) =1] P[PV (#(X) =1]| < 3

+

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

One Missing Link Remains! Prior bounds relied on entropy deficiency
S, =NlogM — H,(X,) instead of S.

Claim: E[S,] < S and Pr [Sf(x) >S5 + log%] <vVy
Key Fact: Pr[f(X) = z] < 27°z

Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°
ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M)-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

S +loglfy)-T
P

PIDX(F(X) = 1] - P[DY 0 (£(X)) = 1]| <

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

Claim: E[S,] < S and Pr [Sf(X) >S5+ log%] <Yy

Key Fact: Pr[f(X) = z] < 272

Proof: By definition of S, (min-entropy deﬂuency) there exists x € [M]V

with f(X) = zsuch that Pr[X = x|f(X) = z] = 12\/1_ We have

1 25z

v = PriX = x] = PrlX = x|f(X) = 2] Pr[f (X) = z] = 75 Pr[f (X) =]

Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°

ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M)-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

(S +1loglfy)-T
P

P[DX(F(X)) =1] P[PV (#(X) =1]| <

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

Claim: E[S,] < Sand Pr [Sf(x) > S+ logﬂ <y
Key Fact: Pr[f(X) = z] < 27>z

1 _ 1
Pr [Sf(X) > S+ log;] = z Pr[f(X) =z| < 25 X 2 (SHOgV) <y
z€{0,1}S s.t

SZ>S+log%

Claim 4. E,[S;] < 5 and F’[Sﬂx} >S5 +logl/y] <+

Proof. Observe that Hoo(X,) = Hoo(X|Z = z) = H(X|Z = z) since, conditioned on Z = z, X is
distributed uniformly over all values = with f(z) = 2. Therefore,

B.[9.] = Nlog — B, [Hoo(X|Z=2)] = Nlog — E,[H(X|Z = 2)
= NlogM —H(X|Z) < .

Again due to the uniformity of X, P[f(X) = 2] = 27", Hence,

P[Sriey > S +loglfy] = > P[#(X)=2] < 25 .2 (5Heel/n) <.
{0,115 S S+log 1/

Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°

ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M)-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

S +logliy) . T
(-+Dif%) .

P[DX(F(X)) =1] P[PV (#(X) =1]| <

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

PO (#(X)) = 1]

|

P[@X(f(}f)) = I}Sf{;{) ﬂ S —I—ng lf”}“] + P[Sf{;{:, s S —I—lﬂg 1/‘“}’]
(2(5¥2108 PDT/P P[DYitn ((X)) = 1, 8pc) < 5 +log 1] +7) +7
o S+2leg LfvjT/F p[@?fcx:.,:f(x)) — 1] + 2y

| A

| A

Memory Hard Functions, Random
Oracles, Graph Pebbling and
Extractor Arguments

é Jeremiah Blocki
A

Motivation: Password Storage

jblocki, 123456

Username

89d978034a3f6 85e23cfe0021f584e
3db87aa72630a9a2
345c062

jblocki

SHA1(12345689d978034a316)=85e23cfe
0021f584e3db87aa72630a9a2345c062

29

Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions
of user accounts.

LastPassEXrTT sony € C Y

ASH LEY) . PPN AdultFriendFinder
MADISEN Linked[}] <

o 730005
rockyou 2Pkaiy

YAHOO! FA\Adobe =o===e= Ilvmgsocﬁll@

Goal: Moderately Expensive Hash Function

~ast on PC and
nensive on ASIC?

t.p

PlayStation™

0aSSWOro

nasning
competition

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

0aSSWOro
a

qaghimgl | We recommend that
Compet_t\om you use Argon2...

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

0aSSWOro

qaghimgl | We recor?end that
Competmom you use Argon2...

There are two main versions of

(2013_2015) Argon2, Argon2i and Argon2d.

Argon2i is the safest against side-
channel attacks

https://password-hashing.net/

https://password-hashing.net/

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T

* Goal: force attacker to lock up large amounts of memory for duration
of computation

- Expensive even on customized hardware

Memory Hard Function (MHF)

d by memory costs
y Y i

A

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T

Memory Hard Function (MHF)

d by memory costs
y Y i

e Data Independent Memory Hard Function (iMHF)
e Memory access pattern should not depend on input

Memory Hard Function (MHF)

. Intumon' computatlon costs dominated by memory cost's' T

e Data Independent Memory Hard Function (|IVIH
 Memory access pattern should not depend on input

Data-Independent Memory Hard Function f; g

°—> Output: f;; ;(x) = Ly

Input: x
b(\ = H(L, L)

1 \\

L, = H(J'c) Ly = H(Ly, L,)

e H:{0,1}%% - {0,1}* (Random Oracle)

e DAG G (encodes data-dependencies)
 Maximum indegree: 6 = 0(1)
e N = 2" nodes

Evaluating an iMHF (

0-0-6-0-0

)

Fvaluating an iMHF ()

0500

P, = {1} (data value L, stored in memory)

Fvaluating an iMHF ()

P1 = {1}

P, ={1,2} (data values L, and L, stored in memory)

Evaluating an iMHF (

60500

Py =11}

P2 = {112}
P3 =13}

)

Evaluating an iMHF (

PIrRtar

Py =11}
P2 = {112}
P3 =13}
P, =1{3,4}

)

