Homework 1 Due Tonight

Advanced Cryptography
CS 655

Week 5:

* Preprocessing: Bit-Fixing Model to Auxiliary Input
e Compression Arguments

e Memory Hard Functions and Pebbling

Spring 2023



Recap: Auxiliary-Input Attacker Model

 Auxiliary-Input Attacker Model A = (44, 45,)

e Random Oracle Version:

e Offline attacker A4 is unbounded and outputs an S-bit hint for online attacker A4,
after viewing entire truth table H(.)

e A, will try to win security games using this hint

e (S,T,p)-attacker
e A; outputs a S-bit hint
e A, makes at most T random oracle queries

» A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

* ((S,T,p),e)-security 2 Any (S, T, p) attacker wins with advantage at most ¢



Recap: Bit-Fixing Model

 Auxiliary-Input Attacker Model A = (44,45,)

e Random Oracle Version:

e Offline attacker A, fixes output of random oracle H(.) at P locations and then
outputs a S-bit hint.

e A, initially knows nothing about remaining unfixed values i.e., H(x) picked
randomly for x & P after A; generates hint

e (PT,p)-attacker
e A, fixes H on at most P locations and outputs S-bit hint
* A, makes at most T random oracle queries

* A, may be constrained in other ways (space/time/signing queries etc...) as specified by
parameters p.

 ((S,T,p), 8)-security = Any (S, T, p) attacker wins with advantage at most &



Bit-Fixing Model (Unruh)

* Pro: Much easier to prove lower bounds in Bit-Fixing Model

e Con: Bit-Fixing model is not a compelling model for pre-processing
attacks

 Usage: Lower bound in bit-fixing model =» Lower bound in Auxilliary-
Input Model

* This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications ©

e Other applications require a different approach (e.g., compression)



Typical Relationship: BF-RO and Al-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p), )-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

Example: Set y = 2724 and the advantage is €’ + 25+ 4+ 2724

Balancing: &’ usually increases with P i.e., as BF-attacker gets to fix
more and more points.



Typical Relationship: BF-RO and Al-RO

Theorem 5. For any P € N and every v > 0, if an application G is ((S,T,p),&')-secure in the
BF-RO(P)-model, then it is ((S,T, p), )-secure in the AI-RO-model, for

208 +logy~1)- 5‘””'“

g < &+ 2

+ Zy

where T&‘}mb is the combined guery complerity corresponding to (5.

So far we have used this result (or similar results for Ideal-Ciphers,
Permutations etc...) as a black-box.

How is this result proved?



Preliminary Definitions

e Definition: A (N, M)-source is a random variable X with range [M]"

 Random Oracle H: [N] — [)M] can be viewed as a random variable X with
range [M]" e.g., if H:{0,1}" - {0,1}™ thenwe set M = 2™ and N = 2"

e Given I € [N] (inputs) and x € [M]N let x; € [M]!| denote the substring
specified by I e.g., value of random oracle on all inputsin I

e Dense-Source: X is (1 — §) dense if for every subset I € [N] (inputs) we
have Ho, (X;) = (1 — 8)|I[log, M = (1 — &) log, M

Minimum Entropy: Equivalent statement is that for all y € [M]"| we have Pr[X; = y] < |M|‘|I|(1‘5)



Preliminary Definitions

e Definition: A (N, M)-source is a random variable X with range [M]"

* Random Oracle H: [N] — [M] can be viewed as a random variable X
with range [M]"N e.g., if H: {0, 1}"* - {0, 1}™ then we set M = 2™
and N = 2"

* Dense-Source: X is (1 — §) —dense if for every subset I € [N]
(inputs) we have Hy, (X;) = (1 — &)|I|logy M = (1 — &) log, M/

e Example: Random oracle is (1 — §) —dense with § = 0.



Preliminary Definitions

e Definition: A (N, M)-source is a random variable X with range [M]"

* Dense-Source: X is (P,1 — §) —dense if there is a subset S € [N] of size
|S| < P such that for every subset I € [N \ S] we have

Ho(X) =1 —=8)]|I|log, M = (1 — 8)log, M
 Intuition: Fixed on P coordinates but dense on the rest

e Bit-Fixing Source: X is (P, 1) —dense i.e., fixed on P and uniform on the
rest



Preliminary: Leaky Source

* Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(X) for
some function f: [M]V— {0, 1}

* Bayesian Update: Conditional Distribution X, for all x in [M]N we have
Pr[X, = x] == Pr[X = x|f(X) = 7]
Challenge: It can be difficult to reason about the source X,

Entropy Deficiency: S, = NlogM — H,(X,)

In expectation we have E[S,] < S, but the actual value can vary depending on
z = f(X)



Proof Strategy

e Leaky-Source (Auxiliary-lnput)$°
some function f: [M]"V - {0, 1}°.
* Bayesian Update: Conditional Distribution X, for all x in [M]N we have
Pr|X, = x] = Pr[X = x|f(X) = z]
Challenge: It can be difficult to reason about the source X,
Entropy Deficiency: S, = NlogM — H,(X,) E[S,]<S

Online attacker gets hint z = f(X) for

* Step 1: Show that any leaky source X, is y-close to a source Y, which is a
convex combination of (P’,1 — §)-dense sources.

e Convex Combination: Let Dy, ..., D, each be (P’, 1 — §)-dense sources. Y, has the

form sample a source i < k'with probability p; then sample from (P’, 1 — §)-dense
sources D;

[ ] [ ] S 1 1
« Number of Fixed Points: P’ < 2228 /v
6 log M




Proof Strategy

* Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(X) for some
function f: [M]V - {0,1}°.
* Bayesian Update: Conditional Distribution X, for all x in [M]N we have
Pr[X, = x] :=Pr[X = x|f(X) = Z]
Challenge: It can be difficult to reason about the source X,
Entropy Deficiency: S, = NlogM — H,, (X)) E[S,]<S

 Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished from a
P'-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries.

Pr[D¥ = 1] < Pr[DY = 1] x MT¢
And
Pr[®X = 1] - Pr[D¥ = 1]| < TSlogM



Proof Strategy

* Step 1: Show that any leaky source X, is y-close to a source Y, which is a
convex combination of (P’,1 — §)-dense sources.

e DefineY = X, .IfYis (1 — §)-dense then we are done. Otherwis?, let I be
the largest subset for which there exists a violation i.e., y; € [M]"s t.

PI‘[YI — yl] > 2—(1—5)|I| log M
 Let Y' denote distribution of Y conditioned on Y; = y;

e Claim1:Y'is (P, 1 — 6) dense with P’ = ||
* Proof Sketch: If there is a subset J < [N\I] and y, € [M]V] s.t.
pr[y]’ — Yj] > 2—(1-6)|J|log M
Then we could take I' =1 U J and
Pr|Y; = y,] = PrlY,; = y,] PF[Y] =y;|¥; = )’1] > 2~(1=0)l" log M
This contradicts the maximality of I'!



