Homework 1 Due Tonight

Advanced Cryptography CS 655

Week 5:

- Preprocessing: Bit-Fixing Model to Auxiliary Input
- Compression Arguments
- Memory Hard Functions and Pebbling

Recap: Auxiliary-Input Attacker Model

- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Random Oracle Version:
- Offline attacker A_1 is unbounded and outputs an S-bit hint for online attacker A_2 after viewing entire truth table H(.)
- A_2 will try to win security games using this hint
- (S,T,p)-attacker
 - A₁ outputs a S-bit hint
 - A₂ makes at most T random oracle queries
 - A_2^- may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.
- $((S, T, p), \varepsilon)$ -security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Recap: Bit-Fixing Model

- Auxiliary-Input Attacker Model $A = (A_1, A_2)$
- Random Oracle Version:
- Offline attacker A₁ fixes output of random oracle H(.) at P locations and then outputs a S-bit hint.
- A_2 initially knows nothing about remaining unfixed values i.e., H(x) picked randomly for $x \notin P$ after A_1 generates hint
- (P,T,p)-attacker
 - A₁ fixes H on at most P locations and outputs S-bit hint
 - A₂ makes at most T random oracle queries
 - A₂ may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p.
- $((S, T, p), \varepsilon)$ -security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Bit-Fixing Model (Unruh)

- Pro: Much easier to prove lower bounds in Bit-Fixing Model
- Con: Bit-Fixing model is not a compelling model for pre-processing attacks
- Usage: Lower bound in bit-fixing model → Lower bound in Auxilliary-Input Model
- This approach yields tight lower-bounds in the Auxilliary-Input Model for some applications 😳
- Other applications require a different approach (e.g., compression)

Typical Relationship: BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma > 0$, if an application G is $((S,T,p),\varepsilon')$ -secure in the BF-RO(P)-model, then it is $((S,T,p),\varepsilon)$ -secure in the AI-RO-model, for

$$\varepsilon \leq \varepsilon' + \frac{2(S + \log \gamma^{-1}) \cdot T_G^{\text{comb}}}{P} + 2\gamma$$
,

where T_G^{comb} is the combined query complexity corresponding to G.

Example: Set
$$\gamma = 2^{-2\lambda}$$
 and the advantage is $\varepsilon' + \frac{2(S+2\lambda)T}{P} + 2^{-2\lambda}$

Balancing: ε' usually increases with *P* i.e., as BF-attacker gets to fix more and more points.

Typical Relationship: BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma > 0$, if an application G is $((S,T,p),\varepsilon')$ -secure in the BF-RO(P)-model, then it is $((S,T,p),\varepsilon)$ -secure in the AI-RO-model, for

$$\varepsilon \leq \varepsilon' + \frac{2(S + \log \gamma^{-1}) \cdot T_G^{\text{comb}}}{P} + 2\gamma$$
,

where T_G^{comb} is the combined query complexity corresponding to G.

So far we have used this result (or similar results for Ideal-Ciphers, Permutations etc...) as a black-box.

How is this result proved?

Preliminary Definitions

- **Definition:** A (N, M)-source is a random variable X with range $[M]^N$
- Random Oracle $H: [N] \to [M]$ can be viewed as a random variable X with range $[M]^N$ e.g., if $H: \{0, 1\}^n \to \{0, 1\}^m$ then we set $M = 2^m$ and $N = 2^n$
- Given $I \subseteq [N]$ (inputs) and $x \in [M]^N$ let $x_I \in [M]^{|I|}$ denote the substring specified by I e.g., value of random oracle on all inputs in I
- **Dense-Source:** X is (1δ) dense if for **every** subset $I \subseteq [N]$ (inputs) we have $H_{\infty}(X_I) \ge (1 \delta)|I|\log_2 M = (1 \delta)\log_2 M^{|I|}$

Minimum Entropy: Equivalent statement is that for all $y \in [M]^{|I|}$ we have $\Pr[X_I = y] \le |M|^{-|I|(1-\delta)}$

Preliminary Definitions

- **Definition:** A (N, M)-source is a random variable X with range $[M]^N$
- Random Oracle $H: [N] \rightarrow [M]$ can be viewed as a random variable X with range $[M]^N$ e.g., if $H: \{0, 1\}^n \rightarrow \{0, 1\}^m$ then we set $M = 2^m$ and $N = 2^n$
- **Dense-Source:** X is (1δ) -dense if for **every** subset $I \subseteq [N]$ (inputs) we have $H_{\infty}(X_I) \ge (1 - \delta)|I|\log_2 M = (1 - \delta)\log_2 M^{|I|}$
- **Example:** Random oracle is (1δ) –dense with $\delta = 0$.

Preliminary Definitions

- **Definition:** A (N, M)-source is a random variable X with range $[M]^N$
- **Dense-Source:** X is $(P, 1 \delta)$ -dense if there is a subset $S \subseteq [N]$ of size $|S| \leq P$ such that for **every** subset $I \subseteq [N \setminus S]$ we have $H_{\infty}(X_I) \geq (1 \delta)|I|\log_2 M = (1 \delta)\log_2 M^{|I|}$
- Intuition: Fixed on P coordinates but dense on the rest
- Bit-Fixing Source: X is (P, 1) dense i.e., fixed on P and uniform on the rest

Preliminary: Leaky Source

- Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(X) for some function f: $[M]^N \rightarrow \{0, 1\}^S$.
 - Bayesian Update: Conditional Distribution X_z for all x in $[M]^N$ we have $\Pr[X_z = x] \coloneqq \Pr[X = x | f(X) = z]$

Challenge: It can be difficult to reason about the source X_z

Entropy Deficiency:
$$S_z = N \log M - H_{\infty}(X_z)$$

In expectation we have $\mathbf{E}[S_z] \leq S$, but the actual value can vary depending on $z = f(\mathbf{X})$

- Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(X) for some function f: $[M]^N \rightarrow \{0, 1\}^S$.
 - Bayesian Update: Conditional Distribution X_z for all x in $[M]^N$ we have $\Pr[X_z = x] \coloneqq \Pr[X = x | f(X) = z]$

Challenge: It can be difficult to reason about the source X_z Entropy Deficiency: $S_z = N \log M - H_{\infty}(X_z)$ $E[S_z] \le S$

- Step 1: Show that any leaky source X_z is γ -close to a source Y_z which is a convex combination of $(P', 1 \delta)$ -dense sources.
 - **Convex Combination:** Let $D_1, ..., D_k$ each be $(P', 1 \delta)$ -dense sources. Y_z has the form sample a source $i \le k$ with probability p_i then sample from $(P', 1 \delta)$ -dense sources D_i
 - Number of Fixed Points: $P' \leq \frac{S_z + \log 1/\gamma}{\delta \log M}$

- Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(X) for some function f: $[M]^N \rightarrow \{0, 1\}^S$.
 - Bayesian Update: Conditional Distribution X_z for all x in $[M]^N$ we have $\Pr[X_z = x] \coloneqq \Pr[X = x | f(X) = z]$

Challenge: It can be difficult to reason about the source X_z Entropy Deficiency: $S_z = N \log M - H_{\infty}(X_z)$ $E[S_z] \le S$

• Step 2: Show that a $(P', 1 - \delta)$ -dense source X' cannot be distinguished from a P'-bit fixing source Y' by a distinguisher making at most T (adaptive) queries. $\Pr[\mathfrak{D}^{X'} = 1] \leq \Pr[\mathfrak{D}^{Y'} = 1] \times M^{T\delta}$

And

$$\left|\Pr[\mathfrak{D}^{X'}=1]-\Pr[\mathfrak{D}^{Y'}=1]\right| \leq T\delta \log M$$