Evaluating an iMHF (

Py =11}

P2 = {112}
P3 =13}
P, =1{3,4}
Ps = {5}

0-0-0-0-'

)

Measuring Pebbling Cost: Attempt 1

e Space X Time (ST)-Complexity

ST(G) = min (tlg X maX\Pi\)

)2 iStT;
e Rich Theory

e Space-time tradeoffs ST Cost

e But not appropriate for password hashing » % /
& i(/ 0

time

N

Amortization and Parallelism

e Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

ST, =5, x1,~ x [,=ST,

() f \
O
o
& .
cost of computing cost of computing
fonce f three times

time

[AS15] 3 function £, (consisting of n RO calls) such that: ST(fX‘/ﬁ) = 0(ST(f))

Measuring Pebbling Costs [AS15]

* Cumulative Complexity (CC) Memory Used at Step |

Approximates

t—)
Amortized Area x Time _ .
Complexity of iIMHF CC(G) T mﬁln E ‘Pl‘
=1

e Guessing two passwords doubles the attackers cost

CC(G, G) = 2 x CC(G)

Measuring Pebbling Costs [AS15]

'p
CC(6) = min) |Py
P 4
Approximates =1
Amortized Area x Time

Complexity of iIMHF cumulative Memory Cost

Memory Used at Step i

space

Pebbling Example (CC)

0-0-0-0-'

Py =11}

P, =1{1,2)

p. = (3} CC(G) < Z\P |

P, = {3,4}

Ps =15} —1+2-|-1+2-|—1

=7

Desiderata

Find a DAG G on n nodes such that

1. Constant Indegree (60 = 2)
e Running Time:n(éd — 1) =n

2

2. CC(G) = n? for some small value 1.

Maximize costs for fixed running time n

(Users are impatient)

DAGs with Maximal CC(G)

* Challenge 1: Design a constant indegree DAG G maximizing CC(G)
* Depth-Robust Graphs are necessary [AB16] and sufficient [ABP17]
e Argon2i (PHC winner) is not depth-robust
- CC(G) = o(n'7%7) « n% [AB16,AB17,ABP17,BZ17]
 Any DAG with constant indegree has CC(G) = 0(n?loglogn /logn) at most
e Theoretical [ABP17] then practical [ABH17] construction of depth-robust graphs
- CC(G) = Q(n?*/logn) [AB16,AB17,ABP17,BZ17]

* Open Problem 1: Construct G with CC(G) = Q(n?loglogn /logn)
e Conjecture: [BHKLXZ19] achieves this goal.

e Open Problem 2: Tighten constants in upper/lower bounds

Question: CC(G) =2 cumulative memory cost?

°—> Output: f;; ;(x) = Ly
= H(Ly, L)

— H(Lp Lz)

Bad Case: H(x,y)=x+ymod 2% = f; y(x) = kg X x eg., kg =3 (above)
Independeént of input! kg = 2% (complete)
Computing f; 4 (x) is fast + requires minimal memory.

(even if pebbling cost CC(G) is large!)

Question: CC(G) =2 cumulative memory cost?

°—> Output: f;; ;(x) = Ly
= H(Ly, L)

— H(Lp Lz)

Theorem [AS15]: (in parallel random oracle
model)

A(x) = fep(x)2cmc(A) = Q(w X CC(G))

55

Random Oracle Model (PROM)

Model hash function H as a random function
Algorithms can only interact with H as an oracle
* Query: x

 Response: H(x)

If we submit the same query you see the same
response

If x has not been queried, then the value of H(x) is
uniform

X H(x)
00....00 "
00....01 7
11....11 ron_q

Real World: H instantiated as cryptographic hash function (e.g., SHA3)

of fixed length (no Merkle-Damgard)

Random Oracle Model: Prediction Game

Prediction Game: (x4, V1), ..., (xx, Vi) < AZ® wins the prediction
game if

1. y; =H(xq),...,y;, = H(x;) and
2. theinputs x4, ..., xj are all fresh i.e., A never queried H (x;)

Fact 1: Any algorithm éH(') wins the prediction game with
probability at most 27" over the choice of H(.g).

Intuition: A never queries H(x;) — can view H(x;) as a (yet to be
sampled) random string

Random Oracle Model: Prediction Game

Prediction Game: (x4, Y1), ..., (X, V) < A" wins the prediction game if

1. y,=H(x1),..,yx = H(x}) and
2. theinputs x4, ..., x; are all fresh i.e., A never queried H(x;)

Fac;(t 1: Any algorithm A" wins the prediction game with probability at most
27" over the choice of H(.).