Proof Strategy

* Step 1: Show that any leaky source X, is y-close to a source Y, which is a
convex combination of (P’,1 — §)-dense sources.

e DefineY = X, .IfYis (1 — §)-dense then we are done. Otherwis?, let I be
the largest subset for which there exists a violation i.e., y; € [M]"s t.

Pr[Y; = y,] > 7—(1-8)|I| logM
 Let Y' denote distribution of Y conditioned on Y; = y;
e Claim1:Y'is (P, 1 — 6) dense with P’ = ||

° i . 5z
Claim 2: |I]| < G log 11

* Proof Sketch: On one hand we have H,,(Y;) = |I|logM — S, (def of S)
* On the other hand H,,(¥Y[) < —logy (2~ (=908 M) = (1 — §)|I|log M
e Claim 2 follows immediately by combining the above two inequalities.




Proof Strategy

e Step 1: Show that ani/ leaky source X, is y-close to a source Y, which is a convex
combination of (P’ §)-dense sources.

e DefineY = X, . If Yis (1 — §)-dense then we are done. Oth?rW|se let I be the
largest subset for which there exists a violation i. e., y; € st

PI‘[YI — )’1] > 2~ (1-6)|I] logM
 Let Y’ denote distribution of Y conditioned on Y; = v,
° s ne V/ / _ ; I — i 5z
Claim: Y is (P',1 — &) dense with P* = |I| with |I| < (8 log M)
* Key Idea (Recursion!): Y, uses (P 1 — &) dense source Y’ with probability
r Y; = y;] and samples fromY,’ ‘with probability 1 — Pr|Y; = y,]

e Y, is also convex combination of finitely many (P, 1 — §)-dense sources which is
gamma close to Y4, the distribution of Y con itioned on [ V]




Proof Strategy

e Step 1: Show that a;ni/ leaky source X, is y-close to a source Y, which is a convex
combination of (P’,1 — §)-dense sources.

* Key Idea (Recursion!): Y, uses (P’, 1 — &) dense source Y’ with probability Pr[¥; = y;]
and samp(les fromY,’ with probability 1 — Pr[¥; = y;] 1=

e Y, is also convex combination of finitel¥ many (P’,1 — §)-dense sources which is
gamma close to Y4, the distribution of Y conditioned on¥Y; # vy,

e Each step of recursion decreases size of support =» finite termination

* Recurse as long as Pr[X € Supp(Yy)] >y

SZ+logyl

e Claim: Y, is (P',1 — §) dense with P’ < @ log M)

* Process ends with Pr[X € Supp(Yfinal)] < y = replace Yfnq; with uniform distribution




Proof Strategy

e Step 2: Show that a (P, 1 — §)-dense source X’ cannot be
distinguished from corresponding P’-bit fixing source Y’ (uniform on
non-fixed coordinates) by a distinguisher making at most T (adaptive)
gueries to the source.

Pr[D¥ = 1] < Pr[®" = 1] x MT$
And
Pr[©X = 1] — Pr[D" =1]| < TSlogM

Claim 3. Forany (FP',1—38)-dense source X' and its corresponding P'-bit-fizing source Y7, it holds
that for any (adaptive) distinguisher D that queries at most T coordinates of its oracle,

‘P[ﬂle] —P[‘}_:ﬂ’”zl]‘ < Té-logl,

and

P[D* =1] < MTP.P[DY =1].



Proof Strategy

e Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished
from a P’-bit fixing source Y’ by a distinguisher making at most T (adaptive)
qgueries to the source.

Pr[D¥ = 1] < Pr[®" = 1] x M"¢
And

Pr[®X = 1] — Pr[®" = 1]| < TS logM

Proof Intuition:

WLOG we can assume D is deterministic (otherwise we can fix the random coins that

maximizes the advantage of the distinguisher for D) and only queries on non-fixed
points.

Transcript 7 is a list of all of the query/answer pairs that distinguisher © makes.



Proof Strategy

 Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished from a
P'-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries to
the source.

Pr[D¥ = 1] < Pr[DY = 1] x MT¢
And
Pr[®X" = 1] - Pr[D¥ = 1]| < TSlogM

Proof Intuition: Transcript 7 is a list of all of the query/answer pairs that distinguisher © makes.

e Let Ty, (resp. Ty,) denote random variable over transcripts resulting from interaction with
source X’ (resp.Y’).

* Note: The support of Ty, contains the support of Ty,
e For every transcript 7 in the support of Ty, we have
Pr[Ty = 1] < 2-(=9TlogM  gnq  Pr[T, =] =27TleM
Pr[T,: = t] < MTO Pr[Ty: = 1]



Proof Strategy

* Step 2: Show that a (P, 1 — §)-dense source X’ cannot be distinguished
from a P'-bit fixing source Y’ by a distinguisher making at most T (adaptive)
qgueries to the source.

Pr[D¥ = 1] < MT® x Pr[D¥ = 1]
And
Pr[®X = 1] — Pr[®" = 1]| < TS logM

Proof Intuition: For every transcript 7 in the support of Ty, we have
PriTyr =1] < 2-(1=0)TlogM  gnd Pr(Ty =t] =27T log M
Pr[Ty = 1] < MTO Pr[Ty: = 7]
Let 75 denote the set of all transcripts where © outputs 1.
Pr[DX =1] = z Pr(T, =t] < MT° z Pr[Ty: = 7] = M™® x Pr[®"" = 1]

TEID TEI



Claim 3. Forany (P, 1—4)-dense source X' and its corresponding FP'-bit-fiving source Y, it holds
that for any (adaptive) distinguisher T} that queries at most T coordinates of its oracle,

PIDX =1] —P[DY =1]| < T3 loghs,

and also P[Tys = 7] = py/ (7). Towards proving the first part of the lemma, cbserve that

and
‘P[‘Dxi _ 1] . P[DY«’ _ l]‘ < SD(TXHTY“’)
and a = > max {0, P[Tyx = 7] — P[Ty = 7]}
— Z max {0, px:(7) — py(7)}
TETX
- PR ~ prel(7)
= T;a px/(7) {D’l pxx(’r)}

< 1-M"T < Té logM,

where the first sum is over all poasible transcripts and where the last inequality uses 27% > 1 — x
for = = 0.

R =N

< 1— M1 < T§. log M,

where the first sum iz over all possible transcripta and where the last inequality uses 2% > 1 — =
for = = 0.



