
Advanced Cryptography
CS 655

Week 5:
• Preprocessing: Bit-Fixing Model to Auxiliary Input
• Compression Arguments
• Memory Hard Functions and Pebbling

1Spring 2023

Homework 1 Due Tonight

Recap: Auxiliary-Input Attacker Model

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Random Oracle Version:
• Offline attacker 𝐴𝐴1 is unbounded and outputs an 𝑆𝑆-bit hint for online attacker 𝐴𝐴2

after viewing entire truth table 𝐻𝐻(.)
• 𝐴𝐴2 will try to win security games using this hint

• (S,T,p)-attacker
• 𝐴𝐴1 outputs a S-bit hint
• 𝐴𝐴2 makes at most T random oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as specified by

parameters p.
• 𝑆𝑆,𝑇𝑇,𝑝𝑝 , 𝜀𝜀 -security  Any 𝑆𝑆,𝑇𝑇,𝑝𝑝 attacker wins with advantage at most 𝜀𝜀

2

Recap: Bit-Fixing Model

• Auxiliary-Input Attacker Model 𝐴𝐴 = 𝐴𝐴1,𝐴𝐴2
• Random Oracle Version:
• Offline attacker 𝐴𝐴1 fixes output of random oracle 𝐻𝐻(.) at P locations and then

outputs a S-bit hint.
• 𝐴𝐴2 initially knows nothing about remaining unfixed values i.e., 𝐻𝐻(𝑥𝑥) picked

randomly for 𝑥𝑥 ∉ 𝑃𝑃 after 𝐴𝐴1 generates hint
• (P,T,p)-attacker

• 𝐴𝐴1 fixes H on at most P locations and outputs S-bit hint
• 𝐴𝐴2 makes at most T random oracle queries
• 𝐴𝐴2 may be constrained in other ways (space/time/signing queries etc…) as specified by

parameters p.

• 𝑆𝑆,𝑇𝑇,𝑝𝑝 , 𝜀𝜀 -security  Any 𝑆𝑆,𝑇𝑇,𝑝𝑝 attacker wins with advantage at most 𝜀𝜀

3

Bit-Fixing Model (Unruh)

• Pro: Much easier to prove lower bounds in Bit-Fixing Model
• Con: Bit-Fixing model is not a compelling model for pre-processing

attacks

• Usage: Lower bound in bit-fixing model  Lower bound in Auxilliary-
Input Model

• This approach yields tight lower-bounds in the Auxilliary-Input Model
for some applications 

• Other applications require a different approach (e.g., compression)

4

Typical Relationship: BF-RO and AI-RO

Example: Set 𝛾𝛾 = 2−2𝜆𝜆 and the advantage is 𝜀𝜀′ + 2 𝑆𝑆+2𝜆𝜆 𝑇𝑇
𝑃𝑃

+ 2−2𝜆𝜆

Balancing: 𝜀𝜀′ usually increases with 𝑃𝑃 i.e., as BF-attacker gets to fix
more and more points.

5

Typical Relationship: BF-RO and AI-RO

So far we have used this result (or similar results for Ideal-Ciphers,
Permutations etc…) as a black-box.

How is this result proved?

6

Preliminary Definitions

• Definition: A (𝑁𝑁,𝑀𝑀)-source is a random variable 𝑿𝑿 with range [𝑀𝑀]𝑁𝑁

• Random Oracle 𝑯𝑯: 𝑁𝑁 → [𝑀𝑀] can be viewed as a random variable 𝑿𝑿 with
range [𝑀𝑀]𝑁𝑁 e.g., if 𝑯𝑯: 𝟎𝟎,𝟏𝟏 𝒏𝒏 → 𝟎𝟎,𝟏𝟏 𝒎𝒎 then we set 𝑀𝑀 = 2𝑚𝑚 and 𝑁𝑁 = 2𝑛𝑛

• Given 𝐼𝐼 ⊆ [𝑁𝑁] (inputs) and 𝑥𝑥 ∈ [𝑀𝑀]𝑁𝑁 let 𝑥𝑥𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| denote the substring
specified by 𝐼𝐼 e.g., value of random oracle on all inputs in 𝐼𝐼

