
Advanced Cryptography
CS 655

Week 5: 
• Preprocessing: Bit-Fixing Model to Auxiliary Input
• Compression Arguments
• Memory Hard Functions and Pebbling

1Spring 2023

Homework 1 Due Tonight



Recap: Auxiliary-Input Attacker Model

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Random Oracle Version: 
• Offline attacker 𝐴𝐴1 is unbounded and outputs an 𝑆𝑆-bit hint for online attacker 𝐴𝐴2

after viewing entire truth table 𝐻𝐻(. )
• 𝐴𝐴2 will try to win security games using this hint

• (S,T,p)-attacker
• 𝐴𝐴1 outputs a S-bit hint
• 𝐴𝐴2 makes at most T random oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as specified by 

parameters p.
• 𝑆𝑆,𝑇𝑇,𝑝𝑝 , 𝜀𝜀 -security  Any 𝑆𝑆,𝑇𝑇,𝑝𝑝 attacker wins with advantage at most 𝜀𝜀
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Recap: Bit-Fixing Model

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Random Oracle Version: 
• Offline attacker 𝐴𝐴1 fixes output of random oracle 𝐻𝐻(. ) at P locations and then 

outputs a S-bit hint. 
• 𝐴𝐴2 initially knows nothing about remaining unfixed values i.e., 𝐻𝐻(𝑥𝑥) picked 

randomly for 𝑥𝑥 ∉ 𝑃𝑃 after 𝐴𝐴1 generates hint
• (P,T,p)-attacker

• 𝐴𝐴1 fixes H on at most P locations and outputs S-bit hint
• 𝐴𝐴2 makes at most T random oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as specified by 

parameters p.

• 𝑆𝑆,𝑇𝑇,𝑝𝑝 , 𝜀𝜀 -security  Any 𝑆𝑆,𝑇𝑇,𝑝𝑝 attacker wins with advantage at most 𝜀𝜀
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Bit-Fixing Model (Unruh)

• Pro: Much easier to prove lower bounds in Bit-Fixing Model
• Con: Bit-Fixing model is not a compelling model for pre-processing 

attacks 

• Usage: Lower bound in bit-fixing model  Lower bound in Auxilliary-
Input Model

• This approach yields tight lower-bounds in the Auxilliary-Input Model 
for some applications 

• Other applications require a different approach (e.g., compression)
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Typical Relationship: BF-RO and AI-RO

Example: Set 𝛾𝛾 = 2−2𝜆𝜆 and the advantage is 𝜀𝜀′ + 2 𝑆𝑆+2𝜆𝜆 𝑇𝑇
𝑃𝑃

+ 2−2𝜆𝜆

Balancing:  𝜀𝜀′ usually increases with 𝑃𝑃 i.e., as BF-attacker gets to fix 
more and more points. 
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Typical Relationship: BF-RO and AI-RO

So far we have used this result (or similar results for Ideal-Ciphers, 
Permutations etc…) as a black-box.

How is this result proved?
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Preliminary Definitions

• Definition: A (𝑁𝑁,𝑀𝑀)-source is a random variable 𝑿𝑿 with range [𝑀𝑀]𝑁𝑁

• Random Oracle 𝑯𝑯: 𝑁𝑁 → [𝑀𝑀] can be viewed as a random variable 𝑿𝑿 with 
range [𝑀𝑀]𝑁𝑁 e.g., if 𝑯𝑯: 𝟎𝟎,𝟏𝟏 𝒏𝒏 → 𝟎𝟎,𝟏𝟏 𝒎𝒎 then we set 𝑀𝑀 = 2𝑚𝑚 and 𝑁𝑁 = 2𝑛𝑛

• Given 𝐼𝐼 ⊆ [𝑁𝑁] (inputs) and 𝑥𝑥 ∈ [𝑀𝑀]𝑁𝑁 let 𝑥𝑥𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| denote the substring 
specified by 𝐼𝐼 e.g., value of random oracle on all inputs in 𝐼𝐼

• Dense-Source: 𝑿𝑿 is (1 − 𝛿𝛿) dense if for every subset 𝐼𝐼 ⊆ [𝑁𝑁] (inputs) we 
have 𝐻𝐻∞ 𝑋𝑋𝐼𝐼 ≥ 1 − 𝛿𝛿 𝐼𝐼 log2 𝑀𝑀 = 1 − 𝛿𝛿 log2 𝑀𝑀 𝐼𝐼

7
Minimum Entropy: Equivalent statement is that for all 𝑦𝑦 ∈ [𝑀𝑀]|𝐼𝐼| we have Pr 𝑋𝑋𝐼𝐼 = 𝑦𝑦 ≤ |𝑀𝑀|−|𝐼𝐼|(1−𝛿𝛿)



Preliminary Definitions

• Definition: A (𝑁𝑁,𝑀𝑀)-source is a random variable 𝑿𝑿 with range [𝑀𝑀]𝑁𝑁

• Random Oracle 𝑯𝑯: 𝑁𝑁 → [𝑀𝑀] can be viewed as a random variable 𝑿𝑿
with range [𝑀𝑀]𝑁𝑁 e.g., if 𝑯𝑯: 𝟎𝟎,𝟏𝟏 𝒏𝒏 → 𝟎𝟎,𝟏𝟏 𝒎𝒎 then we set 𝑀𝑀 = 2𝑚𝑚
and 𝑁𝑁 = 2𝑛𝑛

• Dense-Source: 𝑿𝑿 is 1 − 𝛿𝛿 −dense if for every subset 𝐼𝐼 ⊆ [𝑁𝑁]
(inputs) we have 𝐻𝐻∞ 𝑋𝑋𝐼𝐼 ≥ 1 − 𝛿𝛿 𝐼𝐼 log2 𝑀𝑀 = 1 − 𝛿𝛿 log2 𝑀𝑀 𝐼𝐼

• Example: Random oracle is 1 − 𝛿𝛿 −dense with 𝛿𝛿 = 0.
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Preliminary Definitions

• Definition: A (𝑁𝑁,𝑀𝑀)-source is a random variable 𝑿𝑿 with range [𝑀𝑀]𝑁𝑁

• Dense-Source: 𝑿𝑿 is 𝑃𝑃, 1 − 𝛿𝛿 −dense if there is a subset 𝑆𝑆 ⊆ [𝑁𝑁] of size 
𝑆𝑆 ≤ 𝑃𝑃 such that for every subset 𝐼𝐼 ⊆ [𝑁𝑁 ∖ 𝑺𝑺] we have 

𝐻𝐻∞ 𝑋𝑋𝐼𝐼 ≥ 1 − 𝛿𝛿 𝐼𝐼 log2 𝑀𝑀 = 1 − 𝛿𝛿 log2 𝑀𝑀 𝐼𝐼

• Intuition: Fixed on P coordinates but dense on the rest 

• Bit-Fixing Source: 𝑿𝑿 is 𝑃𝑃, 1 −dense i.e., fixed on P and uniform on the 
rest
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Preliminary: Leaky Source

• Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(𝑿𝑿) for 
some function f: [𝑀𝑀]𝑁𝑁→ 𝟎𝟎,𝟏𝟏 𝑺𝑺.

• Bayesian Update: Conditional Distribution 𝑿𝑿𝒛𝒛 for all x in [𝑀𝑀]𝑁𝑁 we have
Pr 𝑿𝑿𝒛𝒛 = 𝑥𝑥 ≔ Pr[𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧]

Challenge: It can be difficult to reason about the source 𝑿𝑿𝒛𝒛

Entropy Deficiency: 𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛

In expectation we have 𝐄𝐄 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆, but the actual value can vary depending on 
z = f(𝑿𝑿)
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Proof Strategy

• Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(𝑿𝑿) for 
some function f: [𝑀𝑀]𝑁𝑁→ 𝟎𝟎,𝟏𝟏 𝑺𝑺.