- Step 1: Show that any leaky source X_z is γ -close to a source Y_z which is a convex combination of $(P', 1 \delta)$ -dense sources.
- Define $\mathbf{Y} = \mathbf{X}_{\mathbf{z}}$. If \mathbf{Y} is (1δ) -dense then we are done. Otherwise, let I be the largest subset for which there exists a violation i.e., $y_I \in [M]^{|I|}$ s.t. $\Pr[\mathbf{Y}_I = y_I] > 2^{-(1-\delta)|I| \log M}$
- Let **Y**' denote distribution of **Y** conditioned on $Y_I = y_I$
- Claim 1: Y' is $(P', 1 \delta)$ dense with P' = |I|
 - **Proof Sketch:** If there is a subset $J \subseteq [N \setminus I]$ and $y_J \in [M]^{|J|}$ s.t. $\Pr[Y_J' = y_j] > 2^{-(1-\delta)|J| \log M}$

Then we could take $I' = I \cup J$ and

 $\Pr[\mathbf{Y}_{I'} = y_{I'}] = \Pr[\mathbf{Y}_{I} = y_{I}] \Pr[\mathbf{Y}_{I} = y_{I}] \Pr[\mathbf{Y}_{I} = y_{I}] > 2^{-(1-\delta)|I'| \log M}$ This contradicts the maximality of *I*!

- Step 1: Show that any leaky source X_z is γ -close to a source Y_z which is a convex combination of $(P', 1 \delta)$ -dense sources.
- Define $\mathbf{Y} = \mathbf{X}_{\mathbf{Z}}$. If \mathbf{Y} is (1δ) -dense then we are done. Otherwise, let I be the largest subset for which there exists a violation i.e., $y_I \in [M]^{|I|}$ s.t. $\Pr[\mathbf{Y}_I = y_I] > 2^{-(1-\delta)|I| \log M}$
- Let **Y**' denote distribution of **Y** conditioned on $Y_I = y_I$
- Claim 1: Y' is $(P', 1 \delta)$ dense with P' = |I|
- Claim 2: $|I| \leq \frac{S_Z}{(\delta \log M)}$
 - **Proof Sketch:** On one hand we have $H_{\infty}(Y_I) \ge |I| \log M S_Z$ (def of S_Z)
 - On the other hand $H_{\infty}(Y_I) < -\log_2(2^{-(1-\delta)|I|\log M}) = (1-\delta)|I|\log M$
 - Claim 2 follows immediately by combining the above two inequalities.

- Step 1: Show that any leaky source X_z is γ -close to a source Y_z which is a convex combination of $(P', 1 \delta)$ -dense sources.
- Define $\mathbf{Y} = \mathbf{X}_{\mathbf{z}}$. If \mathbf{Y} is (1δ) -dense then we are done. Otherwise, let I be the largest subset for which there exists a violation i.e., $y_I \in [M]^{|I|}$ s.t. $\Pr[\mathbf{Y}_I = y_I] > 2^{-(1-\delta)|I|\log M}$
- Let **Y**' denote distribution of **Y** conditioned on $Y_I = y_I$
- Claim: **Y**' is $(P', 1 \delta)$ dense with P' = |I| with $|I| \le \frac{S_Z}{(\delta \log M)}$
- Key Idea (Recursion!): Y_z uses $(P', 1 \delta)$ dense source Y' with probability $\Pr[Y_I = y_I]$ and samples from Y_z' with probability $1 \Pr[Y_I = y_I]$
- Y_z' is also convex combination of finitely many $(P', 1 \delta)$ -dense sources which is gamma close to Y_1 , the distribution of Y conditioned on $Y_I \neq y_I$

- Step 1: Show that any leaky source X_z is γ -close to a source Y_z which is a convex combination of $(P', 1 \delta)$ -dense sources.
- Key Idea (Recursion!): Y_z uses $(P', 1 \delta)$ dense source Y' with probability $\Pr[Y_I = y_I]$ and samples from Y_z' with probability $1 - \Pr[Y_I = y_I]$
- Y_z' is also convex combination of finitely many $(P', 1 \delta)$ -dense sources which is gamma close to Y_1 , the distribution of Y conditioned on $Y_I \neq y_I$
- Each step of recursion decreases size of support → finite termination
- Recurse as long as $\Pr[X \in \operatorname{Supp}(Y_k)] > \gamma$
- Claim: Y_k' is $(P', 1 \delta)$ dense with $P' \leq \frac{S_Z + \log \frac{1}{\gamma}}{(\delta \log M)}$
- Process ends with $\Pr[X \in \operatorname{Supp}(Y_{final})] \leq \gamma \rightarrow \operatorname{replace} Y_{final}$ with uniform distribution

• Step 2: Show that a $(P', 1 - \delta)$ -dense source X' cannot be distinguished from corresponding P'-bit fixing source Y' (uniform on non-fixed coordinates) by a distinguisher making at most T (adaptive) queries to the source.

$$\Pr[\mathfrak{D}^{X'}=1] \leq \Pr[\mathfrak{D}^{Y'}=1] \times M^{T\delta}$$

And

$$\left|\Pr\left[\mathfrak{D}^{X'}=1\right]-\Pr\left[\mathfrak{D}^{Y'}=1\right]\right| \leq T\delta \log M$$

Claim 3. For any $(P', 1-\delta)$ -dense source X' and its corresponding P'-bit-fixing source Y', it holds that for any (adaptive) distinguisher D that queries at most T coordinates of its oracle,

$$\left| \mathsf{P}[\mathcal{D}^{X'} = 1] - \mathsf{P}[\mathcal{D}^{Y'} = 1] \right| \leq T\delta \cdot \log M,$$

and

$$\mathsf{P}[\mathcal{D}^{X'}=1] \leq M^{T\delta} \cdot \mathsf{P}[\mathcal{D}^{Y'}=1].$$

 Step 2: Show that a (P', 1 - δ)-dense source X' cannot be distinguished from a P'-bit fixing source Y' by a distinguisher making at most T (adaptive) queries to the source.

$$\Pr[\mathfrak{D}^{X'}=1] \leq \Pr[\mathfrak{D}^{Y'}=1] \times M^{T\delta}$$

And

$$\left|\Pr[\mathfrak{D}^{X'}=1]-\Pr[\mathfrak{D}^{Y'}=1]\right| \leq T\delta \log M$$

Proof Intuition:

- WLOG we can assume \mathfrak{D} is deterministic (otherwise we can fix the random coins that maximizes the advantage of the distinguisher for \mathfrak{D}) and only queries on non-fixed points.
- Transcript τ is a list of all of the query/answer pairs that distinguisher \mathfrak{D} makes.

• Step 2: Show that a $(P', 1 - \delta)$ -dense source X' cannot be distinguished from a P'-bit fixing source Y' by a distinguisher making at most T (adaptive) queries to the source.

$$\Pr[\mathfrak{D}^{X'}=1] \leq \Pr[\mathfrak{D}^{Y'}=1] \times M^{T\delta}$$

And

$$\left|\Pr\left[\mathfrak{D}^{X'}=1\right]-\Pr\left[\mathfrak{D}^{Y'}=1\right]\right| \leq T\delta \log M$$

Proof Intuition: Transcript τ is a list of all of the query/answer pairs that distinguisher \mathfrak{D} makes.