Fact 2 (Incompressibility of ROs): Any algorithm A%() (h) given a s-bit hint h
(Zv!QiVSQSmay depend on H(.)) wins the prediction game with probability at most

Proof Intuition: Otherwise we can win without hint with probability > 27%¥

Reduction: Guess correct hint h with probability 275 and run A#0) (h)

Parallel Random Oracle Model (PROM)

e PROM Algorithm A(x)

* Initial Input/State: g, = x X H(x)
* (01;611 (xl» . ;x%)) « A(0gp) 00....00 To
 New State + Batch of Random Oracle Queries 00....01 7

a; = (H(x1), ..., H(x7,))

e Answers to Random Oracle Queries

(0'2,% — (xlz' . xrz)) N 04(0'1, al)

11...11 ron_q

— (i i —— i
(Ui: qi = (x1: ---xri)) « A(01-1,a;-1) One rounq of computatlon.
1. A receives prior answers a;_4

2. A performs arbitrary computation
3. A outputs (o3, ;) new state + new
qgueries

y < dq(o—t' CTt)

Parallel Random Oracle Model (PROM)

e PROM Algorithm A(x)

* Fixing A, x and H we get an execution trace X H(x)
Trace 4y (x) = {0, q;, a;}i=4 0000 ro
00....01 7

e Cumulative Memory Cost of Execution Trace

t
cmc (TracecA,H(X)) = Z(|0i| + |a;])
i=1

11...11 yn_q
e Cumulative Memory Cost of a Function
cmc(f; y) = min Ey lcmc (Tracedq H(X))]
) UQ,X)
Min over inputs x and PROM Expectation over selection of

algorithms A evaluating f; random oracle

Collision Problem

Collision Problem: Suppose that we are asked to find x # x’
s.t. H(x) = H(x")

What is the probability we can succeed given g queries to the
random oracle?

Answer: < g227V

Explanation: Let x4, ..., X, be the queries we make

Pr{H(x;y1) €E{H(xq), ..., Hx))} <ix27™%

X H(x)
0000 To
00....01 r
1111 T‘zn_l

(Prob Collision at time i+1)

. Pr|[Collision] < z I X 27W (Union Bound over Each Round)

i<q

Label Distinctness

Label Distinctness: Suppose we are given a directed acyclic graph G on n
nodes V={1,...,n} with indegree 2 and such that each node v > 2 has two
parents v-1 and r(v)<v-1. Let

X H(x)
0000 To
Let x = L, be the initial input (w-bits) and define labels L; = 00 . 01 N
H(XO, OW), Lz — H(Lli OW)» 1
Ly = H(LZJ Ll)
L, = H(Lv—l: Lr(v)) 11...11 ron_y

L, = H(Ln—l: Lr(n))
Question: What is the probability that two labels collide?

Label Distinctness

L, = H(Lv—l» Lr(v))

Question: What is the probability that two labels collide?

Let U; be the event that labels L, ..., L; are all distinct
Pr(U;|U;_q] = Pr|H(Li—1,Ly@i)) € (L1, o, Li—1}|Usq| < (G —1)27Y

L;_1 unique = fresh query! Union Bound!

Label Distinctness

L, = H(Lv—lt Lr(v))

Question: What is the probability that two labels collide?
Let U; be the event that labels L4, ..., L; are all distinct

PriU;|U;_4] < (i —1)27"

Pr[U,] < 2(1‘ — 12" <n?2™v

i<n

Label Collision

L, = H(Lv—lr Lr(v))

Prelab(v) = L,_y, L,y

Question: Suppose we can make at most g queries to the random
oracle. What is the probability we find some zs.t. L, = H(z) but z #+
Prelab(v) for some node v?

H(x)
0000 0
00....01 7
11...11 ron_q

Label Collision

Question: Suppose we can make at most q queries to the random
oracle. What is the probability we find some zs.t. L, = H(z) but z #
Prelab(v) for some node v?

Answer: at most nq2™"

Let z; be ith query to random oracle such that z; # Prelab(v) for any
node v < n then we have

Pr(H(z;) € {Ly,..,L,}] <n2~"

Pr(3i < q.H(z;) € {Lqy,...,L,}] < nq2™"

H(x)
00....00 0
00....01 r
1111 rle_l

Ex Post Facto Pebbling

* Fixing A, x and H we get an execution trace
Trace 4 u(x) = {03, @, @}es

* Track L, for each node v

* Note rounds where L, appear as the input to random oracle query?

* Note rounds does L, appear as an the output to a random oracle query?

e Define Need(v,i)=1 if and only if the next time (after round i) label L, appears

it is as an input; otherwise Need(v,i)=0
e P, = {v: Need(v,i) = 1}
Need(v,i)=0 Need(v,i)=1

O 1 O + 0 O 1

Rounds where v occurs as output O or input |

Ex Post Facto Pebbling

e P, = {v: Need(v,i) = 1} = does this give us a legal pebbling?

* Order(v) be the bad event L_, is used as an RO input before it has
appeared as an output

Unexpected order

I O | O O !

Rounds where v occurs as output O or input 1

Expected order

O 1 O 1 0 O I

Rounds where v occurs as output O or input 1

Ex Post Facto Pebbling

e P, = {v: Need(v,i) = 1} = does this give us a legal pebbling?

Claim 1: Suppose that A computes f; ; and makes at most g random
oracle queries then P = P4, ..., P; is a legal pebbling (except with

probability O(gn2™").
Proof Sketch:

Observation 1: If the bad event Order(v) never occurs for any node v
then the pebbling is legal (follows from definition of Need(v,i))

Ex Post Facto Pebbling

e . = {v: Need(v,i) = 1} = does this give us a legal pebbling?

Claim 1: Suppose that A computes f¢ v and makes at most g random

oracle queries then P = P;, ..., P; is a legal pebbling (except with
probability O(gn2™").