• Bayesian Update: Conditional Distribution 𝑿𝑿𝒛𝒛 for all x in [𝑀𝑀]𝑁𝑁 we have
Pr 𝑿𝑿𝒛𝒛 = 𝑥𝑥 ≔ Pr[𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧]

Challenge: It can be difficult to reason about the source 𝑿𝑿𝒛𝒛
Entropy Deficiency: 𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛 𝐄𝐄 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a 
convex combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Convex Combination: Let 𝐷𝐷1, … ,𝐷𝐷𝑘𝑘 each be 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense sources. 𝒀𝒀𝒛𝒛 has the 
form sample a source 𝑖𝑖 ≤ 𝑘𝑘 with probability 𝑝𝑝𝑖𝑖 then sample from 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense 
sources 𝐷𝐷𝑖𝑖

• Number of Fixed Points: 𝑃𝑃𝑃 ≤ 𝑆𝑆𝑧𝑧+log 1/𝛾𝛾
𝛿𝛿 log 𝑀𝑀
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Proof Strategy

• Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(𝑿𝑿) for some 
function f: [𝑀𝑀]𝑁𝑁→ 𝟎𝟎,𝟏𝟏 𝑺𝑺.

• Bayesian Update: Conditional Distribution 𝑿𝑿𝒛𝒛 for all x in [𝑀𝑀]𝑁𝑁 we have
Pr 𝑿𝑿𝒛𝒛 = 𝑥𝑥 ≔ Pr[𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧]

Challenge: It can be difficult to reason about the source 𝑿𝑿𝒛𝒛
Entropy Deficiency: 𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛 𝐄𝐄 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished from a 
𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries. 

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And 
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀
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Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a 
convex combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Define 𝐘𝐘 = 𝑿𝑿𝒛𝒛 . If 𝐘𝐘 is 1 − 𝛿𝛿 -dense then we are done. Otherwise, let 𝐼𝐼 be 
the largest subset for which there exists a violation i.e., 𝑦𝑦𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| s.t.

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀

• Let 𝐘𝐘′ denote distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• Claim 1: 𝐘𝐘𝐘 is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ = 𝐼𝐼

• Proof Sketch: If there is a subset 𝑱𝑱 ⊆ [𝑵𝑵\I] and 𝑦𝑦𝐽𝐽 ∈ [𝑀𝑀]|𝐽𝐽| s.t.
Pr 𝒀𝒀𝑱𝑱′ = 𝑦𝑦𝑗𝑗 > 2− 1−𝛿𝛿 𝐽𝐽 log 𝑀𝑀

Then we could take 𝐼𝐼′ = 𝐼𝐼 ∪ 𝐽𝐽 and 
Pr 𝒀𝒀𝑰𝑰′ = 𝑦𝑦𝐼𝐼′ = Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 Pr 𝒀𝒀𝑱𝑱 = 𝑦𝑦𝐽𝐽|𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼′ log 𝑀𝑀

This contradicts the maximality of 𝐼𝐼!
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Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a 
convex combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Define 𝐘𝐘 = 𝑿𝑿𝒛𝒛 . If 𝐘𝐘 is 1 − 𝛿𝛿 -dense then we are done. Otherwise, let 𝐼𝐼 be 
the largest subset for which there exists a violation i.e., 𝑦𝑦𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| s.t.

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀

• Let 𝐘𝐘′ denote distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• Claim 1: 𝐘𝐘𝐘 is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ = 𝐼𝐼
• Claim 2: 𝐼𝐼 ≤ 𝑆𝑆𝑍𝑍

𝛿𝛿 log 𝑀𝑀
• Proof Sketch: On one hand we have 𝐻𝐻∞ 𝒀𝒀𝑰𝑰 ≥ |𝐼𝐼| log𝑀𝑀 − 𝑆𝑆𝑍𝑍 (def of 𝑆𝑆𝑍𝑍)
• On the other hand 𝐻𝐻∞ 𝒀𝒀𝑰𝑰 < −log𝟐𝟐 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀 = 1 − 𝛿𝛿 𝐼𝐼 log𝑀𝑀
• Claim 2 follows immediately by combining the above two inequalities. 
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Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a convex 
combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Define 𝐘𝐘 = 𝑿𝑿𝒛𝒛 . If 𝐘𝐘 is 1 − 𝛿𝛿 -dense then we are done. Otherwise, let 𝐼𝐼 be the 
largest subset for which there exists a violation i.e., 𝑦𝑦𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| s.t.

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀

• Let 𝐘𝐘′ denote distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• Claim: 𝐘𝐘𝐘 is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ = 𝐼𝐼 with 𝐼𝐼 ≤ 𝑆𝑆𝑍𝑍

𝛿𝛿 log 𝑀𝑀
• Key Idea (Recursion!): 𝒀𝒀𝒛𝒛 uses 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense source 𝐘𝐘𝐘 with probability 

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 and samples from 𝒀𝒀𝒛𝒛′ with probability 1 − Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• 𝒀𝒀𝒛𝒛′ is also convex combination of finitely many 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense sources which is 

gamma close to 𝒀𝒀𝟏𝟏, the distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 ≠ 𝑦𝑦𝐼𝐼
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Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a convex 
combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Key Idea (Recursion!): 𝒀𝒀𝒛𝒛 uses 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense source 𝐘𝐘𝐘 with probability Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
and samples from 𝒀𝒀𝒛𝒛′ with probability 1 − Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼

• 𝒀𝒀𝒛𝒛′ is also convex combination of finitely many 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense sources which is 
gamma close to 𝒀𝒀𝟏𝟏, the distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 ≠ 𝑦𝑦𝐼𝐼

• Each step of recursion decreases size of support  finite termination
• Recurse as long as Pr 𝑋𝑋 ∈ Supp 𝑌𝑌𝑘𝑘 > 𝛾𝛾

• Claim:  𝒀𝒀𝒌𝒌′ is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ ≤
𝑆𝑆𝑍𝑍+log

1
𝛾𝛾

𝛿𝛿 log 𝑀𝑀
• Process ends with Pr 𝑋𝑋 ∈ Supp 𝑌𝑌𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾 replace 𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 with uniform distribution
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Proof Strategy
• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be 

distinguished from corresponding 𝑃𝑃𝑃-bit fixing source Y’ (uniform on 
non-fixed coordinates) by a distinguisher making at most T (adaptive) 
queries to the source. 

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And 
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀
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Proof Strategy

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished 
from a 𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive) 
queries to the source. 

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And 
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

Proof Intuition: 
• WLOG we can assume 𝔇𝔇 is deterministic (otherwise we can fix the random coins that 

maximizes the advantage of the distinguisher for 𝔇𝔇) and only queries on non-fixed 
points. 

• Transcript 𝜏𝜏 is a list of all of the query/answer pairs that distinguisher 𝔇𝔇 makes.
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Proof Strategy

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished from a 
𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries to 
the source. 

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And 
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

Proof Intuition: Transcript 𝜏𝜏 is a list of all of the query/answer pairs that distinguisher 𝔇𝔇 makes.
• Let 𝑇𝑇𝑋𝑋𝑋 (resp. 𝑇𝑇𝑌𝑌′) denote random variable over transcripts resulting from interaction with 

source X’ (resp. Y’).
• Note: The support of 𝑇𝑇𝑌𝑌𝑌 contains the support of 𝑇𝑇𝑋𝑋𝑋
• For every transcript 𝜏𝜏 in the support of 𝑇𝑇𝑋𝑋′ we have 

Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 2− 1−𝛿𝛿 𝑇𝑇 log 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏 = 2−𝑇𝑇 log 𝑀𝑀
Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏

19



Proof Strategy

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished 
from a 𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive) 
queries to the source. 