- Let T_X , (resp. T_Y ,) denote random variable over transcripts resulting from interaction with source X' (resp. Y').
- Note: The support of $T_{Y'}$, contains the support of $T_{X'}$
- For every transcript τ in the support of T_X , we have

$$\begin{split} \Pr[T_{X'} = \tau] &\leq 2^{-(1-\delta)T\log M} \quad and \quad \Pr[T_{Y'} = \tau] = 2^{-T\log M} \\ &\quad \Pr[T_{X'} = \tau] \leq M^{T\delta} \Pr[T_{Y'} = \tau] \end{split}$$

 Step 2: Show that a (P', 1 - δ)-dense source X' cannot be distinguished from a P'-bit fixing source Y' by a distinguisher making at most T (adaptive) queries to the source.

$$\Pr[\mathfrak{D}^{X'}=1] \leq M^{T\delta} \times \Pr[\mathfrak{D}^{Y'}=1]$$

And

$$\left|\Pr\left[\mathfrak{D}^{X'}=1\right]-\Pr\left[\mathfrak{D}^{Y'}=1\right]\right| \leq T\delta \log M$$

Proof Intuition: For every transcript τ in the support of T_Y , we have $\Pr[T_{X'} = \tau] \leq 2^{-(1-\delta)T \log M}$ and $\Pr[T_{Y'} = \tau] = 2^{-T \log M}$ $\Pr[T_{X'} = \tau] \leq M^{T\delta} \Pr[T_{Y'} = \tau]$ Let $\mathcal{T}_{\mathfrak{D}}$ denote the set of all transcripts where \mathfrak{D} outputs 1. $\Pr[\mathfrak{D}^{X'} = 1] = \sum_{\tau \in \mathcal{T}_{\mathfrak{D}}} \Pr[T_{X'} = \tau] \leq M^{T\delta} \sum_{\tau \in \mathcal{T}_{\mathfrak{D}}} \Pr[T_{Y'} = \tau] = M^{T\delta} \times \Pr[\mathfrak{D}^{Y'} = 1]$ Claim 3. For any $(P', 1-\delta)$ -dense source X' and its corresponding P'-bit-fixing source Y', it holds that for any (adaptive) distinguisher D that queries at most T coordinates of its oracle,

$$\left| \mathsf{P}[\mathcal{D}^{X'} = 1] - \mathsf{P}[\mathcal{D}^{Y'} = 1] \right| \leq T\delta \cdot \log M,$$

and also $P[T_{Y'} = \tau] = p_{Y'}(\tau)$. Towards proving the first part of the lemma, observe that

and a

$$\begin{aligned} \left| \mathsf{P}[\mathcal{D}^{X'} = 1] - \mathsf{P}[\mathcal{D}^{Y'} = 1] \right| &\leq \mathsf{SD}(T_{X'}, T_{Y'}) \\ &= \sum_{\tau} \max\left\{0, \mathsf{P}[T_{X'} = \tau] - \mathsf{P}[T_{Y'} = \tau]\right\} \\ &= \sum_{\tau \in \mathcal{T}_X} \max\left\{0, \mathsf{p}_{X'}(\tau) - \mathsf{p}_{Y'}(\tau)\right\} \\ &= \sum_{\tau \in \mathcal{T}_X} \mathsf{p}_{X'}(\tau) \cdot \max\left\{0, 1 - \frac{\mathsf{p}_{Y'}(\tau)}{\mathsf{p}_{X'}(\tau)}\right\} \\ &\leq 1 - M^{-T\delta} \leq T\delta \cdot \log M, \end{aligned}$$

and

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \ge 1 - x$ for $x \ge 0$.

$$\leq 1 - M^{-T\delta} \leq T\delta \cdot \log M,$$

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \ge 1 - x$ for $x \ge 0$.

$$\mathsf{P}\big[\mathcal{D}^{X}(f(X)) = 1\big] - \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big]\big| \leq \frac{(S + \log 1/\gamma) \cdot T}{P} + \gamma$$

and

$$\mathsf{P}\big[\mathcal{D}^X(f(X)) = 1\big] \leq 2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big] + 2\gamma.$$

Let Y'_z be obtained by replacing every X' by the corresponding Y' in X'_z . Setting $\delta_z = (S_z + \log 1/\gamma)/(P \log M)$, Claims 2 and 3 imply

$$\left| \mathsf{P} \big[\mathcal{D}^{X_z}(z) = 1 \big] - \mathsf{P} \big[\mathcal{D}^{Y'_z}(z) = 1 \big] \right| \leq \frac{(S_z + \log 1/\gamma) \cdot T}{P} + \gamma , \qquad (2)$$

as well as

$$\mathsf{P}\big[\mathcal{D}^{X_z}(z) = 1\big] \leq 2^{(S_z + \log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y'_z}(z) = 1\big] + \gamma .$$
(3)

Moreover, note that for the above choice of δ_z , P' = P, i.e., the sources Y' are fixed on at most P coordinates, as desired.

$$\left|\mathsf{P}\big[\mathcal{D}^{X}(f(X))=1\big]-\mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X))=1\big]\right| \leq \frac{(S+\log 1/\gamma)\cdot T}{P}+\gamma$$

and

$$\mathsf{P}\big[\mathcal{D}^X(f(X)) = 1\big] \ \le \ 2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big] + 2\gamma \,.$$

One Missing Link Remains! Prior bounds relied on entropy deficiency $S_z = N \log M - H_{\infty}(X_z)$ instead of S.

Claim:
$$E[S_z] \leq S$$
 and $\Pr\left[S_{f(X)} > S + \log\frac{1}{\gamma}\right] \leq \gamma$
Key Fact: $\Pr[f(X) = z] \leq 2^{-S_z}$

$$\left| \mathsf{P} \big[\mathcal{D}^X(f(X)) = 1 \big] - \mathsf{P} \big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1 \big] \right| \leq \frac{(S + \log 1/\gamma) \cdot T}{P} + \gamma$$

and

$$\mathsf{P}\big[\mathcal{D}^X(f(X)) = 1\big] \le 2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big] + 2\gamma.$$

Claim:
$$E[S_z] \leq S$$
 and $\Pr[S_{f(X)} > S + \log \frac{1}{\gamma}] \leq \gamma$
Key Fact: $\Pr[f(X) = z] \leq 2^{-S_z}$
Proof: By definition of S_z (min-entropy deficiency) there exists $x \in [M]^N$
with $f(X) = z$ such that $\Pr[X = x | f(X) = z] = \frac{2^{S_z}}{M^N}$. We have
 $\frac{1}{M^N} = \Pr[X = x] = \Pr[X = x | f(X) = z] \Pr[f(X) = z] = \frac{2^{S_z}}{M^N} \Pr[f(X) = z]$

$$\left|\mathsf{P}\big[\mathcal{D}^X(f(X)) = 1\big] - \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big]\right| \leq \frac{(S + \log 1/\gamma) \cdot T}{P} + \gamma$$

and

$$\mathsf{P}\big[\mathcal{D}^{X}(f(X)) = 1\big] \leq 2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big] + 2\gamma.$$

Claim: $E[S_z] \le S$ and $\Pr[S_{f(X)} > S + \log \frac{1}{\gamma}] \le \gamma$ **Key Fact:** $\Pr[f(X) = z] \le 2^{-S_z}$

$$\Pr\left[S_{f(X)} > S + \log\frac{1}{\gamma}\right] = \sum_{\substack{z \in \{0,1\}^S \text{ s.t} \\ S_z > S + \log\frac{1}{\gamma}}} \Pr[f(X) = z] \le 2^S \times 2^{-\left(S + \log\frac{1}{\gamma}\right)} \le \gamma$$

25

Claim 4. $\mathbf{E}_{z}[S_{z}] \leq S$ and $\mathsf{P}[S_{f(X)} > S + \log 1/\gamma] \leq \gamma$.