• Dense-Source: 𝑿𝑿 is (1 − 𝛿𝛿) dense if for every subset 𝐼𝐼 ⊆ [𝑁𝑁] (inputs) we
have 𝐻𝐻∞ 𝑋𝑋𝐼𝐼 ≥ 1 − 𝛿𝛿 𝐼𝐼 log2 𝑀𝑀 = 1 − 𝛿𝛿 log2 𝑀𝑀 𝐼𝐼

7
Minimum Entropy: Equivalent statement is that for all 𝑦𝑦 ∈ [𝑀𝑀]|𝐼𝐼| we have Pr 𝑋𝑋𝐼𝐼 = 𝑦𝑦 ≤ |𝑀𝑀|−|𝐼𝐼|(1−𝛿𝛿)

Preliminary Definitions

• Definition: A (𝑁𝑁,𝑀𝑀)-source is a random variable 𝑿𝑿 with range [𝑀𝑀]𝑁𝑁

• Random Oracle 𝑯𝑯: 𝑁𝑁 → [𝑀𝑀] can be viewed as a random variable 𝑿𝑿
with range [𝑀𝑀]𝑁𝑁 e.g., if 𝑯𝑯: 𝟎𝟎,𝟏𝟏 𝒏𝒏 → 𝟎𝟎,𝟏𝟏 𝒎𝒎 then we set 𝑀𝑀 = 2𝑚𝑚
and 𝑁𝑁 = 2𝑛𝑛

• Dense-Source: 𝑿𝑿 is 1 − 𝛿𝛿 −dense if for every subset 𝐼𝐼 ⊆ [𝑁𝑁]
(inputs) we have 𝐻𝐻∞ 𝑋𝑋𝐼𝐼 ≥ 1 − 𝛿𝛿 𝐼𝐼 log2 𝑀𝑀 = 1 − 𝛿𝛿 log2 𝑀𝑀 𝐼𝐼

• Example: Random oracle is 1 − 𝛿𝛿 −dense with 𝛿𝛿 = 0.

8

Preliminary Definitions

• Definition: A (𝑁𝑁,𝑀𝑀)-source is a random variable 𝑿𝑿 with range [𝑀𝑀]𝑁𝑁

• Dense-Source: 𝑿𝑿 is 𝑃𝑃, 1 − 𝛿𝛿 −dense if there is a subset 𝑆𝑆 ⊆ [𝑁𝑁] of size
𝑆𝑆 ≤ 𝑃𝑃 such that for every subset 𝐼𝐼 ⊆ [𝑁𝑁 ∖ 𝑺𝑺] we have

𝐻𝐻∞ 𝑋𝑋𝐼𝐼 ≥ 1 − 𝛿𝛿 𝐼𝐼 log2 𝑀𝑀 = 1 − 𝛿𝛿 log2 𝑀𝑀 𝐼𝐼

• Intuition: Fixed on P coordinates but dense on the rest

• Bit-Fixing Source: 𝑿𝑿 is 𝑃𝑃, 1 −dense i.e., fixed on P and uniform on the
rest

9

Preliminary: Leaky Source

• Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(𝑿𝑿) for
some function f: [𝑀𝑀]𝑁𝑁→ 𝟎𝟎,𝟏𝟏 𝑺𝑺.

• Bayesian Update: Conditional Distribution 𝑿𝑿𝒛𝒛 for all x in [𝑀𝑀]𝑁𝑁 we have
Pr 𝑿𝑿𝒛𝒛 = 𝑥𝑥 ≔ Pr[𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧]

Challenge: It can be difficult to reason about the source 𝑿𝑿𝒛𝒛

Entropy Deficiency: 𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛

In expectation we have 𝐄𝐄 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆, but the actual value can vary depending on
z = f(𝑿𝑿)

10

Proof Strategy

• Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(𝑿𝑿) for
some function f: [𝑀𝑀]𝑁𝑁→ 𝟎𝟎,𝟏𝟏 𝑺𝑺.