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 × Pr 𝔇𝔇𝑌𝑌′ = 1
And 

Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

Proof Intuition: For every transcript 𝜏𝜏 in the support of 𝑇𝑇𝑌𝑌𝑌 we have 
Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 2− 1−𝛿𝛿 𝑇𝑇 log 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏 = 2−𝑇𝑇 log 𝑀𝑀

Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏
Let 𝒯𝒯𝔇𝔇 denote the set of all transcripts where 𝔇𝔇 outputs 1. 

Pr 𝔇𝔇𝑋𝑋′ = 1 = �
𝜏𝜏∈𝒯𝒯𝔇𝔇

Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 �
𝜏𝜏∈𝒯𝒯𝔇𝔇

Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏 = 𝑀𝑀𝑇𝑇𝑇𝑇 × Pr 𝔇𝔇𝑌𝑌′ = 1

20
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One Missing Link Remains! Prior bounds relied on entropy deficiency 
𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛 instead of S.

Claim: 𝐸𝐸 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆 and Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log 1
𝛾𝛾
≤ 𝛾𝛾

Key Fact: Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2−𝑆𝑆𝑧𝑧
23



Claim: 𝐸𝐸 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆 and Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log 1
𝛾𝛾
≤ 𝛾𝛾

Key Fact: Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2−𝑆𝑆𝑧𝑧
Proof: By definition of 𝑆𝑆𝑧𝑧 (min-entropy deficiency) there exists 𝑥𝑥 ∈ [𝑀𝑀]𝑁𝑁

with 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 such that Pr 𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧 = 2𝑆𝑆𝑧𝑧

𝑀𝑀𝑁𝑁. We have 
1
𝑀𝑀𝑁𝑁 = Pr 𝑋𝑋 = 𝑥𝑥 = Pr 𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧 Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 =

2𝑆𝑆𝑧𝑧
𝑀𝑀𝑁𝑁 Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧

24



Claim: 𝐸𝐸 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆 and Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log 1
𝛾𝛾
≤ 𝛾𝛾

Key Fact: Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2−𝑆𝑆𝑧𝑧

Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log
1
𝛾𝛾

= �
𝑧𝑧∈ 0,1 𝑆𝑆 𝑠𝑠.𝑡𝑡

𝑆𝑆𝑧𝑧>𝑆𝑆+log
1
𝛾𝛾

Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2𝑆𝑆 × 2− 𝑆𝑆+log1𝛾𝛾 ≤ 𝛾𝛾
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Memory Hard Functions, Random 
Oracles, Graph Pebbling and 

Extractor Arguments

Jeremiah Blocki 

28



Motivation: Password Storage

29

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f584e
3db87aa72630a9a2
345c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Goal: Moderately Expensive Hash Function

Fast on PC and 
Expensive on ASIC?



https://password-hashing.net/

(2013-2015)

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…
There are two main versions of 
Argon2, Argon2i and Argon2d. 
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/


Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Goal: force attacker to lock up large amounts of memory for duration 
of computation
Expensive even on customized hardware



Memory Hard Function (MHF)
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Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input



Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input



Data-Independent Memory Hard Function 𝑓𝑓𝐺𝐺,𝐻𝐻

• H: 0,1 2𝑘𝑘 → 0,1 𝑘𝑘 (Random Oracle)
• DAG G                      (encodes data-dependencies)

• Maximum indegree:  𝛿𝛿 = O 1
• N = 2n nodes

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1



Evaluating an iMHF (pebbling)

1 2 3 4 51 3 4 5



1 2 3 4 5

P1 = {1}                 (data value L1 stored in memory)

Evaluating an iMHF (pebbling)



Evaluating an iMHF (pebbling)

1 2 3 4 5

P1 = {1}
P2 = {1,2}                   (data values L1 and L2 stored in memory)



Evaluating an iMHF (pebbling)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5



Evaluating an iMHF (pebbling)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}



Evaluating an iMHF (pebbling)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}



Measuring Pebbling Cost: Attempt 1

• Space × Time (ST)-Complexity

ST 𝐺𝐺 = min
𝑃𝑃

𝑡𝑡𝑃𝑃 × max
𝑖𝑖≤𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖
• Rich Theory

• Space-time tradeoffs 
• But not appropriate for password hashing

time

sp
ac

e

m

t

ST Cost



Amortization and Parallelism

• Problem: for parallel computation ST-complexity can scale badly in the number of 
evaluations of a function.

[AS15] ∃ function fn (consisting of n RO calls) such that: 𝑆𝑆𝑆𝑆 𝑓𝑓× 𝑛𝑛 = 𝑂𝑂(𝑆𝑆𝑆𝑆 𝑓𝑓 )

time

sp
ac

e S1

T1

ST1 = S1 × T1 ≈ S3 × T3 = ST3
S3

T3

cost of computing
f once

cost of computing
f three times



Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)  

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

• Guessing two passwords doubles the attackers cost
CC 𝐺𝐺,𝐺𝐺 = 2 × CC(𝐺𝐺)

Memory Used at Step i

Approximates 
Amortized Area x Time 
Complexity of iMHF



Measuring Pebbling Costs [AS15]

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

Memory Used at Step iApproximates 
Amortized Area x Time 
Complexity of iMHF Cumulative Memory Cost

iterations

sp
ac

e



Pebbling Example (CC)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}

CC 𝐺𝐺 ≤�
𝑖𝑖=1

5

𝑃𝑃𝑖𝑖

= 1 + 2 + 1 + 2 + 1
= 7



Desiderata

Find a DAG G on n nodes such that
1. Constant Indegree (𝛿𝛿 = 2)

• Running Time: 𝑛𝑛 𝛿𝛿 − 1 = 𝑛𝑛

2. CC(G) ≥ 𝑛𝑛2

𝜏𝜏
for some small value 𝜏𝜏. 

Maximize costs for fixed running time n 
(Users are impatient)



DAGs with Maximal CC(G)

• Challenge 1: Design a constant indegree DAG G maximizing CC(G)
• Depth-Robust Graphs are necessary [AB16] and sufficient [ABP17]
• Argon2i (PHC winner) is not depth-robust 

 CC G = o 𝑛𝑛1.767 ≪ 𝑛𝑛2 [AB16,AB17,ABP17,BZ17]
• Any DAG with constant indegree has CC G = 𝑂𝑂 𝑛𝑛2 log log𝑛𝑛 / log𝑛𝑛 at most
• Theoretical [ABP17] then practical [ABH17] construction of depth-robust graphs

 CC G = Ω 𝑛𝑛2/ log𝑛𝑛 [AB16,AB17,ABP17,BZ17]

• Open Problem 1: Construct G with CC G = Ω 𝑛𝑛2 log log𝑛𝑛 / log𝑛𝑛
• Conjecture: [BHKLXZ19] achieves this goal.

• Open Problem 2: Tighten constants in upper/lower bounds

53



Question: CC(G)  cumulative memory cost?

Bad Case: H(x,y)=x+y mod 2w  𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝑘𝑘𝐺𝐺 × 𝑥𝑥 e.g.,  𝑘𝑘𝐺𝐺 = 3 (above)   
𝑘𝑘𝐺𝐺 = 2𝑛𝑛−2 (complete)

Computing fG,H x is fast + requires minimal memory.
(even if pebbling cost CC(G) is large!) 

54

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥, 0)

1

Independent of input!



Question: CC(G)  cumulative memory cost?

Theorem [AS15]: (in parallel random oracle 
model) 
𝐴𝐴 𝑥𝑥 = 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 cmc A = Ω 𝑤𝑤 × 𝐶𝐶𝐶𝐶(𝐺𝐺)

55

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1

1
2

3
4

1



Random Oracle Model (PROM)

56

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

• Real World: H instantiated as cryptographic hash function (e.g., SHA3) 
of fixed length (no Merkle-Damgård)

• Model hash function H as a random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same 
response

• If x has not been queried, then the value of H(x) is 
uniform



Random Oracle Model: Prediction Game

Prediction Game: 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘 ← 𝐴𝐴𝐻𝐻(.) wins the prediction 
game if 
1. 𝑦𝑦1 = 𝐻𝐻 𝑥𝑥1 , … ,𝑦𝑦𝑘𝑘 = 𝐻𝐻 𝑥𝑥𝑘𝑘 and 
2. the inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 are all fresh i.e., A never queried 𝐻𝐻 𝑥𝑥𝑖𝑖

Fact 1: Any algorithm 𝐴𝐴𝐻𝐻(.) wins the prediction game with 
probability at most 2−𝑘𝑘𝑘𝑘 over the choice of 𝐻𝐻(. ).