Proof. Observe that $H_{\infty}(X_z) = H_{\infty}(X|Z = z) = H(X|Z = z)$ since, conditioned on Z = z, X is distributed uniformly over all values x with f(x) = z. Therefore,

$$\begin{aligned} \mathbf{E}_{z}[S_{z}] &= N\log M - \mathbf{E}_{z}[H_{\infty}(X|Z=z)] &= N\log M - \mathbf{E}_{z}[H(X|Z=z)] \\ &= N\log M - H(X|Z) \leq S . \end{aligned}$$

Again due to the uniformity of X, $P[f(X) = z] = 2^{-S_z}$. Hence,

$$\mathsf{P}\big[S_{f(X)} > S + \log 1/\gamma\big] = \sum_{z \in \{0,1\}^S \colon S_z > S + \log 1/\gamma} \mathsf{P}\big[f(X) = z\big] \le 2^S \cdot 2^{-(S + \log 1/\gamma)} \le \gamma .$$

$$\left|\mathsf{P}\left[\mathcal{D}^{X}(f(X))=1\right]-\mathsf{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]\right| \leq \frac{(S+\log 1/\gamma) \cdot T}{P}+\gamma$$

and

$$\mathsf{P}\big[\mathcal{D}^{X}(f(X)) = 1\big] \leq 2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big] + 2\gamma.$$

$$\begin{split} \mathsf{P}\big[\mathcal{D}^{X}(f(X)) = 1\big] &\leq \mathsf{P}\big[\mathcal{D}^{X}(f(X)) = 1, S_{f(X)} \leq S + \log 1/\gamma\big] + \mathsf{P}\big[S_{f(X)} > S + \log 1/\gamma\big] \\ &\leq \Big(2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1, S_{f(X)} \leq S + \log 1/\gamma\big] + \gamma\Big) + \gamma \\ &\leq 2^{(S+2\log 1/\gamma)T/P} \cdot \mathsf{P}\big[\mathcal{D}^{Y_{f(X)}}(f(X)) = 1\big] + 2\gamma \;, \end{split}$$

Memory Hard Functions, Random Oracles, Graph Pebbling and Extractor Arguments

Jeremiah Blocki

Motivation: Password Storage

Offline Attacks: A Common Problem

 Password breaches at major companies have affected millions billions of user accounts.

Goal: Moderately Expensive Hash Function

IR.A.

Fast on PC and Expensive on ASIC?

password hashing competition

(2013-2015)

https://password-hashing.net/

We recommend that

(2013 - 2015)

https://password-hashing.net/

Dassword hashing competition (2013 - 2015)

We recommend that you use Argon2...

There are two main versions of Argon2, **Argon2i** and Argon2d. **Argon2i** is the safest against sidechannel attacks

https://password-hashing.net/

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

• **Goal:** force attacker to lock up large amounts of memory for duration of computation

 \rightarrow Expensive even on customized hardware

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

- Data Independent Memory Hard Function (iMHF)
 - Memory access pattern should not depend on input

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

Memory access pattern should not depend on input

Data-Independent Memory Hard Function $f_{G,H}$

- $H: \{0,1\}^{2k} \rightarrow \{0,1\}^k$ (Random Oracle)
- DAG G (encodes data-dependencies)
 - Maximum indegree: $\delta = O(1)$
 - $N = 2^n$ nodes

$P_1 = \{1\}$ (data value L_1 stored in memory)

$P_1 = \{1\}$ $P_2 = \{1,2\}$ (data values L₁ and L₂ stored in memory)

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{3\}$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{3\}$ $P_4 = \{3,4\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$ $P_{5} = \{5\}$

Measuring Pebbling Cost: Attempt 1

• Space × Time (ST)-Complexity

$$ST(G) = \min_{\vec{P}} \left(t_{\vec{P}} \times \max_{i \le t_{\vec{P}}} |P_i| \right)$$

- Rich Theory
 - Space-time tradeoffs
 - But not appropriate for password hashing

Amortization and Parallelism

• Problem: for parallel computation ST-complexity can scale badly in the number of evaluations of a function.

[AS15] \exists function f_n (consisting of n RO calls) such that: $ST(f^{\times \sqrt{n}}) = O(ST(f))$

Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)

Memory Used at Step i

• Guessing two passwords doubles the attackers cost $CC(G,G) = 2 \times CC(G)$

Measuring Pebbling Costs [AS15]

Amortized Area x Time

Complexity of iMHF

Pebbling Example (CC)

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$ $P_{5} = \{5\}$

$$CC(G) \le \sum_{i=1}^{5} |P_i|$$

= 1 + 2 + 1 + 2 + 1
= 7

Desiderata

Find a DAG G on n nodes such that

- 1. Constant Indegree ($\delta = 2$)
 - Running Time: $n(\delta 1) = n$

2. CC(G)
$$\geq \frac{n^2}{\tau}$$
 for some small value τ .

DAGs with Maximal CC(G)

- Challenge 1: Design a constant indegree DAG G maximizing CC(G)
 - Depth-Robust Graphs are necessary [AB16] and sufficient [ABP17]
 - Argon2i (PHC winner) is not depth-robust

→ $CC(G) = o(n^{1.767}) \ll n^2$ [AB16,AB17,ABP17,BZ17]

- Any DAG with constant indegree has $CC(G) = O(n^2 \log \log n / \log n)$ at most
- Theoretical [ABP17] then practical [ABH17] construction of depth-robust graphs \rightarrow CC(G) = $\Omega(n^2/\log n)$ [AB16,AB17,ABP17,BZ17]
- **Open Problem 1:** Construct G with $CC(G) = \Omega(n^2 \log \log n / \log n)$
 - Conjecture: [BHKLXZ19] achieves this goal.
- **Open Problem 2:** Tighten constants in upper/lower bounds

Question: $CC(G) \rightarrow$ cumulative memory cost?

Bad Case: H(x,y)=x+y mod $2^w \rightarrow f_{G,H}(x) = k_G \times x$ e.g., $k_G = 3$ (above) Independent of input! $k_G = 2^{n-2}$ (complete) Computing $f_{G,H}(x)$ is fast + requires minimal memory. (even if pebbling cost CC(G) is large!)

Question: $CC(G) \rightarrow$ cumulative memory cost?

Theorem [AS15]: (in parallel random oracle model) $A(x) = f_{G,H}(x) \rightarrow \operatorname{cmc}(A) = \Omega(w \times CC(G))$

Random Oracle Model (PROM)

- Model hash function H as a random function
- Algorithms can only interact with H as an oracle
 - Query: x
 - **Response**: H(x)
- If we submit the same query you see the same response
- If x has not been queried, then the value of H(x) is uniform
- **Real World:** H instantiated as cryptographic hash function (e.g., SHA3) of fixed length (no Merkle-Damgård)

X	H(x)
0000	r_0
0001	r_1
1111	$r_{2^{n}-1}$

Random Oracle Model: Prediction Game

Prediction Game: $(x_1, y_1), \dots, (x_k, y_k) \leftarrow A^{H(.)}$ wins the prediction game if

- 1. $y_1 = H(x_1), \dots, y_k = H(x_k)$ and
- 2. the inputs $x_1, ..., x_k$ are all fresh i.e., A never queried $H(x_i)$

Fact 1: Any algorithm $A^{H(.)}$ wins the prediction game with probability at most 2^{-kw} over the choice of H(.).

Intuition: A never queries $H(x_1) \rightarrow \text{can view } H(x_1)$ as a (yet to be sampled) random string

Random Oracle Model: Prediction Game

Prediction Game: $(x_1, y_1), \dots, (x_k, y_k) \leftarrow A^{H(.)}$ wins the prediction game if 1. $y_1 = H(x_1), \dots, y_k = H(x_k)$ and

2. the inputs x_1, \ldots, x_k are all fresh i.e., A never queried $H(x_i)$

Fact 1: Any algorithm $A^{H(.)}$ wins the prediction game with probability at most 2^{-kw} over the choice of H(.).