Lemma 1. Let X be distributed uniformly over [M]Y and Z = f(X)), where f: [M]Y — {0,1}°
ts an arbitrary function. For any v > 0 and P € N, there exists a family {E}EE{DJ}S of conver
combinations Y, of P-bit-fizing (N, M )-sources such that for any distinguisher D taking an S-bit
input and guerying at most T < P coordinates of its oracle,

(S +1loglfy)-T

P[DX(#(X)) =1] — P[PV (#(X) =1]| < 3

+

and

PIDE(H(X) =1] < 9(S+2leg LT/ F P[D¥ex (£(X)) = 1] + 2y.

Let Y/ be obtained by replacing every X’ by the corresponding Y’ in X.. Setting 4, = (5, +
log1/~)/(Plog M), Claims 2 and 3 imply

‘P[sz(z) —1] - P[D¥(2) = 1}‘ < 5 “ﬁilm A (2)

as well as

P[D%(2) = 1] < 2S:HelMT/P pIpYi() = 1] 4+ . (3)

IMoreover, note that for the above cholce of &, P/ = P, i.e., the sources Y/ are fixed on at most P
coordinates, as deaired.



Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°
ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M )-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

(S +1loglfy)-T

P[DX(F(X)) =1] P[PV (#(X) =1]| < 3

+

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

One Missing Link Remains! Prior bounds relied on entropy deficiency
S, =NlogM — H,(X,) instead of S.

Claim: E[S,] < S and Pr [Sf(x) >S5 + log%] <vVy
Key Fact: Pr[f(X) = z] < 27°z




Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°
ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M )-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

S +loglfy)-T
P

PIDX(F(X) = 1] - P[DY 0 (£(X)) = 1]| <

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

Claim: E[S,] < S and Pr [Sf(X) >S5+ log%] <Yy

Key Fact: Pr[f(X) = z] < 272

Proof: By definition of S, (min-entropy deﬂuency) there exists x € [M]V

with f(X) = zsuch that Pr[X = x|f(X) = z] = 12\/1_ We have

1 25z

v = PriX = x] = PrlX = x|f(X) = 2] Pr[f (X) = z] = 75 Pr[f (X) = ]




Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°

ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M )-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

(S +1loglfy)-T
P

P[DX(F(X)) =1] P[PV (#(X) =1]| <

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

Claim: E[S,] < Sand Pr [Sf(x) > S+ logﬂ <y
Key Fact: Pr[f(X) = z] < 27>z

1 _ 1
Pr [Sf(X) > S+ log;] = z Pr[f(X) =z| < 25 X 2 (SHOgV) <y
z€{0,1}S s.t

SZ>S+log%



Claim 4. E,[S;] < 5 and F’[Sﬂx} >S5 +logl/y] <+

Proof. Observe that Hoo(X,) = Hoo(X|Z = z) = H(X|Z = z) since, conditioned on Z = z, X is
distributed uniformly over all values = with f(z) = 2. Therefore,

B.[9.] = Nlog — B, [Hoo(X|Z=2)] = Nlog — E,[H(X|Z = 2)
= NlogM —H(X|Z) < .

Again due to the uniformity of X, P[f(X) = 2] = 27", Hence,

P[Sriey > S +loglfy] = > P[#(X)=2] < 25 .2 (5Heel/n) <.
{0,115 S S+log 1/



Lemma 1. Let X be distributed uniformly over [M]Y and Z .= #(X), where §: [M]Y — {0,1}°

ts an arbitrary function. For any -y = 0 and P € N, there erists a family {Ya}ﬁe{g}l}s of conver
combinations Y, of P-bit-fivring (N, M )-sources such that for any distinguisher D taking an S-bit
input and querying at most T < P coordinates of its oracle,

S +logliy) . T
(-+Dif%) .

P[DX(F(X)) =1] P[PV (#(X) =1]| <

and

PIDX(F(X) =1] < 9 (S+2leg L/)T/F P[D¥x (#(X) = 1] + 2.

PO (#(X)) = 1]

|

P[@X(f(}f)) = I}Sf{;{) ﬂ S —I—ng lf”}“] + P[Sf{;{:, s S —I—lﬂg 1/‘“}’]
(2(5¥2108 PDT/P P[DYitn ((X)) = 1, 8pc) < 5 +log 1] +7) +7
o S+2leg LfvjT/F p[@?fcx:.,:f(x)) — 1] + 2y

| A

| A



Memory Hard Functions, Random
Oracles, Graph Pebbling and
Extractor Arguments

é Jeremiah Blocki
A




Motivation: Password Storage

jblocki, 123456

Username

89d978034a3f6 85e23cfe0021f584e
3db87aa72630a9a2
345c062

jblocki

SHA1(12345689d978034a316)=85e23cfe
0021f584e3db87aa72630a9a2345c062

29



Offline Attacks: A Common Problem

e Password breaches at major companies have affected milliens billions
of user accounts.

LastPassEXrTT sony € C Y

ASH LEY ) . PPN AdultFriendFinder
MADISEN Linked[}] <

o 730005
rockyou 2Pkaiy

YAHOO! FA\Adobe  =o===e= Ilvmgsocﬁll@



Goal: Moderately Expensive Hash Function

~ast on PC and
nensive on ASIC?

t.p

PlayStation™




0aSSWOro

nasning
competition

(2013-2015)

https://password-hashing.net/



https://password-hashing.net/

0aSSWOro
a

qaghimgl | We recommend that
Compet\_t\om you use Argon2...

(2013-2015)

https://password-hashing.net/



https://password-hashing.net/

0aSSWOro

qaghimgl | We recor?end that
Competmom you use Argon2...

There are two main versions of

(2013_2015) Argon2, Argon2i and Argon2d.

Argon2i is the safest against side-
channel attacks

https://password-hashing.net/



https://password-hashing.net/

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T

* Goal: force attacker to lock up large amounts of memory for duration
of computation

- Expensive even on customized hardware



Memory Hard Function (MHF)

d by memory costs
y Y i

A




Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory cost's' T




Memory Hard Function (MHF)

d by memory costs
y Y i

e Data Independent Memory Hard Function (iMHF)
e Memory access pattern should not depend on input



Memory Hard Function (MHF)

. Intumon' computatlon costs dominated by memory cost's' T

e Data Independent Memory Hard Function (|IVIH
 Memory access pattern should not depend on input



Data-Independent Memory Hard Function f; g

°—> Output: f;; ;(x) = Ly

Input: x
b(\ = H(L, L)

1 \\

L, = H(J'c) Ly = H(Ly, L,)

e H:{0,1}%% - {0,1}* (Random Oracle)

e DAG G (encodes data-dependencies)
 Maximum indegree: 6 = 0(1)
e N = 2" nodes



Evaluating an iMHF (

0-0-6-0-0

)



Fvaluating an iMHF ( )

0500

P, = {1} (data value L, stored in memory)




Fvaluating an iMHF ( )

P1 = {1}

P, ={1,2} (data values L, and L, stored in memory)




Evaluating an iMHF (

60500

Py =11}

P2 = {112}
P3 =13}

)