Intuition: A never queries 𝐻𝐻 𝑥𝑥1 → can view 𝐻𝐻 𝑥𝑥1 as a (yet to be 
sampled) random string

57



Random Oracle Model: Prediction Game

Prediction Game: 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ← 𝐴𝐴𝐻𝐻(.) wins the prediction game if 
1. 𝑦𝑦1 = 𝐻𝐻 𝑥𝑥1 , … ,𝑦𝑦𝑘𝑘 = 𝐻𝐻 𝑥𝑥𝑘𝑘 and 
2. the inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 are all fresh i.e., A never queried 𝐻𝐻 𝑥𝑥𝑖𝑖

Fact 1: Any algorithm 𝐴𝐴𝐻𝐻(.) wins the prediction game with probability at most 
2−𝑘𝑘𝑘𝑘 over the choice of 𝐻𝐻(. ).

Fact 2 (Incompressibility of ROs): Any algorithm 𝐴𝐴𝐻𝐻 . (ℎ) given a s-bit hint h 
(which may depend on 𝐻𝐻 . ) wins the prediction game with probability at most 
2−𝑘𝑘𝑘𝑘+𝑠𝑠
Proof Intuition: Otherwise we can win without hint with probability > 2−𝑘𝑘𝑘𝑘

58
Reduction: Guess correct hint h with probability 2−𝑠𝑠 and run 𝐴𝐴𝐻𝐻 . (ℎ)



Parallel Random Oracle Model (PROM)

59

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

• PROM Algorithm 𝒜𝒜(x)
• Initial Input/State: 𝜎𝜎0 = 𝑥𝑥
• 𝜎𝜎1, 𝑞𝑞1 = 𝑥𝑥11, … , 𝑥𝑥𝑟𝑟1

1 ← 𝒜𝒜 𝜎𝜎0
• New State + Batch of Random Oracle Queries

• 𝑎𝑎1 = (𝐻𝐻(𝑥𝑥11), … ,𝐻𝐻(𝑥𝑥𝑟𝑟1
1 ))

• Answers to Random Oracle Queries

• 𝜎𝜎2, 𝑞𝑞2 = 𝑥𝑥12, … 𝑥𝑥𝑟𝑟2
2 ← 𝒜𝒜 𝜎𝜎1,𝑎𝑎1

• ….
• 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 = 𝑥𝑥1𝑖𝑖 , … 𝑥𝑥𝑟𝑟𝑖𝑖

𝑖𝑖 ← 𝒜𝒜 𝜎𝜎𝑖𝑖−1,𝑎𝑎𝑖𝑖−1
• ….
• 𝑦𝑦 ← 𝒜𝒜 𝜎𝜎𝑡𝑡,𝑎𝑎𝑡𝑡

One round of computation. 
1. 𝒜𝒜 receives prior answers 𝑎𝑎𝑖𝑖−1
2. 𝒜𝒜 performs arbitrary computation
3. 𝒜𝒜 outputs 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 new state + new 

queries 



Parallel Random Oracle Model (PROM)

60

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

• PROM Algorithm 𝒜𝒜(x)
• Fixing 𝒜𝒜, x and H we get an execution trace

Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1
𝑡𝑡

• Cumulative Memory Cost of Execution Trace

cmc Trace𝒜𝒜,H x = �
𝑖𝑖=1

𝑡𝑡

𝜎𝜎𝑖𝑖 + |𝑎𝑎𝑖𝑖|

• Cumulative Memory Cost of a Function
cmc 𝑓𝑓𝐺𝐺,𝐻𝐻 = min

𝒜𝒜,x
𝔼𝔼𝐻𝐻 cmc Trace𝒜𝒜,H x

Min over inputs x and PROM 
algorithms 𝒜𝒜 evaluating 𝑓𝑓𝐺𝐺,𝐻𝐻

Expectation over selection of 
random oracle



Collision Problem

61

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

Collision Problem: Suppose that we are asked to find 𝑥𝑥 ≠ 𝑥𝑥′
s.t. 𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥𝑥

What is the probability we can succeed given q queries to the 
random oracle?

Answer: ≤ 𝑞𝑞22−𝑤𝑤

Explanation: Let 𝒙𝒙𝟏𝟏, … , 𝒙𝒙𝒒𝒒 be the queries  we make  

𝐏𝐏𝐏𝐏 𝐻𝐻 𝑥𝑥𝑖𝑖+1 ∈ 𝐻𝐻 𝑥𝑥1 , … ,𝐻𝐻 𝑥𝑥𝑖𝑖 ≤ 𝑖𝑖 × 2−𝑤𝑤

∴ 𝐏𝐏𝐏𝐏 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≤�
𝒊𝒊≤𝒒𝒒

𝑖𝑖 × 2−𝑤𝑤 (Union Bound over Each Round)

(Prob Collision at time i+1)



Label Distinctness

62

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

Label Distinctness: Suppose we are given a directed acyclic graph G on n 
nodes V={1,…,n} with indegree 2 and such that each node v > 2 has two 
parents v-1 and r(v)<v-1. Let  

Let 𝑥𝑥 = 𝐿𝐿0 be the initial input (w-bits) and define labels 𝐿𝐿1 =
𝐻𝐻 𝑥𝑥0, 0𝑤𝑤 , 𝐿𝐿2 = 𝐻𝐻 𝐿𝐿1, 0𝑤𝑤 ,

𝐿𝐿3 = 𝐻𝐻 𝐿𝐿2, 𝐿𝐿1
…

𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)
…

𝐿𝐿𝑛𝑛 = 𝐻𝐻 𝐿𝐿𝑛𝑛−1, 𝐿𝐿𝑟𝑟(𝑛𝑛)

Question: What is the probability that two labels collide?
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…
𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)

…

Question: What is the probability that two labels collide?

Let 𝐔𝐔𝒊𝒊 be the event that labels 𝐿𝐿1, … , 𝐿𝐿𝑖𝑖 are all distinct

Pr 𝐔𝐔𝒊𝒊|𝐔𝐔𝒊𝒊−𝟏𝟏 = Pr 𝐻𝐻 𝐿𝐿𝑖𝑖−1, 𝐿𝐿𝑟𝑟(𝑖𝑖) ∈ 𝐿𝐿1, … , 𝐿𝐿𝑖𝑖−1 |𝐔𝐔𝒊𝒊−𝟏𝟏 ≤ (𝑖𝑖 − 1)2−𝑤𝑤

𝐿𝐿𝑖𝑖−1 unique  fresh query! 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵!
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…
𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)

…

Question: What is the probability that two labels collide?

Let 𝐔𝐔𝒊𝒊 be the event that labels 𝐿𝐿1, … , 𝐿𝐿𝑖𝑖 are all distinct

Pr 𝐔𝐔𝒊𝒊|𝐔𝐔𝒊𝒊−𝟏𝟏 ≤ (𝑖𝑖 − 1)2−𝑤𝑤

Pr 𝐔𝐔𝒏𝒏 ≤�
𝑖𝑖≤𝑛𝑛

𝑖𝑖 − 1 2−𝑤𝑤 ≤ 𝑛𝑛22−𝑤𝑤
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x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

…
𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)

Question: Suppose we can make at most q queries to the random 
oracle. What is the probability we find some z s.t. 𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝑧𝑧 but  z ≠
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝐯𝐯) for some node v?

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝒗𝒗 = 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)
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x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

Question: Suppose we can make at most q queries to the random 
oracle. What is the probability we find some z s.t. 𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝑧𝑧 but  z ≠
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝐯𝐯) for some node v?