Proof Sketch:

Observation 2: If L has not yet appeared as output then the
probability a particular query includes L, as input early is at most 27"

—->Pr|Order(v)] < q2™%" (Union Bound over all q queries)
(L,, can be viewed as random w-bit string before it first appears)

Ex Post Facto Pebbling
e P, = {v: Need(v,i) = 1} = does this give us a legal pebbling?

Claim 1: Suppose that A computes f; ; and makes at most g random

oracle queries then P = P4, ..., P; is a legal pebbling (except with
probability O(gn2™").

Proof Sketch: Let Order(v) be the bad event L, is used as an RO input
before it has appeared as an output. Union Bounding

Pr[3v Order(v) | < nPr|Order(v)] < nq2™V

(L,, can be viewed as random w-bit string before it first appears)

Ex Post Facto Pebbling

* Fixing A, x and H we get an execution trace
Trace 4 q(x) = {0}, 9;, @i }i=4

Claim 1: Suppose that A computes f; ; and makes at most g random

oracle queries then P = P4, ..., P; is a legal pebbling (except with
probability O(gn2™").

Observation: If P is legal then CC(P) = CC(G)
(definition of CC (G) as best pebbling of G)

Extractor Argument

* Fixing A, x and H we get an execution trace
— "t

Tracedq’H(X) = {O-i, m; a; i=1

Observation: CC(P) = CC(G) (definition of CC(G))

Claim 2: For each round i we have |o;| + |a;_{| = W|P;|/2

Proof Idea: Extractor argument. Suppose for contradiction that |o;| +
la;—1| < w|P]/2.

We will build an extractor that outputs |P;| labels given a hint of size
w|P;|/2 + o(w|P;]). This yields a contradiction of incompressibility!

Extractor Hint

Claim 2: For each round i we have |o;| + |a;_1| = W|P;|/2

Hint: h

e Initial State: g, a;_; (used to simulate A at most w|P;|/2 bits)
Encoding of P; (|P;|logn bits)

For each v € P; index i,, of next random oracle query where label L,, appears as input
(IP;|log g bits)

For each v € P; index o, of next random oracle query where label L,, appears as output
(IP;|log g bits)

Total Hint Length: w|P;|/2 + o(wW|P;|).

Extractor argument. Suppose for contradiction that |o;| < w|P;|/2.

We will build an extractor that outputs | P¢| labels given a hint of size |o;| + o(W|P¢|). This yields a
contradiction of incompressibility!

Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi,)

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

uer
QU Simulate

C’q(o-b ai—l)

v, |??2? | (i+2,4)

v, |???2 [(i+1,2)

75

Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi,)

Random Oracle
H:{0,1}* - {0,1}*

P. | Label |Input
QU Simulate
A(0i+1, ;)
v, |??? (i+2,4)
v, |??? (i+1,2)
Extract!
qi+1[2] contains L, .

Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pir)

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

uer
QU Simulate

c’q(o-i+1J CTL)

v, |??2? | (i+2,4)

(i+1,2)
Extract!
qi+1[2] contains L, ~

Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi,)

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

TR Simulate
A(0j42,041)
Vy 2?7 (i+2,4)
V, L, |(i+1,2)

Extract! H(q;4,[4]) = L,,

78

Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pir)

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

O] Simulate
A(0i42,Ajt1)
Vl Lv1 (|+2)4)
V2 L'Dz (|+1)2)

Danger! H(qi15[1]) = Ly,
Do not submit this query!

79

Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pir)

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input Output of

Query Query Simulate

A(0i12,Ai+1)

(i+2,4) (i+10,5)

, | (i+1,2) qi+211]

Danger! H(qi15[1]) = Ly,
Do not submit this query!

80

Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi,)

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input Output of

Query Query Simulate

A(0i+3, Aj+2)

(i+2,4) (i+10,5)

V) L, |(i+1,2) qi+211]

etc ...

81

Extractor: Simulating Attacker

Claim 2: For each round i we have |g;| = w|P;|/2

Hint:
e simulate A from initial state: g;
e Forward random oracle queries to H(.) (* One Exception Below *)

e For each v € P; wait for first query where L, appears as input and record
L,, (by definition of P; this occurs before L,, appears as output)

e For each v € P; wait for first query o,, which produces output L,

e Do not forward this query to H(.)

e Simply record the response L,
* Technical Note: Extractor can simply run naive evaluation algorithm forf; 4 (x) after
simulating A to ensure that for each v € P; there is some round where L,, is output

°—> Output: f;; y(x) = Ly
= H(L, L;)

L, = H(Ly, Ly)

Extractor:

e Qutputs L, foreachv € P;

* Generate remaining labels L, for each v € P;
e Can be done querying random oracle at x,, s.t. H(x,) = L,

* Yields k ““fresh” input output pairs (x,, L,,) for each v € P; as long as
all labels L,, are distinct

Pr[3(u,v). L, = L] <n?2™%

— H(Lz» L3)

Input: x G/va\ °—> Output: f; ;(x) = Ly

= H(X) = H(Ly, Ly)

Extractor: Yields k = |P;| ““fresh” input output pairs (x,, L,,) for each v € P;
as long as all labels L, are distinct and pebbling is legal

Pr[A(u,v). L, = L] <n?2™%

— Pr[Success] =1 —n?%2"" —gn2™%

Contradiction! Extractor can succeed with probability at most 2~kw/2+o(kw)

Reflection: Extractor Argument

 What properties of the random oracle did we use?