Evaluating an iMHF (

PIrRtar

Py =11}
P2 = {112}
P3 =13}
P, =1{3,4}

)



Evaluating an iMHF (

Py =11}

P2 = {112}
P3 =13}
P, =1{3,4}
Ps = {5}

0-0-0-0-'

)



Measuring Pebbling Cost: Attempt 1

e Space X Time (ST)-Complexity

ST(G) = min (tlg X maX\Pi\)

)2 iStT;
e Rich Theory

e Space-time tradeoffs ST Cost

e But not appropriate for password hashing » % /
& i(/ 0

time

N



Amortization and Parallelism

e Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

ST, =5, x1,~ x [,=ST,

() f \
O
o
& .
cost of computing cost of computing
fonce f three times

time

[AS15] 3 function £, (consisting of n RO calls) such that: ST(fX‘/ﬁ) = 0(ST(f))



Measuring Pebbling Costs [AS15]

* Cumulative Complexity (CC) Memory Used at Step |

Approximates

t—)
Amortized Area x Time _ .
Complexity of iIMHF CC(G) T mﬁln E ‘Pl‘
=1

e Guessing two passwords doubles the attackers cost

CC(G, G) = 2 x CC(G)



Measuring Pebbling Costs [AS15]

'p
CC(6) = min ) |Py
P 4
Approximates =1
Amortized Area x Time

Complexity of iIMHF  cumulative Memory Cost

Memory Used at Step i

space




Pebbling Example (CC)

0-0-0-0-'

Py =11}

P, =1{1,2)

p. = (3} CC(G) < Z\P |

P, = {3,4}

Ps =15} —1+2-|-1+2-|—1

=7



Desiderata

Find a DAG G on n nodes such that

1. Constant Indegree (60 = 2)
e Running Time:n(éd — 1) =n

2

2. CC(G) = n? for some small value 1.

Maximize costs for fixed running time n

(Users are impatient)



DAGs with Maximal CC(G)

* Challenge 1: Design a constant indegree DAG G maximizing CC(G)
* Depth-Robust Graphs are necessary [AB16] and sufficient [ABP17]
e Argon2i (PHC winner) is not depth-robust
- CC(G) = o(n'7%7) « n% [AB16,AB17,ABP17,BZ17]
 Any DAG with constant indegree has CC(G) = 0(n?loglogn /logn) at most
e Theoretical [ABP17] then practical [ABH17] construction of depth-robust graphs
- CC(G) = Q(n?*/logn) [AB16,AB17,ABP17,BZ17]

* Open Problem 1: Construct G with CC(G) = Q(n?loglogn /logn)
e Conjecture: [BHKLXZ19] achieves this goal.

e Open Problem 2: Tighten constants in upper/lower bounds



Question: CC(G) =2 cumulative memory cost?

°—> Output: f;; ;(x) = Ly
= H(Ly, L)

— H(Lp Lz)

Bad Case: H(x,y)=x+ymod 2% = f; y(x) = kg X x eg., kg =3  (above)
Independeént of input! kg = 2% (complete)
Computing f; 4 (x) is fast + requires minimal memory.

(even if pebbling cost CC(G) is large!)



Question: CC(G) =2 cumulative memory cost?

°—> Output: f;; ;(x) = Ly
= H(Ly, L)

— H(Lp Lz)

Theorem [AS15]: (in parallel random oracle
model)

A(x) = fep(x)2cmc(A) = Q(w X CC(G))

55



Random Oracle Model (PROM)

Model hash function H as a random function
Algorithms can only interact with H as an oracle
* Query: x

 Response: H(x)

If we submit the same query you see the same
response

If x has not been queried, then the value of H(x) is
uniform

X H(x)
00....00 "
00....01 7
11....11 ron_q

Real World: H instantiated as cryptographic hash function (e.g., SHA3)

of fixed length (no Merkle-Damgard)




Random Oracle Model: Prediction Game

Prediction Game: (x4, V1), ..., (xx, Vi) < AZ® wins the prediction
game if

1. y; =H(xq),...,y;, = H(x;) and
2. theinputs x4, ..., xj are all fresh i.e., A never queried H (x;)

Fact 1: Any algorithm éH(') wins the prediction game with
probability at most 27" over the choice of H(.g).

Intuition: A never queries H(x;) — can view H(x;) as a (yet to be
sampled) random string



Random Oracle Model: Prediction Game

Prediction Game: (x4, Y1), ..., (X, V) < A" wins the prediction game if

1. y,=H(x1),..,yx = H(x}) and
2. theinputs x4, ..., x; are all fresh i.e., A never queried H(x;)

Fac;(t 1: Any algorithm A" wins the prediction game with probability at most
27" over the choice of H(.).

Fact 2 (Incompressibility of ROs): Any algorithm A%() (h) given a s-bit hint h
(Zv!QiVSQSmay depend on H(.)) wins the prediction game with probability at most

Proof Intuition: Otherwise we can win without hint with probability > 27%¥

Reduction: Guess correct hint h with probability 275 and run A#0) (h)



Parallel Random Oracle Model (PROM)

e PROM Algorithm A(x)

* Initial Input/State: g, = x X H(x)
* (01;611 (xl» . ;x%)) « A(0gp) 00....00 To
 New State + Batch of Random Oracle Queries 00....01 7

a; = (H(x1), ..., H(x7,))

e Answers to Random Oracle Queries

(0'2,% — (xlz' . xrz)) N 04(0'1, al)

11...11 ron_q

— (i i —— i
(Ui: qi = (x1: ---xri)) « A(01-1,a;-1) One rounq of computatlon.
1. A receives prior answers a;_4

2. A performs arbitrary computation
3. A outputs (o3, ;) new state + new
qgueries

y < dq(o—t' CTt)



Parallel Random Oracle Model (PROM)

e PROM Algorithm A(x)

* Fixing A, x and H we get an execution trace X H(x)
Trace 4y (x) = {0, q;, a;}i=4 00 ....00 ro
00....01 7

e Cumulative Memory Cost of Execution Trace

t
cmc (TracecA,H(X)) = Z(|0i| + |a;])
i=1

11...11 yn_q
e Cumulative Memory Cost of a Function
cmc(f; y) = min Ey lcmc (Tracedq H(X))]
) UQ,X )
Min over inputs x and PROM Expectation over selection of

algorithms A evaluating f; random oracle



Collision Problem

Collision Problem: Suppose that we are asked to find x # x’
s.t. H(x) = H(x")

What is the probability we can succeed given g queries to the
random oracle?