Fact 2 (Incompressibility of ROs): Any algorithm $A^{H(.)}(h)$ given a s-bit hint h (which may depend on H(.)) wins the prediction game with probability at most 2^{-kw+s}

Proof Intuition: Otherwise we can win without hint with probability $> 2^{-kw}$

Reduction: Guess correct hint h with probability 2^{-s} and run $A^{H(.)}(h)$

Parallel Random Oracle Model (PROM)

- PROM Algorithm $\mathcal{A}(x)$
 - Initial Input/State: $\sigma_0 = x$

•
$$\left(\sigma_1, \overline{q_1} = \left(x_1^1, \dots, x_{r_1}^1\right)\right) \leftarrow \mathcal{A}(\sigma_0)$$

- New State + Batch of Random Oracle Queries
- $\overrightarrow{a_1} = (H(x_1^1), \dots, H(x_{r_1}^1))$
 - Answers to Random Oracle Queries

•
$$\left(\sigma_2, \overline{q_2} = \left(x_1^2, \dots, x_{r_2}^2\right)\right) \leftarrow \mathcal{A}(\sigma_1, \overline{a_1})$$

$$\circ \left(\sigma_{i}, \overline{q_{i}} = \left(x_{1}^{i}, \dots, x_{r_{i}}^{i}\right)\right) \leftarrow \mathcal{A}(\sigma_{i-1}, \overline{a_{i-1}})$$

• ...

• $y \leftarrow \mathcal{A}(\sigma_t, \overline{a_t})$

x	H(x)
0000	r_0
0001	r_1
1111	$r_{2^{n}-1}$

One round of computation. 1. \mathcal{A} receives prior answers $\overrightarrow{a_{i-1}}$ 2. \mathcal{A} performs arbitrary computation 3. \mathcal{A} outputs $(\sigma_i, \overrightarrow{q_i})$ new state + new queries

Parallel Random Oracle Model (PROM)

- PROM Algorithm $\mathcal{A}(x)$
 - Fixing \mathcal{A} , x and H we get an execution trace $\operatorname{Trace}_{\mathcal{A},\mathrm{H}}(\mathrm{x}) = \{\sigma_i, \overline{q_i}, \overline{a_i}\}_{i=1}^t$
 - Cumulative Memory Cost of Execution Trace $\operatorname{cmc}\left(\operatorname{Trace}_{\mathcal{A},\mathrm{H}}(\mathrm{x})\right) = \sum_{i=1}^{t} (|\sigma_i| + |\overline{a_i}|)$

x	H(x)
0000	r_0
0001	r_1
1111	$r_{2^{n}-1}$

• Cumulative Memory Cost of a Function $\operatorname{cmc}(f_{G,H}) = \min_{\mathcal{A}, \mathbf{x}} \mathbb{E}_{H} \left[\operatorname{cmc} \left(\operatorname{Trace}_{\mathcal{A}, \mathbf{H}}(\mathbf{x}) \right) \right]$

Min over inputs x and PROM algorithms \mathcal{A} evaluating $f_{G,H}$

Expectation over selection of random oracle

Collision Problem

Collision Problem: Suppose that we are asked to find $x \neq x'$ s.t. H(x) = H(x')

What is the probability we can succeed given q queries to the random oracle?

Answer: $\leq q^2 2^{-w}$ Explanation: Let $x_1, ..., x_q$ be the queries we make

Pr[*H*(*x*_{*i*+1}) ∈ {*H*(*x*₁), ..., *H*(*x*_{*i*})}] ≤ *i* × 2^{-*w*}

x	H(x)
0000	r_0
0001	<i>r</i> ₁
1111	$r_{2^{n}-1}$

(Prob Collision at time i+1)

$$\therefore \mathbf{Pr}[Collision] \le \sum_{i \le q} i \times 2^{-w}$$

(Union Bound over Each Round)

Label Distinctness

Label Distinctness: Suppose we are given a directed acyclic graph G on n nodes V={1,...,n} with indegree 2 and such that each node v > 2 has two parents v-1 and r(v)<v-1. Let

Let $x = L_0$ be the initial input (w-bits) and define labels $L_1 = H(x_0, 0^w), L_2 = H(L_1, 0^w),$ $L_3 = H(L_2, L_1)$... $L_v = H(L_{v-1}, L_{r(v)})$... $L_n = H(L_{n-1}, L_{r(n)})$

х	H(x)
0000	r_0
0001	r_1
1111	$r_{2^{n}-1}$

Question: What is the probability that two labels collide?

Label Distinctness

$$L_{v} = H(L_{v-1}, L_{r(v)})$$

•••

Question: What is the probability that two labels collide?

Let \mathbf{U}_i be the event that labels L_1, \dots, L_i are all distinct

$$\Pr[\overline{\mathbf{U}_{i}}|\mathbf{U}_{i-1}] = \Pr[H(L_{i-1}, L_{r(i)}) \in \{L_{1}, \dots, L_{i-1}\}|\mathbf{U}_{i-1}] \leq (i-1)2^{-w}$$

$$\uparrow$$

$$L_{i-1} \text{ unique } \rightarrow \text{ fresh query!}$$

$$Union Bound!$$

Label Distinctness

$$L_{v} = H(L_{v-1}, L_{r(v)})$$

...

Question: What is the probability that two labels collide?

Let \mathbf{U}_i be the event that labels L_1, \dots, L_i are all distinct

 $\Pr[\overline{\mathbf{U}_{i}}|\mathbf{U}_{i-1}] \le (i-1)2^{-w}$

$$\Pr[\overline{\mathbf{U}_n}] \le \sum_{i \le n} (i-1) \, 2^{-w} \le n^2 2^{-w}$$

Label Collision

$$L_{v} = H(L_{v-1}, L_{r(v)})$$

$$Prelab(v) = L_{v-1}, L_{r(v)}$$

x	H(x)
0000	r_0
0001	r_1
1111	$r_{2^{n}-1}$

Question: Suppose we can make at most q queries to the random oracle. What is the probability we find some z s.t. $L_v = H(z)$ but $z \neq$ **Prelab**(**v**) for some node v?

Label Collision

Question: Suppose we can make at most q queries to the random oracle. What is the probability we find some z s.t. $L_v = H(z)$ but $z \neq$ **Prelab**(**v**) for some node v?

Answer: at most $nq2^{-w}$

Let z_i be ith query to random oracle such that $z_i \neq \mathbf{Prelab}(v)$ for any node $v \leq n$ then we have

 $\mathbf{Pr}[H(z_i) \in \{L_1, \dots, L_n\}] \le n2^{-w}$

 $\mathbf{Pr}[\exists \mathbf{i} \le q. H(z_i) \in \{L_1, \dots, L_n\}] \le nq2^{-w}$

х	H(x)
0000	r_0
0001	r_1
1111	$r_{2^{n}-1}$

- Fixing \mathcal{A} , x and H we get an execution trace $\operatorname{Trace}_{\mathcal{A},\mathrm{H}}(\mathrm{x}) = \{\sigma_i, \overrightarrow{q_i}, \overrightarrow{a_i}\}_{i=1}^t$
- Track L_v for each node v
 - Note rounds where L_v appear as the input to random oracle query?
 - Note rounds does L_v appear as an the output to a random oracle query?
 - Define Need(v,i)=1 if and only if the next time (after round i) label L_v appears it is as an input; otherwise Need(v,i)=0

•
$$P_i = \{v : Need(v, i) = 1\}$$

- $P_i = \{v : Need(v, i) = 1\} \rightarrow does this give us a legal pebbling?$
- Order(v) be the bad event $L_{\boldsymbol{v}}$ is used as an RO input before it has appeared as an output

• $P_i = \{v : Need(v, i) = 1\} \rightarrow does this give us a legal pebbling?$

Claim 1: Suppose that \mathcal{A} computes $f_{G,H}$ and makes at most q random oracle queries then $P = P_1, \dots, P_t$ is a legal pebbling (except with probability $O(qn2^{-w})$).