 Simulatability/Delayed Sampling:

e Can view H(x) as uniformly random string that is yet to be sampled
e (until x is actually queried)
 used to analyze the probability that a label L, appears out of order (also collisions)

e Extractability of Queries:

 When attacker submits random oracle query the extractor gets to see the
qguery (and the response)

Quantum Random Oracle Model

e Similar to classical random oracle model except that input is an
entangled quantum state

D alxy) 2 Y alx, y®H()

X

* Realistic model for any realization of the random oracle e.g., can
implement SHA3 as a quantum circuit

* Challenge: extractor needs to view random oracle queries

You cnnuﬁﬂmn[(u:umnm BY|
MEASURINGIT

sl 090 Om

Evaluating an iIMHF (pebbling)

Input: G/a o—» Output: L,
pwd, salt % ‘bv\
I ~

H(LZ' Ll)

L,=H (p{/vd, salt) Ls

—

Pebbling Rules: P=P,,...,P.C V s.t.
*P...C P.U{x € V|parents(x) c P.,,} (need dependent values)
* nE P, (must finish and output L)

Measuring Pebbling Costs [AS15]

* Cumulative Complexity (CC) Memory Used at Step |

Approximates

t—)
Amortized Area x Time _ .
Complexity of iIMHF CC(G) T mﬁln E ‘Pl‘
=1

e Guessing two passwords doubles the attackers cost

CC(G, G) = 2 x CC(G)

Naive: Pebbling Strategy

0-0-6-0-0

Naive: Pebbling Strategy

6-0-0-0-0

P1 = {1}

Naive: Pebbling Strategy

6-0-6-0-0

P, = {1}
PZ = {112}

Naive: Pebbling Strategy

60600

P1 = {1}

P2 = {112}
P3 = {1;2; 3}

Naive: Pebbling Strategy

60600

P1 = {1}

P, ={1,2}

P, = {1,2, 3}
P,=1{1, 2, 3, 4}

Naive: Pebbling Strategy

60600

P1 = {1}

P, ={1,2}

P, = {1,2, 3}
P,=11, 2, 3, 4}
P.=11, 2, 3, 4, 5}

Naive: Pebbling Strategy (CC)

0-0-0-0-'

P1 = {1}

P, ={1,2}

P, = (1.2, 3} CC(G) < Z\P |

P, =1{1,2, 3,4}

Py = {1,2,3,4,5) 112434445

= 15

Naive Pebbling Algorithms

* Naive (Pebble in Topological Order)
* Never discard pebbles
e Legal Pebbling Strategy for any DAG!
e Pebbling Time: n
e Sequential: Place one new pebble on the graph in each round

__n(n+1)

Theorem: Any DAG G has CC(G) < X1 = —
Proof: Naive pebbling strategy is legal strategy for any DAG G/

Question: Can we find a DAG G with CC(G) = Q(n?)?

Improved Pebbling

0-0-6-0-0

Improved Pebbling

6-0-0-0-0

Py =11}

Improved Pebbling

6-0-6-0-0

Py =11}
PZ = {112}

Improved Pebbling

60500

Py =11}

PZ = {112}
P3 =13}

Improved Pebbling

60500

Py =11}
PZ = {112}
P3 =13}
P, =1{3,4}

Improved Pebbling

0-0-6-0-0

Py =11}

PZ = {112}
P3 =13}
P, =1{3,4}
Ps = {5}

Graphs with High CC

n(n+ 1)

Theorem: Any DAG G has CC(G) < Yol =
Proof: Naive pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with CC(G) = Q(n?)?

Claim: The complete DAG has CC(G) = X j<p—q ¥ ”(”2 D _ = Q(n?)?

Proof: Consider the round immediately before we first place a pebble on
node i+1. We must have had pebbles on all of the nodes {1,...,i}.

Question: Can we find a DAG G with CC(G) = Q(n?) and low indegree?

Why do we care about indegree?

In practice the random oracle is instantiated with a function H: {0, 1}?* - {0, 1}*
Label of node v is obtained by hashing labels of v’s parents.

Node v has two parents (uandw) = L, = H(L,, L,,) = One oracle to H used to compute label

Node v has three parents (u,w,x) = L, = H(H(L,, L,,), L)) = Two oracle queries to H to
compute label

Node v has four Parents (uw,w,x,y) ? L, = HH(H(L,, L), Ly), L,) & Three oracle queries to H
to compute labe

Node v has k parents =» k-1 oracle queries to H to compute label

Running time to evaluate f 4 is proportional to n X indeg(G)

Desiderata

Find a DAG G on n nodes such that

1. Constant Indegree (60 = 2)
e Running Time:n(éd — 1) =n

2

2. CC(G) = n? for some small value 1.

Maximize costs for fixed running time n

(Users are impatient)

Outline

 Motivation
e Data Independent Memory Hard Functions (iMHFs)

e Our Attacks
e General Attack on Non Depth Robust DAGs
e Existing iIMHFs are not Depth Robust
e |deal iMHFs don’t exist

e Subsequent Results (Depth-Robustness is Sufficient)
* Open Questions

Depth-Robustness: A Necessary Property

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

0-0-6-0-0

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

o0 00

Attacking (e,d)-reducible DAGs
e Input: |S| <e such that depth(G-S)=d, g>d

e Light Phase (g rounds): Discard most pebbles!
e Goal: Pebble the next g nodes in g (sequential) steps
e Low Memory (only keep pebbles on S and on parents of new nodes)
e Lastsa long” time

e Balloon Phase (d rounds): Greedily Recover Missing Pebbles
e Goal: Recover needed pebbles for upcoming light phase
e Expensive, but quick (at most d steps in parallel).