Answer: at most 𝑛𝑛𝑞𝑞𝑞−𝑤𝑤

Let 𝑧𝑧𝑖𝑖 be ith query to random oracle such that 𝑧𝑧𝑖𝑖 ≠ 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝒗𝒗 for any 
node 𝒗𝒗 ≤ 𝒏𝒏 then we have

𝐏𝐏𝐏𝐏 𝐻𝐻 𝑧𝑧𝑖𝑖 ∈ 𝐿𝐿1, … , 𝐿𝐿𝑛𝑛 ≤ 𝑛𝑛2−𝑤𝑤

𝐏𝐏𝐏𝐏 ∃𝒊𝒊 ≤ 𝑞𝑞.𝐻𝐻 𝑧𝑧𝑖𝑖 ∈ 𝐿𝐿1, … , 𝐿𝐿𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛2−𝑤𝑤



Ex Post Facto Pebbling

• Fixing 𝒜𝒜, x and H we get an execution trace
Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1

𝑡𝑡

• Track 𝐿𝐿𝑣𝑣 for each node v
• Note rounds where 𝐿𝐿𝑣𝑣 appear as the input to random oracle query?
• Note rounds does 𝐿𝐿𝑣𝑣 appear as an the output to a random oracle query?
• Define Need(v,i)=1 if and only if the next time (after round i) label 𝐿𝐿𝑣𝑣 appears 

it is as an input; otherwise Need(v,i)=0

• Pi = v ∶ Need v, i = 1
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I0 0 I 0 0
Rounds where v occurs as output 0 or input I t0

Need(v,i)=0

I

Need(v,i)=1



Ex Post Facto Pebbling

• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?
• Order(v) be the bad event 𝐿𝐿𝑣𝑣 is used as an RO input before it has 

appeared as an output
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I0 0 I 0 0
Rounds where v occurs as output 0 or input I t0

I

Expected order

I 0 I 0 0

t0

I

Unexpected order

Rounds where v occurs as output 0 or input I 



Ex Post Facto Pebbling
• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random 
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with 
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Proof Sketch: 
Observation 1: If the bad event Order(v) never occurs for any node v 
then the pebbling is legal (follows from definition of Need(v,i))
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Ex Post Facto Pebbling
• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random 
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with 
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Proof Sketch: 
Observation 2: If 𝐿𝐿𝑣𝑣 has not yet appeared as output then the 
probability a particular query includes 𝐿𝐿𝑣𝑣 as input early is at most 2−𝑤𝑤

Pr Order v ≤ 𝑞𝑞2−𝑤𝑤 (Union Bound over all q queries)
(𝐿𝐿𝑣𝑣 can be viewed as random w-bit string before it first appears) 
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Ex Post Facto Pebbling

• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random 
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with 
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Proof Sketch: Let Order(v) be the bad event 𝐿𝐿𝑣𝑣 is used as an RO input 
before it has appeared as an output. Union Bounding 

Pr ∃𝑣𝑣 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑣𝑣) ≤ nPr 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑣𝑣 ≤ 𝑛𝑛𝑛𝑛2−𝑤𝑤

(𝐿𝐿𝑣𝑣 can be viewed as random w-bit string before it first appears) 
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Ex Post Facto Pebbling

• Fixing 𝒜𝒜, x and H we get an execution trace
Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1

𝑡𝑡

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random 
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with 
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Observation: If P is legal then CC(P) ≥ 𝐶𝐶𝐶𝐶(𝐺𝐺)

(definition of 𝐶𝐶𝐶𝐶(𝐺𝐺) as best pebbling of G) 
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Extractor Argument

• Fixing 𝒜𝒜, x and H we get an execution trace
Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1

𝑡𝑡

Observation: CC(P) ≥ 𝐶𝐶𝐶𝐶(𝐺𝐺) (definition of 𝐶𝐶𝐶𝐶(𝐺𝐺)) 

Claim 2: For each round i we have 𝜎𝜎𝑖𝑖 + 𝑎𝑎𝑖𝑖−1 ≥ w 𝑃𝑃𝑖𝑖 /2
Proof Idea: Extractor argument. Suppose for contradiction that 𝜎𝜎𝑖𝑖 +
𝑎𝑎𝑖𝑖−1 < w 𝑃𝑃𝑖𝑖 /2. 

We will build an extractor that outputs 𝑃𝑃𝑖𝑖 labels given a hint of size 
w 𝑃𝑃𝑖𝑖 /2 + 𝑜𝑜(w 𝑃𝑃𝑖𝑖 ). This yields a contradiction of incompressibility!
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Extractor Hint
Claim 2: For each round i we have 𝜎𝜎𝑖𝑖 + |𝑎𝑎𝑖𝑖−1| ≥ w 𝑃𝑃𝑖𝑖 /2
Hint: h
• Initial State: 𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖−1 (used to simulate 𝒜𝒜 at most w 𝑃𝑃𝑖𝑖 /2 bits)
• Encoding of 𝑃𝑃𝑖𝑖 ( 𝑃𝑃𝑖𝑖 log𝑛𝑛 bits)
• For each v ∈ 𝑃𝑃𝑖𝑖 index 𝑖𝑖𝑣𝑣 of next random oracle query where label 𝐿𝐿𝑣𝑣 appears as input        

( 𝑃𝑃𝑖𝑖 log 𝑞𝑞 bits)
• For each v ∈ 𝑃𝑃𝑖𝑖 index 𝑜𝑜𝑣𝑣 of next random oracle query where label 𝐿𝐿𝑣𝑣 appears as output      

( 𝑃𝑃𝑖𝑖 log 𝑞𝑞 bits)
• Total Hint Length: w 𝑃𝑃𝑖𝑖 /2 + 𝑜𝑜(w 𝑃𝑃𝑡𝑡 ). 

Extractor argument. Suppose for contradiction that 𝜎𝜎𝑖𝑖 < w 𝑃𝑃𝑡𝑡 /2. 
We will build an extractor that outputs 𝑃𝑃𝑡𝑡 labels given a hint of size 𝜎𝜎𝑖𝑖 + 𝑜𝑜(w 𝑃𝑃𝑡𝑡 ). This yields a 
contradiction of incompressibility!
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Extractor: Simulating Attacker

75

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle 

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖−1)

𝜎𝜎𝑖𝑖+1, 𝑞𝑞𝑖𝑖 ,Pi Label Input 
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 ??? (i+1,2) (i+2,1)

… …

𝑎𝑎𝑖𝑖 = 𝐻𝐻 𝑞𝑞𝑖𝑖[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖[2] , … ,



Extractor: Simulating Attacker
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Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle 

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+1,𝑎𝑎𝑖𝑖)

𝜎𝜎𝑖𝑖+2, 𝑞𝑞𝒊𝒊+𝟏𝟏,Pi Label Input 
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 ??? (i+1,2) (i+2,1)

… …
Extract! 
𝑞𝑞𝑖𝑖+1[2] contains 𝑳𝑳𝒗𝒗𝟐𝟐



Extractor: Simulating Attacker
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Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle 

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+1,𝑎𝑎𝑖𝑖)

𝜎𝜎𝑖𝑖+2, 𝑞𝑞𝑖𝑖+1,Pi Label Input 
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) (i+2,1)

… …

𝑎𝑎𝑖𝑖+1 = 𝐻𝐻 𝑞𝑞𝑖𝑖+1[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖+1[2] , … ,

Extract! 
𝑞𝑞𝑖𝑖+1[2] contains 𝑳𝑳𝒗𝒗𝟐𝟐



Extractor: Simulating Attacker
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Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle 

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+2,𝑎𝑎𝑖𝑖+1)

𝜎𝜎𝑖𝑖+3, 𝑞𝑞𝑖𝑖+2Pi Label Input 
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) (i+2,1)

… …
Extract! H 𝑞𝑞𝑖𝑖+2 4 = 𝑳𝑳𝒗𝒗𝟏𝟏



Extractor: Simulating Attacker
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Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle 

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+2,𝑎𝑎𝑖𝑖+1)

𝜎𝜎𝑖𝑖+3, 𝑞𝑞𝑖𝑖+2Pi Label Input 
Query

Output
Query

v1 𝑳𝑳𝒗𝒗𝟏𝟏 (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) (i+2,1)

… …
Danger! H 𝑞𝑞𝑖𝑖+2 1 = 𝑳𝑳𝒗𝒗𝟐𝟐
Do not submit this query!