Proof Sketch:

Observation 1: If the bad event Order(v) never occurs for any node v then the pebbling is legal (follows from definition of Need(v,i))

• $P_i = \{v : Need(v, i) = 1\} \rightarrow does this give us a legal pebbling?$

Claim 1: Suppose that \mathcal{A} computes $f_{G,H}$ and makes at most q random oracle queries then $P = P_1, \dots, P_t$ is a legal pebbling (except with probability $O(qn2^{-w})$).

Proof Sketch:

Observation 2: If L_v has not yet appeared as output then the probability a particular query includes L_v as input early is at most 2^{-w}

 \rightarrow Pr[Order(v)] $\leq q 2^{-w}$ (Union Bound over all q queries)

(L_{v} can be viewed as random w-bit string before it first appears)

• $P_i = \{v : Need(v, i) = 1\} \rightarrow does this give us a legal pebbling?$

Claim 1: Suppose that \mathcal{A} computes $f_{G,H}$ and makes at most q random oracle queries then $P = P_1, \dots, P_t$ is a legal pebbling (except with probability $O(qn2^{-w})$).

Proof Sketch: Let Order(v) be the bad event L_v is used as an RO input before it has appeared as an output. Union Bounding $\Pr[\exists v \ Order(v)] \leq n\Pr[Order(v)] \leq nq2^{-w}$

(L_v can be viewed as random w-bit string before it first appears)

• Fixing \mathcal{A} , x and H we get an execution trace $\operatorname{Trace}_{\mathcal{A},\mathrm{H}}(\mathrm{x}) = \{\sigma_i, \overline{q_i}, \overline{a_i}\}_{i=1}^t$

Claim 1: Suppose that \mathcal{A} computes $f_{G,H}$ and makes at most q random oracle queries then $P = P_1, \dots, P_t$ is a legal pebbling (except with probability $O(qn2^{-w})$).

Observation: If P is legal then $CC(P) \ge CC(G)$

(definition of CC(G) as best pebbling of G)
Extractor Argument

- Fixing \mathcal{A} , x and H we get an execution trace $\operatorname{Trace}_{\mathcal{A},\mathrm{H}}(x) = \{\sigma_i, \overline{q_i}, \overline{a_i}\}_{i=1}^t$ Observation: $\operatorname{CC}(\mathrm{P}) \ge CC(G)$ (definition of CC(G))
- **Claim 2:** For each round i we have $|\sigma_i| + |\overline{a_{i-1}}| \ge w|P_i|/2$

Proof Idea: Extractor argument. Suppose for contradiction that $|\sigma_i| + |\overline{a_{i-1}}| < w|P_i|/2$.

We will build an extractor that outputs $|P_i|$ labels given a hint of size $w|P_i|/2 + o(w|P_i|)$. This yields a contradiction of incompressibility!

Extractor Hint

Claim 2: For each round i we have $|\sigma_i| + |a_{i-1}| \ge w|P_i|/2$

Hint: h

- Initial State: σ_i , $\overline{a_{i-1}}$ (used to simulate \mathcal{A} at most w $|P_i|/2$ bits)
- Encoding of P_i ($|P_i| \log n$ bits)
- For each $v \in P_i$ index i_v of next random oracle query where label L_v appears as input $(|P_i| \log q \text{ bits})$
- For each $v \in P_i$ index o_v of next random oracle query where label L_v appears as output $(|P_i| \log q \text{ bits})$
- Total Hint Length: $w|P_i|/2 + o(w|P_t|)$.

Extractor argument. Suppose for contradiction that $|\sigma_i| < w|P_t|/2$.

We will build an extractor that outputs $|P_t|$ labels given a hint of size $|\sigma_i| + o(w|P_t|)$. This yields a contradiction of incompressibility!

Random Oracle $H: \{0,1\}^* \rightarrow \{0,1\}^w$			Extractor E Hint: h = (σ_i ,	$\overline{a_{i-1}} P_i, \ldots$
P _i	Label	Input Query	Output Query	$\overbrace{\boldsymbol{\sigma}_{i+1}, \overline{q_i},}^{\sigma_{i+1}, \overline{q_i},}$ $\overbrace{\boldsymbol{Simulate}}^{Simulate}$ $\mathcal{A}(\sigma_i, \overline{a_{i-1}})$
v ₁	???	(i+2,4)	(i+10,5)	$\overrightarrow{a_i} = (H(\overrightarrow{q_i}[1]), H(\overrightarrow{q_i}[2]), \dots,)$
v ₂	???	(i+1,2)	(i+2,1)	

Claim 2: For each round i we have $|\sigma_i| \ge w|P_i|/2$ **Hint:**

- simulate \mathcal{A} from initial state: σ_i
 - Forward random oracle queries to H(.) (* One Exception Below *)
- For each $v \in P_i$ wait for first query where L_v appears as input and record L_v (by definition of P_i this occurs before L_v appears as output)
- For each $v \in P_i$ wait for first query o_v which produces output L_v
 - <u>Do not</u> forward this query to H(.)
 - Simply record the response L_{v}
 - Technical Note: Extractor can simply run naïve evaluation algorithm for $f_{G,H}(x)$ after simulating \mathcal{A} to ensure that for each $v \in P_i$ there is some round where L_v is output

Extractor:

- Outputs L_v for each $v \in P_i$
- Generate remaining labels L_v for each $v \notin P_i$
 - Can be done querying random oracle at x_v s.t. $H(x_v) = L_v$
- Yields k ``fresh" input output pairs (x_v, L_v) for each $v \in P_i$ as long as all labels L_v are distinct

$$\Pr[\exists (u, v). L_v = L_u] \le n^2 2^{-w}$$

Extractor: Yields $k = |P_i|$ ``fresh" input output pairs (x_v, L_v) for each $v \in P_i$ as long as all labels L_v are distinct and pebbling is legal

$$\Pr[\exists (u, v). L_v = L_u] \le n^2 2^{-w}$$

$$\rightarrow \Pr[Success] \ge 1 - n^2 2^{-w} - qn 2^{-w}$$

Contradiction! Extractor can succeed with probability at most $2^{-kw/2+o(kw)}$

Reflection: Extractor Argument

- What properties of the random oracle did we use?
- Simulatability/Delayed Sampling:
 - Can view H(x) as uniformly random string that is yet to be sampled
 - (until x is actually queried)
 - used to analyze the probability that a label L_v appears out of order (also collisions)
- Extractability of Queries:
 - When attacker submits random oracle query the extractor gets to see the query (and the response)

Quantum Random Oracle Model

• Similar to classical random oracle model except that input is an entangled quantum state

$$\sum_{x} \alpha_{x} |x, y\rangle \mathop{\to}_{H} \sum_{x} \alpha_{x} |x, y \oplus H(x)\rangle$$

- Realistic model for <u>any</u> realization of the random oracle e.g., can implement SHA3 as a quantum circuit
- Challenge: extractor needs to view random oracle queries

Evaluating an iMHF (pebbling)

Pebbling Rules : $\vec{P} = P_1, ..., P_t \subset V$ s.t.