Attacking (e,d)-reducible DAGs

Algorithm 1: GenPeb (G, S, g, d)

o 4o =] O M e LD b3

(o
= o

—
[(%

Arguments: G = (V. E), S CV, g € [depth(&G — &), n|, d = depth(& — &)

fori=1ton do

endl

Febble node 1.

Lo |ifo) kgt d 1
if ¢ mod g € [d] then // Balloon Phass

d'+—d— (i modg)+1

N+ need(l,l 4+ g,d)

Pebble every » € N which hag all parents pebbled.

Remove pebble from any v € K where K «+ S Ukeep(i,i+ g) U {n}.

Ise // Light Phase
K+ Slparents(i, i+ g) U 4n}
Remove pebbles from all v & K.

end

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.

Upper bounds pebbles
on nodes X € S, where
S| = e
depth(G-S) < d

#pebbling rounds

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

Ex(A) < en+ dgn + Snd + nR + gnR.

Maintain pebbles on parents of next #pebbling rounds
g nodes to be pebbled.

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.

Length of a balloon phase
#balloon phases

Max #pebbles on G
In each round of balloon phase

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.

Set g = vnd

Ex(4) = O(en +Vn3d).

In particular, Ex(A) = o(n?) for e,d=o0(n).

Question

. Are existing iIMHF candidates based on depth-
robust DAGs?

ww.shutterstoc lcom - 20742253

IMHF Candidates

e Catena [FLW15]

e Special Recognition at Password Hashing Competition
e Two Variants: Dragonfly and Double-Butterfly
e Security proofs in sequential space-time model

e Balloon Hashing [CBS16]
* Newer proposal (three variants in original proposal)
 Argon2 [BDK15]
e Winner of the Password Hashing Competition

e Argon2i (data-independent mode) is recommended for Password Hashing

e This Talk: Focus on Argon?2i-A (version from Password Hashing Competition)
e Attack ideas do extend to Argon2i-B (latest version)

Attack Outline

* Show that any “layered DAG” is reducible
* Note: Catena DAGs are layered DAGs

* Show that an Argon2i DAG is almost a “layered DAG.”
* Turn Argon2i into layered DAG by deleting a few nodes
* Hence, an Argon2i DAG is also reducible.

Catena

e Catena Bit Reversal DAG (BRG})
e A-layers of nodes (1 < 5)
e Edges between layers correspond to the bit-reversal operation
e Theorem[LT82]: sST(BRGT})= Q(n?)

e Catena Butterfly (DBGY)
1 = O(logn)-layers of nodes
e Edges between layers correspond to FFT
» DBG} is a “super-concentrator.”

° = 1= i
Theorem[LT82] => sST(BRGY)= Q (log(n))

A-Layered DAG (Catena)

0000 O

Layer A

00000 & -
Q_.a_,we—» g Layer O

A-Layered DAG (Catena)

Layer A

Layer 1

Layer O

A-Layered DAG (Catena)

Layer A

Layer 1

Layer O

0000 @

Disallowed! All edges must go to a higher layer (except for (i,i+1))

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a A-Layered
DAG then G is (n2/3,n1/3 (1 + 1))—reducib|e.

Proof: Let S = {i x n'/3|i < n?/3} any path p can spend at most n'/3
steps on layer i.

oo 0o —P ooo-}% Layero

1/3

0-0- -

1/3

n

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a A-Layered
DAG then G is (n2/3,n1/3 (1 + 1))—reducib|e.

1/3

Proof: Let S = {i X n1/3‘i < n2/3} any path p can spend at most n
steps on layer i.

Layer O

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a A-Layered
DAG then G is (n2/3,n1/3 (1 + 1))—reducib|e.

Corollary:E;(G) < O (/ln5/3) .

1/3
Attack Quality: Qualityz(4) = Q (" >)

Previous Attacks on Catena

e [AS15] CC(BRGY}) < 0(n'»)

« Gap between cumulative cost O (n'°) and sequential space-time cost Q(n?)

e [BK15] ST(BRGY) < 0(n'?®) for 1> 1.
e Our result CC(BRGY) < O(n'®7) *

* Applies to all Catena variants.

Argon2i [BDK]

e Argon2: Winner of the password hashing competition[2015]

N

e Authors recommend Argon?2i variant (data-independent) for
password hashing.

Argon?2]

0000 -0 -0

Argon2i

random predecessor r(i) < i

0-0-0-0- -0

Indegree: § = 2

~-©

Argon?2iis a layered DAG (almost)

€00 0 0 Loy
@ ‘W Layc.er 1

Layer O

Argon?2iis a layered DAG (almost)

Definition: S, = {vi| Vrpand v; in same layer}

Q‘ . @ -©@ Layer 3/n
\
@

‘?% Layfer 1

Claim: E[S,] = 0(n3/*logn)

Layer O

Argon?2iis a layered DAG (almost)

Definition: S, = {vi| Vrpand v; in same layer}

€000 0 L.
@ ‘?% Layc:er 1

1 n3/4
=7 E[LayerinSZ]ST

Layer O

Prlv € S,|vin Layer i]

Argon?2iis a layered DAG (almost)

Definition: S, = {vi| Vrpand v; in same layer}

Q‘ -~ @ - -©@ Layer 3/n
\
@

@ 6D .