𝑎𝑎𝑖𝑖+2 = 𝐻𝐻 𝑞𝑞𝑖𝑖+2[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖+2[2] , … ,



Extractor: Simulating Attacker
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Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle 

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+2,𝑎𝑎𝑖𝑖+1)

𝜎𝜎𝑖𝑖+3, 𝑞𝑞𝑖𝑖+2Pi Label Input 
Query

Output of
Query

v1 𝑳𝑳𝒗𝒗𝟏𝟏 (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) 𝑞𝑞𝑖𝑖+2 1

… …

𝑎𝑎𝑖𝑖+2 = 𝑳𝑳𝒗𝒗𝟐𝟐 ,𝐻𝐻 𝑞𝑞𝑖𝑖+2[2] , … ,

Danger! H 𝑞𝑞𝑖𝑖+2 1 = 𝑳𝑳𝒗𝒗𝟐𝟐
Do not submit this query!



Extractor: Simulating Attacker
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Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle 

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+3,𝑎𝑎𝑖𝑖+2)

𝜎𝜎𝑖𝑖+4, 𝑞𝑞𝑖𝑖+3Pi Label Input 
Query

Output of
Query

v1 𝑳𝑳𝒗𝒗𝟏𝟏 (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) 𝑞𝑞𝑖𝑖+2 1

… …

𝑎𝑎𝑖𝑖+3 = 𝐻𝐻 𝑞𝑞𝑖𝑖+3[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖+3[2] , … ,

𝑒𝑒𝑡𝑡𝑡𝑡…



Extractor: Simulating Attacker
Claim 2: For each round i we have 𝜎𝜎𝑖𝑖 ≥ w 𝑃𝑃𝑖𝑖 /2
Hint: 
• simulate 𝒜𝒜 from initial state: 𝜎𝜎𝑖𝑖

• Forward random oracle queries to H(. ) (* One Exception Below *)
• For each v ∈ 𝑃𝑃𝑖𝑖 wait for first query where 𝐿𝐿𝑣𝑣 appears as input and record 
𝐿𝐿𝑣𝑣 (by definition of 𝑃𝑃𝑖𝑖 this occurs before 𝐿𝐿𝑣𝑣 appears as output) 

• For each v ∈ 𝑃𝑃𝑖𝑖 wait for first query 𝑜𝑜𝑣𝑣 which produces output 𝐿𝐿𝑣𝑣
• Do not forward this query to H(. )
• Simply record the response 𝐿𝐿𝑣𝑣
• Technical Note: Extractor can simply run naïve evaluation algorithm for𝑓𝑓𝐺𝐺,𝐻𝐻(𝑥𝑥) after 

simulating 𝒜𝒜 to ensure that for each v ∈ 𝑃𝑃𝑖𝑖 there is some round where 𝐿𝐿𝑣𝑣 is output
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Extractor: 
• Outputs 𝐿𝐿𝑣𝑣 for each v ∈ 𝑃𝑃𝑖𝑖
• Generate remaining labels 𝐿𝐿𝑣𝑣 for each v ∉ 𝑃𝑃𝑖𝑖

• Can be done querying random oracle at 𝑥𝑥𝑣𝑣 s.t. 𝐻𝐻 𝑥𝑥𝑣𝑣 = 𝐿𝐿𝑣𝑣
• Yields k ``fresh” input output pairs (𝑥𝑥𝑣𝑣, 𝐿𝐿𝑣𝑣) for each v ∈ 𝑃𝑃𝑖𝑖 as long as 

all labels 𝐿𝐿𝑣𝑣 are distinct 
Pr[∃ 𝑢𝑢, 𝑣𝑣 . 𝐿𝐿𝑣𝑣 = 𝐿𝐿𝑢𝑢] ≤ 𝑛𝑛22−𝑤𝑤
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1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1



Extractor: Yields k = 𝑃𝑃𝑖𝑖 ``fresh” input output pairs (𝑥𝑥𝑣𝑣, 𝐿𝐿𝑣𝑣) for each v ∈ 𝑃𝑃𝑖𝑖
as long as all labels 𝐿𝐿𝑣𝑣 are distinct and pebbling is legal

Pr[∃ 𝑢𝑢, 𝑣𝑣 . 𝐿𝐿𝑣𝑣 = 𝐿𝐿𝑢𝑢] ≤ 𝑛𝑛22−𝑤𝑤

→ Pr 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 1 − 𝑛𝑛22−𝑤𝑤 − 𝑞𝑞𝑞𝑞2−𝑤𝑤

Contradiction! Extractor can succeed with probability at most 2−𝑘𝑘𝑘𝑘/2+𝑜𝑜(𝑘𝑘𝑘𝑘)
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1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1



Reflection: Extractor Argument

• What properties of the random oracle did we use?

• Simulatability/Delayed Sampling: 
• Can view H(x) as uniformly random string that is yet to be sampled

• (until x is actually queried)
• used to analyze the probability that a label Lv appears out of order (also collisions)

• Extractability of Queries:
• When attacker submits random oracle query the extractor gets to see the 

query (and the response)
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Quantum Random Oracle Model

• Similar to classical random oracle model except  that input is an 
entangled quantum state

�
𝑥𝑥

𝛼𝛼𝑥𝑥| ⟩𝑥𝑥,𝑦𝑦 →
𝐻𝐻
�
𝑥𝑥

𝛼𝛼𝑥𝑥| ⟩𝑥𝑥,𝑦𝑦⨁𝐻𝐻(𝑥𝑥)

• Realistic model for any realization of the random oracle e.g., can 
implement SHA3 as a quantum circuit

• Challenge: extractor needs to view random oracle queries
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Evaluating an iMHF (pebbling)

Pebbling Rules :  𝑃𝑃=P1,…,Pt⊂ 𝑉𝑉 s.t.
• Pi+1⊂ Pi ∪ 𝑥𝑥 ∈ 𝑉𝑉 parents 𝑥𝑥 ⊂ Pi+1 (need dependent values)
• n∈ Pt                                                                                           (must finish and output Ln)

1
2

3

4 Output: L4Input:
pwd, salt

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1



Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)  

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

• Guessing two passwords doubles the attackers cost
CC 𝐺𝐺,𝐺𝐺 = 2 × CC(𝐺𝐺)

Memory Used at Step i

Approximates 
Amortized Area x Time 
Complexity of iMHF



Naïve: Pebbling Strategy

1 2 3 4 51 3 4 5



Naïve: Pebbling Strategy

1 2 3 4 5

P1 = {1}



Naïve: Pebbling Strategy

1 2 3 4 5

P1 = {1}
P2 = {1,2}



Naïve: Pebbling Strategy

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}

1 2 3 4 5



Naïve: Pebbling Strategy

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}

1 2 3 4 5

P4 = {1, 2, 3, 4}



Naïve: Pebbling Strategy

1 2 3 4 5

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}
P4 = {1, 2, 3, 4}
P5 = {1, 2, 3, 4, 5}



Naïve: Pebbling Strategy  (CC)

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}

1 2 3 4 5

P4 = {1,2, 3,4}
P5 = {1,2,3,4,5}

CC 𝐺𝐺 ≤�
𝑖𝑖=1

5

𝑃𝑃𝑖𝑖

= 1 + 2 + 3 + 4 + 5
= 15



Naïve Pebbling Algorithms

• Naïve (Pebble in Topological Order)
• Never discard pebbles
• Legal Pebbling Strategy for any DAG!
• Pebbling Time: n
• Sequential: Place one new pebble on the graph in each round

Theorem: Any DAG G has  𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ ∑𝑖𝑖≤𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

Proof: Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 ? 