Answer: < g227V

Explanation: Let x4, ..., X, be the queries we make

Pr{H(x;y1) €E{H(xq), ..., Hx))} <ix27™%

X H(x)
00 ....00 To
00....01 r
11 ....11 T‘zn_l

(Prob Collision at time i+1)

. Pr|[Collision] < z I X 27W (Union Bound over Each Round)

i<q




Label Distinctness

Label Distinctness: Suppose we are given a directed acyclic graph G on n
nodes V={1,...,n} with indegree 2 and such that each node v > 2 has two
parents v-1 and r(v)<v-1. Let

X H(x)
00 ....00 To
Let x = L, be the initial input (w-bits) and define labels L; = 00 . 01 N
H(XO, OW), Lz — H(Lli OW)» 1
Ly = H(LZJ Ll)
L, = H(Lv—l: Lr(v)) 11...11 ron_y

L, = H(Ln—l: Lr(n))
Question: What is the probability that two labels collide?



Label Distinctness

L, = H(Lv—l» Lr(v))

Question: What is the probability that two labels collide?

Let U; be the event that labels L, ..., L; are all distinct
Pr(U;|U;_q] = Pr|H(Li—1,Ly@i)) € (L1, o, Li—1}|Usq| < (G —1)27Y

L;_1 unique = fresh query! Union Bound!



Label Distinctness

L, = H(Lv—lt Lr(v))

Question: What is the probability that two labels collide?
Let U; be the event that labels L4, ..., L; are all distinct

PriU;|U;_4] < (i —1)27"

Pr[U, ] < 2(1‘ — 12" <n?2™v

i<n



Label Collision

L, = H(Lv—lr Lr(v))

Prelab(v) = L,_y, L,y

Question: Suppose we can make at most g queries to the random
oracle. What is the probability we find some zs.t. L, = H(z) but z #+
Prelab(v) for some node v?

H(x)
00 ....00 0
00....01 7
11...11 ron_q




Label Collision

Question: Suppose we can make at most q queries to the random
oracle. What is the probability we find some zs.t. L, = H(z) but z #
Prelab(v) for some node v?

Answer: at most nq2™"

Let z; be ith query to random oracle such that z; # Prelab(v) for any
node v < n then we have

Pr(H(z;) € {Ly,..,L,}] <n2~"

Pr(3i < q.H(z;) € {Lqy,...,L,}] < nq2™"

H(x)
00....00 0
00....01 r
11 ....11 rle_l




Ex Post Facto Pebbling

* Fixing A, x and H we get an execution trace
Trace 4 u(x) = {03, @, @}es

* Track L, for each node v

* Note rounds where L, appear as the input to random oracle query?

* Note rounds does L, appear as an the output to a random oracle query?

e Define Need(v,i)=1 if and only if the next time (after round i) label L, appears

it is as an input; otherwise Need(v,i)=0
e P, = {v: Need(v,i) = 1}
Need(v,i)=0 Need(v,i)=1

O 1 O + 0 O 1

Rounds where v occurs as output O or input |



Ex Post Facto Pebbling

e P, = {v: Need(v,i) = 1} = does this give us a legal pebbling?

* Order(v) be the bad event L_, is used as an RO input before it has
appeared as an output

Unexpected order

I O | O O !

Rounds where v occurs as output O or input 1

Expected order

O 1 O 1 0 O I

Rounds where v occurs as output O or input 1



Ex Post Facto Pebbling

e P, = {v: Need(v,i) = 1} = does this give us a legal pebbling?

Claim 1: Suppose that A computes f; ; and makes at most g random
oracle queries then P = P4, ..., P; is a legal pebbling (except with

probability O(gn2™").
Proof Sketch:

Observation 1: If the bad event Order(v) never occurs for any node v
then the pebbling is legal (follows from definition of Need(v,i))



Ex Post Facto Pebbling

e . = {v: Need(v,i) = 1} = does this give us a legal pebbling?

Claim 1: Suppose that A computes f¢ v and makes at most g random

oracle queries then P = P;, ..., P; is a legal pebbling (except with
probability O(gn2™").

Proof Sketch:

Observation 2: If L  has not yet appeared as output then the
probability a particular query includes L, as input early is at most 27"

—->Pr|Order(v)] < q2™%" (Union Bound over all q queries)
(L,, can be viewed as random w-bit string before it first appears)



Ex Post Facto Pebbling
e P, = {v: Need(v,i) = 1} = does this give us a legal pebbling?

Claim 1: Suppose that A computes f; ; and makes at most g random

oracle queries then P = P4, ..., P; is a legal pebbling (except with
probability O(gn2™").

Proof Sketch: Let Order(v) be the bad event L, is used as an RO input
before it has appeared as an output. Union Bounding

Pr[3v Order(v) | < nPr|Order(v)] < nq2™V

(L,, can be viewed as random w-bit string before it first appears)



Ex Post Facto Pebbling

* Fixing A, x and H we get an execution trace
Trace 4 q(x) = {0}, 9;, @i }i=4

Claim 1: Suppose that A computes f; ; and makes at most g random

oracle queries then P = P4, ..., P; is a legal pebbling (except with
probability O(gn2™").

Observation: If P is legal then CC(P) = CC(G)
(definition of CC (G) as best pebbling of G)



Extractor Argument

* Fixing A, x and H we get an execution trace
— "t

Tracedq’H(X) = {O-i, m; a; i=1

Observation: CC(P) = CC(G) (definition of CC(G))

Claim 2: For each round i we have |o;| + |a;_{| = W|P;|/2

Proof Idea: Extractor argument. Suppose for contradiction that |o;| +
la;—1| < w|P]/2.

We will build an extractor that outputs |P;| labels given a hint of size
w|P;|/2 + o(w|P;]). This yields a contradiction of incompressibility!



Extractor Hint

Claim 2: For each round i we have |o;| + |a;_1| = W|P;|/2

Hint: h

e Initial State: g, a;_; (used to simulate A at most w|P;|/2 bits)
Encoding of P; (|P;|logn bits)

For each v € P; index i,, of next random oracle query where label L,, appears as input
(IP;|log g bits)

For each v € P; index o, of next random oracle query where label L,, appears as output
(IP;|log g bits)

Total Hint Length: w|P;|/2 + o(wW|P;|).

Extractor argument. Suppose for contradiction that |o;| < w|P;|/2.

We will build an extractor that outputs | P¢| labels given a hint of size |o;| + o(W|P¢|). This yields a
contradiction of incompressibility!



Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi, )

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

uer
QU Simulate

C’q(o-b ai—l)

v, |??2? | (i+2,4)

v, |???2  [(i+1,2)

75




Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi, )

Random Oracle
H:{0,1}* - {0,1}*

P. | Label |Input
QU Simulate
A(0i+1, ;)
v, |??? (i+2,4)
v, |??? (i+1,2)
Extract!
qi+1[2] contains L, .




Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pir )

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

uer
QU Simulate

c’q(o-i+1J CTL)

v, |??2? | (i+2,4)

(i+1,2)
Extract!
qi+1[2] contains L, ~




Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi, )

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

TR Simulate
A(0j42,041)
Vy 2?7 (i+2,4)
V, L, |(i+1,2)

Extract! H(q;4,[4]) = L,,

78



Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pir )

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input

O] Simulate
A(0i42,Ajt1)
Vl Lv1 (|+2)4)
V2 L'Dz (|+1)2)

Danger! H(qi15[1]) = Ly,
Do not submit this query!