Claim: E[S,] = 0(n3/*logn)

Layer O

Argon?2iis a layered DAG (almost)

Let S =S5,+5,

GO0~ 0 0 L
@ .?% Lay;r 1

Fact: E[S] = 0(7’13/4 log n) and depth(G-S)< +/n.

Layer O

Argon?2iis a layered DAG (almost)

Let S =S5,+5,

@

Layer 3/n
.W Layér 1

Theorem: G is (2n3/* log n, v/n)-reducible with high probability.

Layer O

Argon?2iis a layered DAG (almost)

Let S =5,+5,

@‘ o @ O Lay?r‘{/ﬁ
@ '?% Lay;r 1
000 0o oD

Corollary: ER(G) < 0(n"/*logn). ality. (4) < O (n1/4)
R — .

logn

Layer O

ldeal iIMHFs Don’t Exist

* Thm: If G has n nodes and constant in-degree 6=0(1) then G is :

(0 (n 11(;22‘;% n) , 10; n)-reducible.

* Thm: If G has n nodes and constant in-degree then:

"2
ve>0 Ex(G)=o0 (log(n)l‘s + nR)

Attack Quality

Practical Consequences (R = 3,000)

He

b2

| | |
— — Equality
- — — ATquality
[| g =52 =1 /
[| =529 =23 /
| =59 7+ =258 fa/‘
=21 r=1 1|/ /
[| d=1%21 =258
§=01 =5
////,r’
| | | | | |
214 218 222 226 23[} 234

Memory Parameter n

(a) Argon2i and SB

Attack Quality

| | | |
2 Equality 1]
— — — ATquality ’/*’f’f
[| § = o //f/
]_+5 . B & =g ,-'"f T
=4 f’/)
- L~
5_ = fﬁ/
L - f’/ O
-~ x',,fff
..-fff
0.5 T
| | | | |
032 951 970 989 9108 0127

Memory Parameter n

(b) Ideal iMHF

Drama: Are the attacks Practical’
* Argon2i team: No, at least for reali: #8a g «

e Recent: Argon2i-B submitted to IR "
Task Force) for standardization.

e New Result [AB16b]:

 New heuristics to reduce overhead by constant tfactor
e Simulate the attack on real instances

New Simulation Results :

I kLA |II_'|'

|AB16D]

' Parameter setting could easily be
chosen when following Argon2i-B
guidelines

<— | Pessimistic Argon 2i-B

parameter

[
Memory Parameter: log.(o)

(A — ok H)

Figure 1: Arponli-B Adtack Quality

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown

line).

Outline

 Motivation
e Data Independent Memory Hard Functions (iMHFs)
e Attacks

e Constructing iMHFs (New!)
* Depth-Robustness is sufficient

e Conclusions and Open Questions

Depth-Robustness is Sufficient! [ABP16]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then CC(G)= ed.

Implications: There exists a constant indegreezgraph G with

CC(G) = Q(&)
logn

n2
log10 n)

Previous Best [AS15]: () (

n? loglog n)
log n '

[AB16]: For all constant indegree graphs CC(G) = O (

Depth-Robustness is Sufficient! [ABP16]

Proof: Let P,,...P, denote an (optimal) pebbling of G. For O<i < d define
S;=PiUPg4i UPpgyi U
one of the sets S has size at most CC(G)/d. Now we claim that
d = depth(G-S))

because any path in G-S; must have been completely pebbled at some

point. Thus, it must have been pebbled entirely during some interval of
length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G)> ed.

Proof by Picture
S;=PiUPy4; UPpyqi; U

Py, Poyeis P, PuPiitse s Pivg s Pivar Pivcgarroor Pisoge1s Pisogs oo

d rounds d rounds

Claim: |S| > e

Implication

Claim: |S,| > e

CC(G) > zlPtl

Contradiction by Picture

S; = PiUPg i UPygyi U

0-0-0-©-0

Path: W in G-S,

Step i: W contains no pebbles since P; C §;

Contradiction by Picture

S; = PiUPg i UPygyi U

0-0-0-©-0

Path: W in G-S,
Step i: W contains no pebbles since P; C §;

Step i+1: W-{1} contains no pebbles

Contradiction by Picture

S; = PiUPg i UPygyi U

0-0-0-©-0

Path: W in G-S,
Step i: W contains no pebbles since P; C §;

Step i+1: W-{1} contains no pebbles
Step i+2: W-{1,2} contains no pebbles

Contradiction by Picture

S; = PiUPg i UPygyi U

\\\

0-0-0-©-0

Path: W in G-S,
Step i: W contains no pebbles since P; C §;

Step i+1: W-{1} contains no pebbles

Step i+2: W-{1,2} contains no pebbles
Step i+d-1: W-{1,...,d-1} contains no pebbles

Contradiction by Picture

Contradiction!
/d was never pebbled.