Improved Pebbling
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Improved Pebbling

1 2 3 4 5

P1 = {1}



Improved Pebbling

1 2 3 4 5

P1 = {1}
P2 = {1,2}



Improved Pebbling

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5



Improved Pebbling

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}



Improved Pebbling

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}



Graphs with High CC

Theorem: Any DAG G has  𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ ∑𝑖𝑖≤𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

Proof: Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 ? 

Claim: The complete DAG has 𝐶𝐶𝐶𝐶 𝐺𝐺 ≥ ∑𝑖𝑖≤𝑛𝑛−1 𝑖𝑖 = 𝑛𝑛 𝑛𝑛−1
2

= Ω 𝑛𝑛2 ?

Proof: Consider the round immediately before we first place a pebble on 
node i+1. We must have had pebbles on all of the nodes {1,…,i}.

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 and low indegree? 



Why do we care about indegree?
In practice the random oracle is instantiated with a function 𝑯𝑯: 𝟎𝟎,𝟏𝟏 𝟐𝟐𝝀𝝀 → 𝟎𝟎,𝟏𝟏 𝝀𝝀

Label of node v is obtained by hashing labels of v’s parents.

Node v has two parents (u and w)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘) One oracle to H used to compute label 

Node v has three parents (u, w, x)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑯𝑯 𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘 ,𝑳𝑳𝒙𝒙) Two oracle queries to H to 
compute label

Node v has four parents (u, w, x, y)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑯𝑯(𝑯𝑯 𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘 ,𝑳𝑳𝒙𝒙),𝑳𝑳𝒚𝒚) Three oracle queries to H 
to compute label

Node v has k parents  k-1 oracle queries to H to compute label

Running time to evaluate 𝒇𝒇𝑮𝑮,𝑯𝑯 is proportional to 𝒏𝒏 × 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝑮𝑮)



Desiderata

Find a DAG G on n nodes such that
1. Constant Indegree (𝛿𝛿 = 2)

• Running Time: 𝑛𝑛 𝛿𝛿 − 1 = 𝑛𝑛

2. CC(G) ≥ 𝑛𝑛2

𝜏𝜏
for some small value 𝜏𝜏. 

Maximize costs for fixed running time n 
(Users are impatient)



Outline

• Motivation
• Data Independent Memory Hard Functions (iMHFs)
• Our Attacks

• General Attack on Non Depth Robust DAGs
• Existing iMHFs are not Depth Robust
• Ideal iMHFs don’t exist

• Subsequent Results (Depth-Robustness is Sufficient)
• Open Questions



Depth-Robustness: A Necessary Property



Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible



Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible



Attacking (e,d)-reducible DAGs

• Input: |S| ≤e such that depth(G-S) = d, g > d

• Light Phase (g rounds): Discard most pebbles!
• Goal: Pebble the next g nodes in g (sequential) steps
• Low Memory (only keep pebbles on S and on parents of new nodes)
• Lasts a ``long” time

• Balloon Phase (d rounds): Greedily Recover Missing Pebbles
• Goal: Recover needed pebbles for upcoming light phase
• Expensive, but quick (at most d steps in parallel).



Attacking (e,d)-reducible DAGs



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑑𝑑 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Upper bounds pebbles
on nodes x ∈ 𝑆𝑆, where    

𝑆𝑆 = 𝑒𝑒
depth(G-S) ≤ 𝑑𝑑

#pebbling rounds



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Maintain pebbles on parents of next 
g nodes to be pebbled. 

#pebbling rounds



Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

#balloon phases

Max #pebbles on G
In each round of balloon phase

Length of a balloon phase



Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Set 𝑔𝑔 = 𝑛𝑛𝑛𝑛

ER 𝐴𝐴 = O 𝑒𝑒𝑒𝑒 + 𝑛𝑛3𝑑𝑑 .

Main Theorem

In particular, ER 𝐴𝐴 = o 𝑛𝑛2 for e,d=o(n).



Question

Are existing iMHF candidates based on depth-
robust DAGs?



iMHF Candidates

• Catena [FLW15]
• Special Recognition at Password Hashing Competition
• Two Variants: Dragonfly and Double-Butterfly
• Security proofs in sequential space-time model

• Balloon Hashing [CBS16]
• Newer proposal (three variants in original proposal)

• Argon2  [BDK15]
• Winner of the Password Hashing Competition
• Argon2i (data-independent mode) is recommended for Password Hashing

• This Talk: Focus on Argon2i-A (version from Password Hashing Competition)
• Attack ideas do extend to Argon2i-B (latest version)



Attack Outline

• Show that any “layered DAG” is reducible
• Note: Catena DAGs are layered DAGs

• Show that an Argon2i DAG is almost a “layered DAG.”
• Turn Argon2i into layered DAG by deleting a few nodes
• Hence, an Argon2i DAG is also reducible.



Catena

• Catena Bit Reversal DAG (BRG𝜆𝜆
𝑛𝑛)

• 𝜆𝜆-layers of nodes (𝜆𝜆 ≤ 5)
• Edges between layers correspond to the bit-reversal operation
• Theorem[LT82]: sST(BRG1𝑛𝑛)= Ω 𝑛𝑛2

• Catena Butterfly (DBG𝜆𝜆
𝑛𝑛)

• 𝜆𝜆 = 𝑂𝑂(log𝑛𝑛)-layers of nodes
• Edges between layers correspond to FFT
• DBG𝜆𝜆

𝑛𝑛 is a “super-concentrator.”

• Theorem[LT82] => sST(BRG1𝑛𝑛)= Ω 𝑛𝑛2

log(𝑛𝑛)



𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…



𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…



𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…

Disallowed! All edges must go to a higher layer (except for (i,i+1))



Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered 
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.   

Proof: Let 𝐒𝐒 = 𝒊𝒊 × 𝒏𝒏𝟏𝟏/𝟑𝟑 𝒊𝒊 ≤ 𝒏𝒏𝟐𝟐/𝟑𝟑 any path p can spend at most 𝑛𝑛1/3

steps on layer i.

1 2 𝑛𝑛1/3
𝑛𝑛

𝜆𝜆 + 1
Layer 0… … 2𝑛𝑛1/3 …

𝑛𝑛1/3 𝑛𝑛1/3



Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered 
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.   

Proof: Let 𝐒𝐒 = 𝒊𝒊 × 𝒏𝒏𝟏𝟏/𝟑𝟑 𝒊𝒊 ≤ 𝒏𝒏𝟐𝟐/𝟑𝟑 any path p can spend at most 𝑛𝑛1/3

steps on layer i.

1 2 𝑛𝑛1/3
𝑛𝑛

𝜆𝜆 + 1
Layer 0… … 2𝑛𝑛1/3 …

𝑛𝑛1/3 𝑛𝑛1/3



Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered 
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.   

Corollary:ER 𝐺𝐺 ≤ 𝑂𝑂 𝜆𝜆𝑛𝑛5/3 .

Attack Quality: QualityR 𝐴𝐴 = Ω 𝑛𝑛1/3

𝜆𝜆
.



Previous Attacks on Catena

• [AS15] CC(BRG1𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.5

• Gap between cumulative cost 𝑂𝑂 𝑛𝑛1.5 and sequential space-time cost Ω 𝑛𝑛2

• [BK15] ST(BRG𝜆𝜆
𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.8 for 𝜆𝜆 > 1.

• Our result                CC(BRG𝜆𝜆
𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.67 *

* Applies to all Catena variants.



Argon2i [BDK]

• Argon2: Winner of the password hashing competition[2015]

• Authors recommend Argon2i variant (data-independent) for 
password hashing. 