• Bayesian Update: Conditional Distribution 𝑿𝑿𝒛𝒛 for all x in [𝑀𝑀]𝑁𝑁 we have
Pr 𝑿𝑿𝒛𝒛 = 𝑥𝑥 ≔ Pr[𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧]

Challenge: It can be difficult to reason about the source 𝑿𝑿𝒛𝒛
Entropy Deficiency: 𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛 𝐄𝐄 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a
convex combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Convex Combination: Let 𝐷𝐷1, … ,𝐷𝐷𝑘𝑘 each be 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense sources. 𝒀𝒀𝒛𝒛 has the
form sample a source 𝑖𝑖 ≤ 𝑘𝑘 with probability 𝑝𝑝𝑖𝑖 then sample from 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense
sources 𝐷𝐷𝑖𝑖

• Number of Fixed Points: 𝑃𝑃𝑃 ≤ 𝑆𝑆𝑧𝑧+log 1/𝛾𝛾
𝛿𝛿 log 𝑀𝑀

11

Proof Strategy

• Leaky-Source (Auxiliary-Input): Online attacker gets hint z = f(𝑿𝑿) for some
function f: [𝑀𝑀]𝑁𝑁→ 𝟎𝟎,𝟏𝟏 𝑺𝑺.

• Bayesian Update: Conditional Distribution 𝑿𝑿𝒛𝒛 for all x in [𝑀𝑀]𝑁𝑁 we have
Pr 𝑿𝑿𝒛𝒛 = 𝑥𝑥 ≔ Pr[𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧]

Challenge: It can be difficult to reason about the source 𝑿𝑿𝒛𝒛
Entropy Deficiency: 𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛 𝐄𝐄 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished from a
𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries.

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

12

Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a
convex combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Define 𝐘𝐘 = 𝑿𝑿𝒛𝒛 . If 𝐘𝐘 is 1 − 𝛿𝛿 -dense then we are done. Otherwise, let 𝐼𝐼 be
the largest subset for which there exists a violation i.e., 𝑦𝑦𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| s.t.

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀

• Let 𝐘𝐘′ denote distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• Claim 1: 𝐘𝐘𝐘 is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ = 𝐼𝐼

• Proof Sketch: If there is a subset 𝑱𝑱 ⊆ [𝑵𝑵\I] and 𝑦𝑦𝐽𝐽 ∈ [𝑀𝑀]|𝐽𝐽| s.t.
Pr 𝒀𝒀𝑱𝑱′ = 𝑦𝑦𝑗𝑗 > 2− 1−𝛿𝛿 𝐽𝐽 log 𝑀𝑀

Then we could take 𝐼𝐼′ = 𝐼𝐼 ∪ 𝐽𝐽 and
Pr 𝒀𝒀𝑰𝑰′ = 𝑦𝑦𝐼𝐼′ = Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 Pr 𝒀𝒀𝑱𝑱 = 𝑦𝑦𝐽𝐽|𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼′ log 𝑀𝑀

This contradicts the maximality of 𝐼𝐼!
13

Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a
convex combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Define 𝐘𝐘 = 𝑿𝑿𝒛𝒛 . If 𝐘𝐘 is 1 − 𝛿𝛿 -dense then we are done. Otherwise, let 𝐼𝐼 be
the largest subset for which there exists a violation i.e., 𝑦𝑦𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| s.t.

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀

• Let 𝐘𝐘′ denote distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• Claim 1: 𝐘𝐘𝐘 is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ = 𝐼𝐼
• Claim 2: 𝐼𝐼 ≤ 𝑆𝑆𝑍𝑍

𝛿𝛿 log 𝑀𝑀
• Proof Sketch: On one hand we have 𝐻𝐻∞ 𝒀𝒀𝑰𝑰 ≥ |𝐼𝐼| log𝑀𝑀 − 𝑆𝑆𝑍𝑍 (def of 𝑆𝑆𝑍𝑍)
• On the other hand 𝐻𝐻∞ 𝒀𝒀𝑰𝑰 < −log𝟐𝟐 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀 = 1 − 𝛿𝛿 𝐼𝐼 log𝑀𝑀
• Claim 2 follows immediately by combining the above two inequalities.

14

Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a convex
combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Define 𝐘𝐘 = 𝑿𝑿𝒛𝒛 . If 𝐘𝐘 is 1 − 𝛿𝛿 -dense then we are done. Otherwise, let 𝐼𝐼 be the
largest subset for which there exists a violation i.e., 𝑦𝑦𝐼𝐼 ∈ [𝑀𝑀]|𝐼𝐼| s.t.