9*6*0*@' 9

Path: W in G-S,

‘Sll = e

Step i+d: W contains no pebbles since P;, 4 C §;

Step i+d-1: W-{1,...,d-1} contains no pebbles

Positive Result: Consequences

Theorem [ABP16]: Let G=(V,E) be (e,d)-depth robust then E;(G) = ed.

Theorem[EGS75]: There is an (Q(n), Q(n))—depth robust DAG G with
indegree § = O(logn).

Theorem [ABP16] There is a DAG G with maximum indegree § = 2
2
and En(G) = Q(n

og n). Furthermore, there is a sequential pebbling

le
algorithm N with cost Ex(N) = 0 ()

logn

More New Results

MHE____________ Upper Bound

Argon2i-A O(n""1) [ABP16] 5 (111.66

O-r=">Y [This work] Un"™") [ABP16]
Catena O(n'°1%) [ABP16] = . ;5

On=5%) [This work] 1(n">) [ABP16]

SCRYPT

(data depghden O(n?) [Naive, P12] ((n’) [ACPRT16}

ldea: Apply our attack recursively during balloon phases

(e,d)-reducible curve for Argon2i-A

_h e=n""logn,d=+n
o [

< | \

o \

Q. Gap: O(polylog(n))

gE N\ N

e —

I % e=n%%ogn,d=n
. /

| —
-

0.2

Reducible

Depth Robust

Recursive Attack

n
CC(G) < en +
n
CC(G) < en+ ;

S\
n
CC(G) < en + @)
€1
—

Conclusions

* Depth-robustness is a necessary and sufficient for secure iMHFs
 [AB16] [ABP16]

* Big Challenge: Improved Constructions of Depth-Robust Graphs
 We already have constructions in theory [EGS77, PR80, ...]
e But constants matter!

More Open Questions

 Computational Complexity of Pebbling
e NP-Hard to determine CC(G) [BZ16]
e Hardness of Approximation?

 What is CC(Argon2i-B)?

e Upper Bound: O(n'?) [AB16b]
e Recursive attack: O(n-77) [BZ16b]+[ABP16]
 Lower Bound: (n'-©%) [BZ16b]

Large Gap Remains

Thanks for Listening

g %
'

	Advanced Cryptography�CS 655
	Recap: Auxiliary-Input Attacker Model
	Recap: Bit-Fixing Model
	Bit-Fixing Model (Unruh)
	Typical Relationship: BF-RO and AI-RO
	Typical Relationship: BF-RO and AI-RO
	Preliminary Definitions
	Preliminary Definitions
	Preliminary Definitions
	Preliminary: Leaky Source
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Memory Hard Functions, Random Oracles, Graph Pebbling and Extractor Arguments
	Motivation: Password Storage
	Offline Attacks: A Common Problem
	Goal: Moderately Expensive Hash Function
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Data-Independent Memory Hard Function 𝑓 𝐺,𝐻
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Measuring Pebbling Cost: Attempt 1
	Amortization and Parallelism
	Measuring Pebbling Costs [AS15]
	Measuring Pebbling Costs [AS15]
	Pebbling Example (CC)
	Desiderata
	DAGs with Maximal CC(G)
	Question: CC(G)  cumulative memory cost?
	Question: CC(G)  cumulative memory cost?
	Random Oracle Model (PROM)
	Random Oracle Model: Prediction Game
	Random Oracle Model: Prediction Game
	Parallel Random Oracle Model (PROM)
	Parallel Random Oracle Model (PROM)
	Collision Problem
	Label Distinctness
	Label Distinctness
	Label Distinctness
	Label Collision
	Label Collision
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Extractor Argument
	Extractor Hint
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Slide Number 83
	Slide Number 84
	Reflection: Extractor Argument
	Quantum Random Oracle Model
	Slide Number 87
	Evaluating an iMHF (pebbling)
	Measuring Pebbling Costs [AS15]
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy (CC)
	Naïve Pebbling Algorithms
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Graphs with High CC
	Why do we care about indegree?
	Desiderata
	Outline
	Depth-Robustness: A Necessary Property
	Depth Robustness
	Depth Robustness
	Attacking (e,d)-reducible DAGs
	Attacking (e,d)-reducible DAGs
	Main Theorem
	Main Theorem
	Main Theorem
	Main Theorem
	Main Theorem
	Question
	iMHF Candidates
	Attack Outline
	Catena
	𝜆-Layered DAG (Catena)
	𝜆-Layered DAG (Catena)
	𝜆-Layered DAG (Catena)
	Layered Graphs are Reducible
	Layered Graphs are Reducible
	Layered Graphs are Reducible
	Previous Attacks on Catena
	Argon2i [BDK]
	Argon2i
	Argon2i
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Slide Number 139
	Ideal iMHFs Don’t Exist
	Practical Consequences (R = 3,000)
	Slide Number 146
	Drama: Are the attacks `Practical’
	New Simulation Results [AB16b]
	Outline
	Depth-Robustness is Sufficient! [ABP16]
	Depth-Robustness is Sufficient! [ABP16]
	Proof by Picture
	Implication
	Contradiction by Picture
	Contradiction by Picture
	Contradiction by Picture
	Contradiction by Picture
	Contradiction by Picture
	Positive Result: Consequences
	More New Results
	(e,d)-reducible curve for Argon2i-A
	Recursive Attack
	Conclusions
	More Open Questions
	Thanks for Listening