79




Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pir )

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input Output of

Query Query Simulate

A(0i12,Ai+1)

(i+2,4) (i+10,5)

, | (i+1,2) qi+211]

Danger! H(qi15[1]) = Ly,
Do not submit this query!
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Extractor: Simulating Attacker

Extractor E
Hint: h = (O'l', a;—1 Pi, )

Random Oracle
H:{0,1}* - {0,1}*

P. Label | Input Output of

Query Query Simulate

A(0i+3, Aj+2)

(i+2,4) (i+10,5)

V) L, |(i+1,2) qi+211]

etc ...

81



Extractor: Simulating Attacker

Claim 2: For each round i we have |g;| = w|P;|/2

Hint:
e simulate A from initial state: g;
e Forward random oracle queries to H(.) (* One Exception Below *)

e For each v € P; wait for first query where L, appears as input and record
L,, (by definition of P; this occurs before L,, appears as output)

e For each v € P; wait for first query o,, which produces output L,

e Do not forward this query to H(.)

e Simply record the response L,
* Technical Note: Extractor can simply run naive evaluation algorithm forf; 4 (x) after
simulating A to ensure that for each v € P; there is some round where L,, is output



°—> Output: f;; y(x) = Ly
= H(L, L;)

L, = H(Ly, Ly)

Extractor:

e Qutputs L, foreachv € P;

* Generate remaining labels L, for each v € P;
e Can be done querying random oracle at x,, s.t. H(x,) = L,

* Yields k ““fresh” input output pairs (x,, L,,) for each v € P; as long as
all labels L,, are distinct

Pr[3(u,v). L, = L] <n?2™%



— H(Lz» L3)

Input: x G/va\ °—> Output: f; ;(x) = Ly

= H(X) = H(Ly, Ly)

Extractor: Yields k = |P;| ““fresh” input output pairs (x,, L,,) for each v € P;
as long as all labels L, are distinct and pebbling is legal

Pr[A(u,v). L, = L] <n?2™%

— Pr[Success] =1 —n?%2"" —gn2™%

Contradiction! Extractor can succeed with probability at most 2~kw/2+o(kw)



Reflection: Extractor Argument

 What properties of the random oracle did we use?

 Simulatability/Delayed Sampling:

e Can view H(x) as uniformly random string that is yet to be sampled
e (until x is actually queried)
 used to analyze the probability that a label L, appears out of order (also collisions)

e Extractability of Queries:

 When attacker submits random oracle query the extractor gets to see the
qguery (and the response)



Quantum Random Oracle Model

e Similar to classical random oracle model except that input is an
entangled quantum state

D alxy) 2 Y alx, y®H()

X

* Realistic model for any realization of the random oracle e.g., can
implement SHA3 as a quantum circuit

* Challenge: extractor needs to view random oracle queries
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Evaluating an iIMHF (pebbling)

Input: G/a o—» Output: L,
pwd, salt % ‘bv\
I ~

H(LZ' Ll)

L,=H (p{/vd, salt) Ls

—

Pebbling Rules: P=P,,...,P.C V s.t.
*P...C P.U{x € V|parents(x) c P.,,} (need dependent values)
* nE P, (must finish and output L)



Measuring Pebbling Costs [AS15]

* Cumulative Complexity (CC) Memory Used at Step |

Approximates

t—)
Amortized Area x Time _ .
Complexity of iIMHF CC(G) T mﬁln E ‘Pl‘
=1

e Guessing two passwords doubles the attackers cost

CC(G, G) = 2 x CC(G)



Naive: Pebbling Strategy

0-0-6-0-0




Naive: Pebbling Strategy

6-0-0-0-0

P1 = {1}



Naive: Pebbling Strategy

6-0-6-0-0

P, = {1}
PZ = {112}



Naive: Pebbling Strategy

60600

P1 = {1}

P2 = {112}
P3 = {1;2; 3}



Naive: Pebbling Strategy

60600

P1 = {1}

P, ={1,2}

P, = {1,2, 3}
P,=1{1, 2, 3, 4}



Naive: Pebbling Strategy

60600

P1 = {1}

P, ={1,2}

P, = {1,2, 3}
P,=11, 2, 3, 4}
P.=11, 2, 3, 4, 5}



Naive: Pebbling Strategy (CC)

0-0-0-0-'

P1 = {1}

P, ={1,2}

P, = (1.2, 3} CC(G) < Z\P |

P, =1{1,2, 3,4}

Py = {1,2,3,4,5) 112434445

= 15



Naive Pebbling Algorithms

* Naive (Pebble in Topological Order)
* Never discard pebbles
e Legal Pebbling Strategy for any DAG!
e Pebbling Time: n
e Sequential: Place one new pebble on the graph in each round

__n(n+1)

Theorem: Any DAG G has CC(G) < X1 = —
Proof: Naive pebbling strategy is legal strategy for any DAG G/

Question: Can we find a DAG G with CC(G) = Q(n?)?



Improved Pebbling

0-0-6-0-0




Improved Pebbling

6-0-0-0-0

Py =11}



Improved Pebbling

6-0-6-0-0

Py =11}
PZ = {112}



Improved Pebbling

60500

Py =11}

PZ = {112}
P3 =13}



Improved Pebbling

60500

Py =11}
PZ = {112}
P3 =13}
P, =1{3,4}



Improved Pebbling

0-0-6-0-0

Py =11}

PZ = {112}
P3 =13}
P, =1{3,4}
Ps = {5}



Graphs with High CC

n(n+ 1)

Theorem: Any DAG G has CC(G) < Yol =
Proof: Naive pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with CC(G) = Q(n?)?

Claim: The complete DAG has CC(G) = X j<p—q ¥ ”(”2 D _ = Q(n?)?

Proof: Consider the round immediately before we first place a pebble on
node i+1. We must have had pebbles on all of the nodes {1,...,i}.

Question: Can we find a DAG G with CC(G) = Q(n?) and low indegree?



Why do we care about indegree?

In practice the random oracle is instantiated with a function H: {0, 1}?* - {0, 1}*
Label of node v is obtained by hashing labels of v’s parents.