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 > 2− 1−𝛿𝛿 𝐼𝐼 log 𝑀𝑀

• Let 𝐘𝐘′ denote distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• Claim: 𝐘𝐘𝐘 is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ = 𝐼𝐼 with 𝐼𝐼 ≤ 𝑆𝑆𝑍𝑍

𝛿𝛿 log 𝑀𝑀
• Key Idea (Recursion!): 𝒀𝒀𝒛𝒛 uses 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense source 𝐘𝐘𝐘 with probability

Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼 and samples from 𝒀𝒀𝒛𝒛′ with probability 1 − Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
• 𝒀𝒀𝒛𝒛′ is also convex combination of finitely many 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense sources which is

gamma close to 𝒀𝒀𝟏𝟏, the distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 ≠ 𝑦𝑦𝐼𝐼

15

Proof Strategy

• Step 1: Show that any leaky source 𝑿𝑿𝒛𝒛 is 𝛾𝛾-close to a source 𝒀𝒀𝒛𝒛 which is a convex
combination of 𝑃𝑃′, 1 − 𝛿𝛿 -dense sources.

• Key Idea (Recursion!): 𝒀𝒀𝒛𝒛 uses 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense source 𝐘𝐘𝐘 with probability Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼
and samples from 𝒀𝒀𝒛𝒛′ with probability 1 − Pr 𝒀𝒀𝑰𝑰 = 𝑦𝑦𝐼𝐼

• 𝒀𝒀𝒛𝒛′ is also convex combination of finitely many 𝑃𝑃𝑃, 1 − 𝛿𝛿 -dense sources which is
gamma close to 𝒀𝒀𝟏𝟏, the distribution of 𝐘𝐘 conditioned on 𝒀𝒀𝑰𝑰 ≠ 𝑦𝑦𝐼𝐼

• Each step of recursion decreases size of support  finite termination
• Recurse as long as Pr 𝑋𝑋 ∈ Supp 𝑌𝑌𝑘𝑘 > 𝛾𝛾

• Claim: 𝒀𝒀𝒌𝒌′ is 𝑃𝑃𝑃, 1 − 𝛿𝛿 dense with 𝑃𝑃′ ≤
𝑆𝑆𝑍𝑍+log

1
𝛾𝛾

𝛿𝛿 log 𝑀𝑀
• Process ends with Pr 𝑋𝑋 ∈ Supp 𝑌𝑌𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾 replace 𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 with uniform distribution

16

Proof Strategy
• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be

distinguished from corresponding 𝑃𝑃𝑃-bit fixing source Y’ (uniform on
non-fixed coordinates) by a distinguisher making at most T (adaptive)
queries to the source.

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

17

Proof Strategy

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished
from a 𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive)
queries to the source.

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

Proof Intuition:
• WLOG we can assume 𝔇𝔇 is deterministic (otherwise we can fix the random coins that

maximizes the advantage of the distinguisher for 𝔇𝔇) and only queries on non-fixed
points.

• Transcript 𝜏𝜏 is a list of all of the query/answer pairs that distinguisher 𝔇𝔇 makes.

18

Proof Strategy

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished from a
𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive) queries to
the source.

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ Pr 𝔇𝔇𝑌𝑌′ = 1 × 𝑀𝑀𝑇𝑇𝛿𝛿

And
Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

Proof Intuition: Transcript 𝜏𝜏 is a list of all of the query/answer pairs that distinguisher 𝔇𝔇 makes.
• Let 𝑇𝑇𝑋𝑋𝑋 (resp. 𝑇𝑇𝑌𝑌′) denote random variable over transcripts resulting from interaction with

source X’ (resp. Y’).
• Note: The support of 𝑇𝑇𝑌𝑌𝑌 contains the support of 𝑇𝑇𝑋𝑋𝑋
• For every transcript 𝜏𝜏 in the support of 𝑇𝑇𝑋𝑋′ we have

Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 2− 1−𝛿𝛿 𝑇𝑇 log 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏 = 2−𝑇𝑇 log 𝑀𝑀
Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏

19

Proof Strategy

• Step 2: Show that a 𝑃𝑃′, 1 − 𝛿𝛿 -dense source X’ cannot be distinguished
from a 𝑃𝑃𝑃-bit fixing source Y’ by a distinguisher making at most T (adaptive)
queries to the source.