P_{i+1}⊂ P_i ∪ {x ∈ V | parents(x) ⊂ P_{i+1}} (need dependent values)
 n∈ P_t (must finish and output L_n)

Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)

Memory Used at Step i

• Guessing two passwords doubles the attackers cost $CC(G,G) = 2 \times CC(G)$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{1,2,3\}$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{1,2,3\}$ $P_{4} = \{1, 2, 3, 4\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{1,2,3\}$ $P_{4} = \{1, 2, 3, 4\}$ $P_{5} = \{1, 2, 3, 4, 5\}$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{1,2,3\}$ $P_{4} = \{1,2,3,4\}$ $P_{5} = \{1,2,3,4,5\}$

$$C(G) \le \sum_{i=1}^{5} |P_i|$$

= 1 + 2 + 3 + 4 + 5
= 15

Naïve Pebbling Algorithms

- Naïve (Pebble in Topological Order)
 - Never discard pebbles
 - Legal Pebbling Strategy for any DAG!
 - Pebbling Time: n

• Sequential: Place one new pebble on the graph in each round

Theorem: Any DAG G has $CC(G) \leq \sum_{i \leq n} i = \frac{n(n+1)}{2}$ **Proof:** Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with $CC(G) = \Omega(n^2)$?

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{3\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$ $P_{5} = \{5\}$

Graphs with High CC

Theorem: Any DAG G has $CC(G) \leq \sum_{i \leq n} i = \frac{n(n+1)}{2}$ **Proof:** Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with $CC(G) = \Omega(n^2)$?

Claim: The complete DAG has
$$CC(G) \ge \sum_{i \le n-1} i = \frac{n(n-1)}{2} = \Omega(n^2)$$
?

Proof: Consider the round immediately before we first place a pebble on node i+1. We must have had pebbles on all of the nodes {1,...,i}.

Question: Can we find a DAG G with $CC(G) = \Omega(n^2)$ and low indegree?

Why do we care about indegree?

In practice the random oracle is instantiated with a function $H: \{0, 1\}^{2\lambda} \to \{0, 1\}^{\lambda}$ Label of node v is obtained by hashing labels of v's parents.

Node v has two parents (u and w) $\Rightarrow L_v = H(L_u, L_w) \Rightarrow$ One oracle to H used to compute label

Node v has three parents (u, w, x) $\Rightarrow L_v = H(H(L_u, L_w), L_x) \Rightarrow$ Two oracle queries to H to compute label

Node v has four parents (u, w, x, y) $\Rightarrow L_v = H(H(H(L_u, L_w), L_x), L_y) \Rightarrow$ Three oracle queries to H to compute label

Node v has k parents \rightarrow k-1 oracle queries to H to compute label

Running time to evaluate $f_{G,H}$ is proportional to $n \times indeg(G)$

Desiderata

Find a DAG G on n nodes such that

- 1. Constant Indegree ($\delta = 2$)
 - Running Time: $n(\delta 1) = n$

2. CC(G)
$$\geq \frac{n^2}{\tau}$$
 for some small value τ .

Outline

- Motivation
- Data Independent Memory Hard Functions (iMHFs)

• Our Attacks

- General Attack on Non Depth Robust DAGs
- Existing iMHFs are not Depth Robust
- Ideal iMHFs don't exist
- Subsequent Results (Depth-Robustness is Sufficient)
- Open Questions

Depth-Robustness: A Necessary Property

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$ s.t. $|S| \leq e$ and depth(G-S) \leq d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$ s.t. $|S| \leq e$ and depth(G-S) \leq d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Attacking (e,d)-reducible DAGs

- Input: $|S| \leq e$ such that depth(G-S) = d, g > d
- Light Phase (g rounds): Discard most pebbles!
 - Goal: Pebble the next g nodes in g (sequential) steps
 - Low Memory (only keep pebbles on S and on parents of new nodes)
 - Lasts a ``long" time
- Balloon Phase (d rounds): Greedily Recover Missing Pebbles
 - Goal: Recover needed pebbles for upcoming light phase
 - Expensive, but quick (at most d steps in parallel).

Attacking (e,d)-reducible DAGs

Algorithm 1: GenPeb (G, S, g, d)

Arguments: $G = (V, E), S \subseteq V, g \in [depth(G - S), n], d \ge depth(G - S)$ 1 for i = 1 to n do Pebble node *i*. $\mathbf{2}$ $l \leftarrow |i/g| * g + d + 1$ 3 if i mod $g \in [d]$ then Balloon Phase 4 $d' \leftarrow d - (i \mod g) + 1$ 5 $N \leftarrow \mathsf{need}(l, l+g, d')$ 6 Pebble every $v \in N$ which has all parents pebbled. 7 Remove pebble from any $v \notin K$ where $K \leftarrow S \cup \text{keep}(i, i+g) \cup \{n\}$. 8 else // Light Phase 9 $K \leftarrow S \cup \mathsf{parents}(i, i+g) \cup \{n\}$ 10 Remove pebbles from all $v \notin K$. 11 12end 13 end

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-reducible then is an (efficient) attack A such that

$$E_{R}(A) \le en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR.$$

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-reducible then is an (efficient) attack A such that

$$E_{R}(A) \leq en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR.$$

Upper bounds pebbles on nodes $x \in S$, where |S| = edepth(G-S) $\leq d$

#pebbling rounds

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-reducible then is an (efficient) attack A such that

$$E_{R}(A) \leq en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR.$$

Maintain pebbles on parents of next g nodes to be pebbled.

#pebbling rounds

#balloon phases

Length of a balloon phase

Max #pebbles on G In each round of balloon phase

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-node robust then is an (efficient) attack A such that

$$E_{R}(A) \le en + \delta gn + \frac{n}{g}nd + nR + \frac{n}{g}nR$$

Set
$$g = \sqrt{nd}$$

$$\mathrm{E}_{\mathrm{R}}(A) = \mathrm{O}\big(en + \sqrt{n^3d}\big)\,.$$

In particular, $E_R(A) = o(n^2)$ for e,d=o(n).

iMHF Candidates

- Catena [FLW15]
 - Special Recognition at Password Hashing Competition
 - Two Variants: Dragonfly and Double-Butterfly
 - Security proofs in sequential space-time model
- Balloon Hashing [CBS16]
 - Newer proposal (three variants in original proposal)
- Argon2 [BDK15]
 - Winner of the Password Hashing Competition
 - Argon2i (data-independent mode) is recommended for Password Hashing
- This Talk: Focus on Argon2i-A (version from Password Hashing Competition)
 - Attack ideas do extend to Argon2i-B (latest version)

Attack Outline

- Show that any "layered DAG" is reducible
 - Note: Catena DAGs are layered DAGs
- Show that an Argon2i DAG is *almost* a "layered DAG."
 - Turn Argon2i into layered DAG by deleting a few nodes
 - Hence, an Argon2i DAG is also reducible.

Catena

- Catena Bit Reversal DAG (BRG $^n_{\lambda}$)
 - λ -layers of nodes ($\lambda \leq 5$)
 - Edges between layers correspond to the bit-reversal operation
 - Theorem[LT82]: $sST(BRG_1^n) = \Omega(n^2)$
- Catena Butterfly (DBG^n_λ)
 - $\lambda = O(\log n)$ -layers of nodes
 - Edges between layers correspond to FFT
 - DBG^n_{λ} is a "super-concentrator."
 - Theorem[LT82] => sST(BRG_1^n) = $\Omega\left(\frac{n^2}{\log(n)}\right)$

λ -Layered DAG (Catena)

 λ -Layered DAG (Catena)

Disallowed! All edges must go to a higher layer (except for (i,i+1))

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ -Layered DAG then G is $(n^{2/3}, n^{1/3}(\lambda + 1))$ -reducible.