Node v has two parents (uandw) = L, = H(L,, L,,) = One oracle to H used to compute label

Node v has three parents (u,w,x) = L, = H(H(L,, L,,), L)) = Two oracle queries to H to
compute label

Node v has four Parents (uw,w,x,y) ? L, = HH(H(L,, L), Ly), L,) & Three oracle queries to H
to compute labe

Node v has k parents =» k-1 oracle queries to H to compute label

Running time to evaluate f 4 is proportional to n X indeg(G)



Desiderata

Find a DAG G on n nodes such that

1. Constant Indegree (60 = 2)
e Running Time:n(éd — 1) =n

2

2. CC(G) = n? for some small value 1.

Maximize costs for fixed running time n

(Users are impatient)



Outline

 Motivation
e Data Independent Memory Hard Functions (iMHFs)

e Our Attacks
e General Attack on Non Depth Robust DAGs
e Existing iIMHFs are not Depth Robust
e |deal iMHFs don’t exist

e Subsequent Results (Depth-Robustness is Sufficient)
* Open Questions



Depth-Robustness: A Necessary Property




Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

0-0-6-0-0



Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists S € V
s.t. |S| < e and depth(G-S) < d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

o0 00



Attacking (e,d)-reducible DAGs
e Input: |S| <e such that depth(G-S)=d, g>d

e Light Phase (g rounds): Discard most pebbles!
e Goal: Pebble the next g nodes in g (sequential) steps
e Low Memory (only keep pebbles on S and on parents of new nodes)
e Lastsa long” time

e Balloon Phase (d rounds): Greedily Recover Missing Pebbles
e Goal: Recover needed pebbles for upcoming light phase
e Expensive, but quick (at most d steps in parallel).



Attacking (e,d)-reducible DAGs

Algorithm 1: GenPeb (G, S, g, d)

o 4o =] O M e LD b3

(o
= o

—
[ (%

Arguments: G = (V. E), S CV, g € [depth(&G — &), n|, d = depth(& — &)

fori=1ton do

endl

Febble node 1.

Lo |ifo) kgt d 1
if ¢ mod g € [d] then // Balloon Phass

d'+—d— (i modg)+1

N+ need(l,l 4+ g,d)

Pebble every » € N which hag all parents pebbled.

Remove pebble from any v € K where K «+ S Ukeep(i,i+ g) U {n}.

Ise // Light Phase
K+ Slparents(i, i+ g) U 4n}
Remove pebbles from all v & K.

end




Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.

Upper bounds pebbles
on nodes X € S, where
S| = e
depth(G-S) < d

#pebbling rounds



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

Ex(A) < en+ dgn + Snd + nR + gnR.

Maintain pebbles on parents of next #pebbling rounds
g nodes to be pebbled.



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.

Length of a balloon phase
#balloon phases

Max #pebbles on G
In each round of balloon phase



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

Ex(4A) < en+ dgn + Snd + nR + gnR.

Set g = vnd

Ex(4) = O(en +Vn3d).

In particular, Ex(A) = o(n?) for e,d=o0(n).



Question

. Are existing iIMHF candidates based on depth-
robust DAGs?

ww.shutterstoc lcom - 20742253



IMHF Candidates

e Catena [FLW15]

e Special Recognition at Password Hashing Competition
e Two Variants: Dragonfly and Double-Butterfly
e Security proofs in sequential space-time model

e Balloon Hashing [CBS16]
* Newer proposal (three variants in original proposal)
 Argon2 [BDK15]
e Winner of the Password Hashing Competition

e Argon2i (data-independent mode) is recommended for Password Hashing

e This Talk: Focus on Argon?2i-A (version from Password Hashing Competition)
e Attack ideas do extend to Argon2i-B (latest version)



Attack Outline

* Show that any “layered DAG” is reducible
* Note: Catena DAGs are layered DAGs

* Show that an Argon2i DAG is almost a “layered DAG.”
* Turn Argon2i into layered DAG by deleting a few nodes
* Hence, an Argon2i DAG is also reducible.



Catena

e Catena Bit Reversal DAG (BRG})
e A-layers of nodes (1 < 5)
e Edges between layers correspond to the bit-reversal operation
e Theorem[LT82]: sST(BRGT})= Q(n?)

e Catena Butterfly (DBGY)
1 = O(logn)-layers of nodes
e Edges between layers correspond to FFT
» DBG} is a “super-concentrator.”

° = 1= i
Theorem[LT82] => sST(BRGY)= Q (log(n))




A-Layered DAG (Catena)

0000 O

Layer A

00000 & -
Q_.a_,we—» g Layer O




A-Layered DAG (Catena)

Layer A

Layer 1

Layer O



A-Layered DAG (Catena)

Layer A

Layer 1

Layer O

0000 @

Disallowed! All edges must go to a higher layer (except for (i,i+1))



Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a A-Layered
DAG then G is (n2/3,n1/3 (1 + 1))—reducib|e.

Proof: Let S = {i x n'/3|i < n?/3} any path p can spend at most n'/3
steps on layer i.

oo 0o —P ooo-}% Layero

1/3

0-0- -

1/3

n




Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a A-Layered
DAG then G is (n2/3,n1/3 (1 + 1))—reducib|e.

1/3

Proof: Let S = {i X n1/3‘i < n2/3} any path p can spend at most n
steps on layer i.

Layer O




Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a A-Layered
DAG then G is (n2/3,n1/3 (1 + 1))—reducib|e.

Corollary:E;(G) < O (/ln5/3) .

1/3
Attack Quality: Qualityz(4) = Q (" > )



Previous Attacks on Catena

e [AS15] CC(BRGY}) < 0(n'»)

« Gap between cumulative cost O (n'°) and sequential space-time cost Q(n?)

e [BK15] ST(BRGY) < 0(n'?®) for 1> 1.
e Our result CC(BRGY) < O(n'®7) *

* Applies to all Catena variants.



Argon2i [BDK]

e Argon2: Winner of the password hashing competition[2015]

N

e Authors recommend Argon?2i variant (data-independent) for
password hashing.




Argon?2]

0000 -0 -0



Argon2i

random predecessor r(i) < i

0-0-0-0- -0

Indegree: § = 2

~-©




Argon?2iis a layered DAG (almost)

€00 0 0 Loy
@ ‘W Layc.er 1

Layer O



Argon?2iis a layered DAG (almost)

Definition: S, = {vi| Vrpand v; in same layer}

Q‘ . @ -©@ Layer 3/n
\
@

‘?% Layfer 1

Claim: E[S,] = 0(n3/*logn)

Layer O



Argon?2iis a layered DAG (almost)

Definition: S, = {vi| Vrpand v; in same layer}

€000 0 L.
@ ‘?% Layc:er 1

1 n3/4
=7 E[LayerinSZ]ST

Layer O

Prlv € S,|vin Layer i]



Argon?2iis a layered DAG (almost)

Definition: S, = {vi| Vrpand v; in same layer}

Q‘ -~ @ - -©@ Layer 3/n
\
@

@ 6D .

Claim: E[S,] = 0(n3/*logn)

Layer O



Argon?2iis a layered DAG (almost)

Let S =S5,+5,

GO0~ 0 0 L
@ .?% Lay;r 1

Fact: E[S] = 0(7’13/4 log n) and depth(G-S)< +/n.