Argon2i

1 2 3 4 i… n



Argon2i

1 2 3 4 i… n

random predecessor r(i) < i

Indegree: 𝛿𝛿 = 2



Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛……
…



Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: E 𝑆𝑆2 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛

……
…



Argon2i is a layered DAG (almost) 
Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

Pr 𝑣𝑣 ∈ 𝑆𝑆2|𝑣𝑣 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 ≤
1
𝑖𝑖 𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 ∩ 𝑆𝑆2 ≤

𝑛𝑛3/4

𝑖𝑖

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛……
…



Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

+4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: E 𝑆𝑆2 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛

……



𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅: E 𝑆𝑆 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛 and depth(G-S)≤ 𝑛𝑛.

Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……
…



𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: G is (2𝑛𝑛3/4 log𝑛𝑛, 𝑛𝑛)-reducible with high probability.

Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……
…



Corollary: ER 𝐺𝐺 ≤ 𝑂𝑂 𝑛𝑛7/4 log𝑛𝑛 .

Argon2i is a layered DAG (almost) 

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……

QualityR 𝐴𝐴 ≤ Ω 𝑛𝑛1/4

log 𝑛𝑛
.

…



Ideal iMHFs Don’t Exist

• Thm: If G has n nodes and constant in-degree δ=O(1) then G is :

𝑂𝑂 𝑛𝑛 log log 𝑛𝑛
log 𝑛𝑛

, 𝑛𝑛
log2 𝑛𝑛

-reducible.

• Thm: If G has n nodes and constant in-degree then:

∀ε > 0 ER 𝐺𝐺 = 𝑜𝑜
𝑛𝑛2

log(𝑛𝑛)1−ε
+ 𝑛𝑛𝑛𝑛



Practical Consequences (R = 3,000)





Drama: Are the attacks `Practical’

• Argon2i team: No, at least for realistic parameter ranges.

• Recent: Argon2i-B submitted to IRTF (Internet Research 
Task Force) for standardization.

• New Result [AB16b]: 
• New heuristics to reduce overhead by constant factor
• Simulate the attack on real instances



New Simulation Results                        [AB16b] 

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown 
line). 

Pessimistic Argon 2i-B 
parameter

Parameter setting could easily be 
chosen when following Argon2i-B 
guidelines

…



Outline

• Motivation
• Data Independent Memory Hard Functions (iMHFs)
• Attacks
• Constructing iMHFs (New!)

• Depth-Robustness is sufficient

• Conclusions and Open Questions



Depth-Robustness is Sufficient! [ABP16]

Implications: There exists a constant indegree graph G with 

CC G ≥ Ω
𝑛𝑛2

log𝑛𝑛
.

Previous Best [AS15]: Ω 𝑛𝑛2

log10 𝑛𝑛

[AB16]: For all constant indegree graphs CC G = 𝑂𝑂 𝑛𝑛2 log log 𝑛𝑛
log 𝑛𝑛

.

𝐊𝐊𝐊𝐊𝐊𝐊 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: Let G=(V,E) be (e,d)-depth robust then CC(G)≥ 𝑒𝑒𝑒𝑒.



Depth-Robustness is Sufficient! [ABP16]
Proof: Let P1,…Pt denote an (optimal) pebbling of G. For 0< i < d define

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯
one of the sets Si has size at most CC(G)/d. Now we claim that 

d ≥ depth(G-Si)
because any path in G-Si must have been completely pebbled at some 
point. Thus, it must have been pebbled entirely during some interval of 
length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G)≥ 𝑒𝑒𝑒𝑒.



Proof by Picture

P1, P2,…,Pi-1,Pi,Pi+1,…,Pi+d-1,Pi+d,Pi+d+1,…,Pi+2d-1,Pi+2d,….

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯

d rounds d rounds

Claim: Si ≥ 𝑒𝑒



Implication

𝐶𝐶𝐶𝐶(𝐺𝐺) ≥�
𝑡𝑡

𝑃𝑃𝑡𝑡 ≥�
𝑖𝑖=1

𝑑𝑑

𝑆𝑆𝑖𝑖 ≥�
𝑖𝑖=1

𝑑𝑑

𝑒𝑒 ≥ 𝑒𝑒𝑒𝑒

Claim: Si ≥ 𝑒𝑒



Contradiction by Picture

Path: W in G-Si

21 3

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖

d-1 d

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

2 3

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

1 d-1 d

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

… d-1 d1

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

Step i+2: W-{1,2} contains no pebbles

2

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

d1

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

Step i+d-1: W-{1,…,d-1} contains no pebbles

2

Step i+2: W-{1,2} contains no pebbles

... d-1

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯



Contradiction by Picture

Path: W in G-Si

d1

Step i+d: W contains no pebbles since 𝑃𝑃𝑖𝑖+𝑑𝑑 ⊂ 𝑆𝑆𝑖𝑖

Step i+d-1: W-{1,…,d-1} contains no pebbles

2 ... d-1

Contradiction!
d was never pebbled.

∴ 𝑆𝑆𝑖𝑖 ≥ 𝑒𝑒



Positive Result: Consequences
𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 [𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀]: Let G=(V,E) be (e,d)-depth robust then ER 𝐺𝐺 ≥ 𝑒𝑒𝑒𝑒.

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓[𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄]: There is an Ω 𝑛𝑛 ,Ω 𝑛𝑛 -depth robust DAG G with 
indegree 𝛿𝛿 = 𝑂𝑂 log𝑛𝑛 . 

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 There is a DAG G with maximum indegree 𝛿𝛿 = 2
and ER 𝐺𝐺 = Ω 𝑛𝑛2

log 𝑛𝑛
.  Furthermore, there is a sequential pebbling 

algorithm N with cost ER 𝑁𝑁 = 𝑂𝑂 𝑛𝑛2

log 𝑛𝑛
.



More New Results

MHF Upper Bound Lower Bound

Argon2i-A �𝑂𝑂 𝑛𝑛1.71 [ABP16]
�𝑂𝑂 𝑛𝑛1.75 [This work]

�Ω 𝑛𝑛1.66 [ABP16]

Catena �𝑂𝑂 𝑛𝑛1.618 [ABP16]
𝑂𝑂 𝑛𝑛1.67 [This work]

�Ω 𝑛𝑛1.5 [ABP16]

SCRYPT
(data dependent)

O(n2)   [Naïve, P12] Ω(n2) [ACPRT16]

Idea: Apply our attack recursively during balloon phases



(e,d)-reducible curve for Argon2i-A

e

De
pt

h 
(d

)

Reducible

Depth Robust

Gap: O(polylog(n))

𝑒𝑒 = 𝑛𝑛0.75 log𝑛𝑛, d = 𝑛𝑛

𝑒𝑒 = 𝑛𝑛0.9 log𝑛𝑛, d = 𝑛𝑛0.2



Recursive Attack

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒𝑒𝑒 +
𝑛𝑛
𝑒𝑒
𝑛𝑛𝑛𝑛

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒𝑒𝑒 +
𝑛𝑛
𝑒𝑒
𝐶𝐶𝐶𝐶(𝐺𝐺′)

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒1𝑛𝑛 +
𝑛𝑛
𝑒𝑒1

𝑒𝑒2𝑑𝑑1 +
𝑛𝑛
𝑒𝑒2
𝑑𝑑2𝑛𝑛

….



Conclusions

• Depth-robustness is a necessary  and sufficient for secure iMHFs
• [AB16] [ABP16]

• Big Challenge: Improved Constructions of Depth-Robust Graphs
• We already have constructions in theory [EGS77, PR80, …]
• But constants matter!



More Open Questions

• Computational Complexity of Pebbling
• NP-Hard to determine CC(G)               [BZ16]
• Hardness of Approximation?

• What is CC(Argon2i-B)?
• Upper Bound: O(n1.8)                            [AB16b]
• Recursive attack: O(n1.77)    [BZ16b]+[ABP16]
• Lower Bound: Ω(n1.66) [BZ16b]

Large Gap Remains



Thanks for Listening
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