Proof: Let $S = \{i \times n^{1/3} | i \le n^{2/3}\}$ any path p can spend at most $n^{1/3}$ steps on layer i.

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ -Layered DAG then G is $(n^{2/3}, n^{1/3}(\lambda + 1))$ -reducible.

Proof: Let $\mathbf{S} = \{\mathbf{i} \times \mathbf{n}^{1/3} | \mathbf{i} \le \mathbf{n}^{2/3}\}$ any path p can spend at most $n^{1/3}$ steps on layer i. $2n^{1/3}$ $n^{1/3}$ Layer 0

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ -Layered DAG then G is $(n^{2/3}, n^{1/3}(\lambda + 1))$ -reducible.

Corollary:
$$E_R(G) \leq O(\lambda n^{5/3}).$$

Attack Quality: Quality_R(
$$A$$
) = $\Omega\left(\frac{n^{1/3}}{\lambda}\right)$.

Previous Attacks on Catena

- [AS15] $CC(BRG_1^n) \le O(n^{1.5})$
 - Gap between cumulative cost $O(n^{1.5})$ and sequential space-time cost $\Omega(n^2)$
- [BK15] $ST(BRG^n_{\lambda}) \le O(n^{1.8})$ for $\lambda > 1$.
- Our result $\operatorname{CC}(\operatorname{BRG}^n_{\lambda}) \leq O(n^{1.67}) *$

* Applies to all Catena variants.

Argon2i [BDK]

• Argon2: Winner of the password hashing competition[2015]

 Authors recommend Argon2i variant (data-independent) for password hashing.

Argon2i

$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow i \rightarrow n$

Indegree: $\delta = 2$

Definition: $S_2 = \{ v_i | v_{r(i)} \text{ and } v_i \text{ in same layer} \}$

Claim: $E[S_2] = O(n^{3/4} \log n)$

Definition: $S_2 = \{ v_i | v_{r(i)} \text{ and } v_i \text{ in same layer} \}$

Definition: $S_2 = \{ v_i | v_{r(i)} \text{ and } v_i \text{ in same layer} \}$

Claim: $E[S_2] = O(n^{3/4} \log n)$

Let $S = S_1 + S_2$

Fact: $E[S] = O(n^{3/4} \log n)$ and depth(G-S) $\leq \sqrt{n}$.

Let $S = S_1 + S_2$

Theorem: G is $(2n^{3/4} \log n, \sqrt{n})$ -reducible with high probability.

Let $S = S_1 + S_2$

Corollary: $\operatorname{ER}(G) \leq O(n^{7/4} \log n)$.

Quality_R(A) $\leq \Omega\left(\frac{n^{1/4}}{\log n}\right)$.

Ideal iMHFs Don't Exist

• Thm: If G has n nodes and constant in-degree δ =O(1) then G is :

$$\left(O\left(\frac{n\log\log n}{\log(n)}\right), \frac{n}{\log^2 n}\right)$$
-reducible.

• Thm: If G has n nodes and constant in-degree then:

$$\forall \varepsilon > 0 \quad \mathrm{E}_{\mathrm{R}}(G) = o\left(\frac{n^2}{\log(n)^{1-\varepsilon}} + nR\right)$$

Practical Consequences (R = 3,000)

Drama: Are the attacks `Practical'

- Argon2i team: No, at least for realistic
- Recent: Argon2i-B submitted to IR1 Task Force) for standardization.
- New Result [AB16b]:
 - New heuristics to reduce overhead by constant factor
 - Simulate the attack on real instances

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown line).

Outline

- Motivation
- Data Independent Memory Hard Functions (iMHFs)
- Attacks
- Constructing iMHFs (New!)
 - Depth-Robustness is *sufficient*
- Conclusions and Open Questions
Depth-Robustness is Sufficient! [ABP16]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then $CC(G) \ge ed$.

Implications: There exists a constant indegree graph G with

$$CC(G) \ge \Omega\left(\frac{n^2}{\log n}\right).$$

Previous Best [AS15]:
$$\Omega\left(\frac{n^2}{\log^{10} n}\right)$$

[AB16]: For all constant indegree graphs
$$CC(G) = O\left(\frac{n^2 \log \log n}{\log n}\right)$$
.

Depth-Robustness is Sufficient! [ABP16]

Proof: Let P₁,...P_t denote an (optimal) pebbling of G. For 0< i < d define

$$S_i = P_i \cup P_{d+i} \cup P_{2d+i} \cup \cdots$$

one of the sets S_i has size at most CC(G)/d. Now we claim that

 $d \ge depth(G-S_i)$

because any path in G-S_i must have been completely pebbled at some point. Thus, it must have been pebbled entirely during some interval of length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G) $\geq ed$.

Proof by Picture

 $S_i = P_i \cup P_{d+i} \cup P_{2d+i} \cup \cdots$

Claim: $|S_i| \ge e$

Step i: W contains no pebbles since $P_i \subset S_i$

Step i: W contains no pebbles since $P_i \subset S_i$

Step i+1: W-{1} contains no pebbles

Step i: W contains no pebbles since $P_i \subset S_i$

```
Step i+1: W-{1} contains no pebbles
Step i+2: W-{1,2} contains no pebbles
```


Step i: W contains no pebbles since $P_i \subset S_i$

```
Step i+1: W-{1} contains no pebbles
Step i+2: W-{1,2} contains no pebbles
Step i+d-1: W-{1,...,d-1} contains no pebbles
```


Step i+d-1: W-{1,...,d-1} contains no pebbles

Positive Result: Consequences

Theorem [ABP16]: Let G=(V,E) be (e,d)-depth robust then $E_R(G) \ge ed$.

Theorem[**EGS75**]: There is an $(\Omega(n), \Omega(n))$ -depth robust DAG G with indegree $\delta = O(\log n)$.

Theorem [**ABP16**] There is a DAG G with maximum indegree $\delta = 2$ and $E_R(G) = \Omega\left(\frac{n^2}{\log n}\right)$. Furthermore, there is a sequential pebbling algorithm N with cost $E_R(N) = O\left(\frac{n^2}{\log n}\right)$.

More New Results

MHF	Upper Bound	Lower Bound
Argon2i-A	$\tilde{O}(n^{1.71})$ [ABP16] $\tilde{O}(n^{1.75})$ [This work]	$\widetilde{\Omega}(n^{1.66})$ [ABP16]
Catena	$\tilde{O}(n^{1.618})$ [ABP16] $O(n^{1.67})$ [This work]	$\widetilde{\Omega}(n^{1.5})$ [ABP16]
SCRYPT (data dependent)	O(n ²) [Naïve, P12]	$\Omega(n^2)$ [ACPRT16]

Idea: Ápply our attack recursively during balloon phases

(e,d)-reducible curve for Argon2i-A

Recursive Attack

Conclusions

- Depth-robustness is a necessary and sufficient for secure iMHFs
 - [AB16] [ABP16]
- Big Challenge: Improved Constructions of Depth-Robust Graphs
 - We already have constructions in theory [EGS77, PR80, ...]
 - But constants matter!

More Open Questions

- Computational Complexity of Pebbling
 - NP-Hard to determine CC(G) [BZ16]
 - Hardness of Approximation?
- What is CC(Argon2i-B)?
 - Upper Bound: O(n^{1.8})
 - Recursive attack: O(n^{1.77})
 - Lower Bound: $\Omega(n^{1.66})$

[AB16b] [BZ16b]+[ABP16] [BZ16b]

Large Gap Remains