Layer O



Argon?2iis a layered DAG (almost)

Let S =S5,+5,

@

Layer 3/n
.W Layér 1

Theorem: G is (2n3/* log n, v/n)-reducible with high probability.

Layer O



Argon?2iis a layered DAG (almost)

Let S =5,+5,

@‘ o @ O Lay?r‘{/ﬁ
@ '?% Lay;r 1
000 0o oD

Corollary: ER(G) < 0(n"/*logn).  ality. (4) < O (n1/4)
R — .

logn

Layer O




ldeal iIMHFs Don’t Exist

* Thm: If G has n nodes and constant in-degree 6=0(1) then G is :

(0 (n 11(;22‘;% n) , 10; n)-reducible.

* Thm: If G has n nodes and constant in-degree then:

"2
ve>0 Ex(G)=o0 (log(n)l‘s + nR)



Attack Quality

Practical Consequences (R = 3,000)

He

b2

| | |
— — Equality
- — — ATquality
[ | g =52 =1 /
[ | =529 =23 /
| =59 7+ =258 fa/‘
=21 r=1 1|/ /
[ | d=1%21 =258
§=01 =5
////,r’
| | | | | |
214 218 222 226 23[} 234

Memory Parameter n

(a) Argon2i and SB

Attack Quality

| | | |
2 Equality 1]
— — — ATquality ’/*’f’f
[ | § = o //f/
]_+5 . B & =g ,-'"f T
=4 f’/ )
- L~
5_ = fﬁ/
L - f’/ O
-~ x',,fff
..-fff
0.5 T
| | | | |
032 951 970 989 9108 0127

Memory Parameter n

(b) Ideal iMHF






Drama: Are the attacks Practical’
* Argon2i team: No, at least for reali:  #8a g «

e Recent: Argon2i-B submitted to IR "
Task Force) for standardization.

e New Result [AB16b]:

 New heuristics to reduce overhead by constant tfactor
e Simulate the attack on real instances



New Simulation Results :

I kLA |II_'|'

|AB16D]

' Parameter setting could easily be
chosen when following Argon2i-B
guidelines

<— |  Pessimistic Argon 2i-B

parameter

[
Memory Parameter: log.(o)

(A — ok H)

Figure 1: Arponli-B Adtack Quality

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown

line).



Outline

 Motivation
e Data Independent Memory Hard Functions (iMHFs)
e Attacks

e Constructing iMHFs (New!)
* Depth-Robustness is sufficient

e Conclusions and Open Questions



Depth-Robustness is Sufficient! [ABP16]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then CC(G)= ed.

Implications: There exists a constant indegreezgraph G with

CC(G) = Q( & )
logn

n2
log10 n)

Previous Best [AS15]: () (

n? loglog n)
log n '

[AB16]: For all constant indegree graphs CC(G) = O (



Depth-Robustness is Sufficient! [ABP16]

Proof: Let P,,...P, denote an (optimal) pebbling of G. For O<i < d define
S;=PiUPg4i UPpgyi U
one of the sets S has size at most CC(G)/d. Now we claim that
d = depth(G-S))

because any path in G-S; must have been completely pebbled at some

point. Thus, it must have been pebbled entirely during some interval of
length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G)> ed.



Proof by Picture
S;=PiUPy4; UPpyqi; U

Py, Poyeis P, PuPiitse s Pivg s Pivar Pivcgarroor Pisoge1s Pisogs oo

d rounds d rounds

Claim: |S| > e



Implication

Claim: |S,| > e

CC(G) > zlPtl




Contradiction by Picture

S; = PiUPg i UPygyi U

0-0-0-©-0

Path: W in G-S,

Step i: W contains no pebbles since P; C §;



Contradiction by Picture

S; = PiUPg i UPygyi U

0-0-0-©-0

Path: W in G-S,
Step i: W contains no pebbles since P; C §;

Step i+1: W-{1} contains no pebbles



Contradiction by Picture

S; = PiUPg i UPygyi U

0-0-0-©-0

Path: W in G-S,
Step i: W contains no pebbles since P; C §;

Step i+1: W-{1} contains no pebbles
Step i+2: W-{1,2} contains no pebbles



Contradiction by Picture

S; = PiUPg i UPygyi U

\\\

0-0-0-©-0

Path: W in G-S,
Step i: W contains no pebbles since P; C §;

Step i+1: W-{1} contains no pebbles

Step i+2: W-{1,2} contains no pebbles
Step i+d-1: W-{1,...,d-1} contains no pebbles



Contradiction by Picture

Contradiction!
/d was never pebbled.

9*6*0*@' 9

Path: W in G-S,

‘Sll = e

Step i+d: W contains no pebbles since P;, 4 C §;

Step i+d-1: W-{1,...,d-1} contains no pebbles



Positive Result: Consequences

Theorem [ABP16]: Let G=(V,E) be (e,d)-depth robust then E;(G) = ed.

Theorem[EGS75]: There is an (Q(n), Q(n))—depth robust DAG G with
indegree § = O(logn).

Theorem [ABP16] There is a DAG G with maximum indegree § = 2
2
and En(G) = Q( n

og n). Furthermore, there is a sequential pebbling

le
algorithm N with cost Ex(N) = 0 ( )

logn



More New Results

MHE____________ Upper Bound

Argon2i-A O(n""1) [ABP16] 5 (111.66

O-r=">Y [This work] Un"™") [ABP16]
Catena O(n'°1%) [ABP16] = . ;5

On=5%) [This work] 1(n">) [ABP16]

SCRYPT

(data depghden O(n?) [Naive, P12]  ((n’) [ACPRT16}

ldea: Apply our attack recursively during balloon phases



(e,d)-reducible curve for Argon2i-A

_h e=n""logn,d=+n
o [

< | \

o \

Q. Gap: O(polylog(n))

gE N\ N

e —

I % e=n%%ogn,d=n
. /

| —
-

0.2

Reducible

Depth Robust



Recursive Attack

n
CC(G) < en +
n
CC(G) < en+ ;

S\
n
CC(G) < en + @ )
€1
—




Conclusions

* Depth-robustness is a necessary and sufficient for secure iMHFs
 [AB16] [ABP16]

* Big Challenge: Improved Constructions of Depth-Robust Graphs
 We already have constructions in theory [EGS77, PR80, ...]
e But constants matter!



More Open Questions

 Computational Complexity of Pebbling
e NP-Hard to determine CC(G) [BZ16]
e Hardness of Approximation?

 What is CC(Argon2i-B)?

e Upper Bound: O(n'?) [AB16b]
e Recursive attack: O(n-77) [BZ16b]+[ABP16]
 Lower Bound: (n'-©%) [BZ16b]

Large Gap Remains



Thanks for Listening

g %
'
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