Pr 𝔇𝔇𝑋𝑋′ = 1 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 × Pr 𝔇𝔇𝑌𝑌′ = 1
And

Pr 𝔇𝔇𝑋𝑋′ = 1 − Pr 𝔇𝔇𝑌𝑌′ = 1 ≤ 𝑇𝑇𝑇𝑇 log𝑀𝑀

Proof Intuition: For every transcript 𝜏𝜏 in the support of 𝑇𝑇𝑌𝑌𝑌 we have
Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 2− 1−𝛿𝛿 𝑇𝑇 log 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏 = 2−𝑇𝑇 log 𝑀𝑀

Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏
Let 𝒯𝒯𝔇𝔇 denote the set of all transcripts where 𝔇𝔇 outputs 1.

Pr 𝔇𝔇𝑋𝑋′ = 1 = �
𝜏𝜏∈𝒯𝒯𝔇𝔇

Pr 𝑇𝑇𝑋𝑋′ = 𝜏𝜏 ≤ 𝑀𝑀𝑇𝑇𝑇𝑇 �
𝜏𝜏∈𝒯𝒯𝔇𝔇

Pr 𝑇𝑇𝑌𝑌′ = 𝜏𝜏 = 𝑀𝑀𝑇𝑇𝑇𝑇 × Pr 𝔇𝔇𝑌𝑌′ = 1

20

21

22

One Missing Link Remains! Prior bounds relied on entropy deficiency
𝑆𝑆𝑧𝑧 = 𝑁𝑁 log𝑀𝑀 −𝐻𝐻∞ 𝑿𝑿𝒛𝒛 instead of S.

Claim: 𝐸𝐸 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆 and Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log 1
𝛾𝛾
≤ 𝛾𝛾

Key Fact: Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2−𝑆𝑆𝑧𝑧
23

Claim: 𝐸𝐸 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆 and Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log 1
𝛾𝛾
≤ 𝛾𝛾

Key Fact: Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2−𝑆𝑆𝑧𝑧
Proof: By definition of 𝑆𝑆𝑧𝑧 (min-entropy deficiency) there exists 𝑥𝑥 ∈ [𝑀𝑀]𝑁𝑁

with 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 such that Pr 𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧 = 2𝑆𝑆𝑧𝑧

𝑀𝑀𝑁𝑁. We have
1
𝑀𝑀𝑁𝑁 = Pr 𝑋𝑋 = 𝑥𝑥 = Pr 𝑋𝑋 = 𝑥𝑥|𝑓𝑓 𝑋𝑋 = 𝑧𝑧 Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 =

2𝑆𝑆𝑧𝑧
𝑀𝑀𝑁𝑁 Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧

24

Claim: 𝐸𝐸 𝑆𝑆𝑧𝑧 ≤ 𝑆𝑆 and Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log 1
𝛾𝛾
≤ 𝛾𝛾

Key Fact: Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2−𝑆𝑆𝑧𝑧

Pr 𝑆𝑆𝑓𝑓 𝑋𝑋 > 𝑆𝑆 + log
1
𝛾𝛾

= �
𝑧𝑧∈ 0,1 𝑆𝑆 𝑠𝑠.𝑡𝑡

𝑆𝑆𝑧𝑧>𝑆𝑆+log
1
𝛾𝛾

Pr 𝑓𝑓 𝑋𝑋 = 𝑧𝑧 ≤ 2𝑆𝑆 × 2− 𝑆𝑆+log1𝛾𝛾 ≤ 𝛾𝛾

25

26

27

Memory Hard Functions, Random
Oracles, Graph Pebbling and

Extractor Arguments

Jeremiah Blocki

28

Motivation: Password Storage

29

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f584e
3db87aa72630a9a2
345c062

Salt

89d978034a3f6

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

https://password-hashing.net/

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…
There are two main versions of
Argon2, Argon2i and Argon2d.
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Goal: force attacker to lock up large amounts of memory for duration
of computation
Expensive even on customized hardware

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input

Data-Independent Memory Hard Function 𝑓𝑓𝐺𝐺,𝐻𝐻

• H: 0,1 2𝑘𝑘 → 0,1 𝑘𝑘 (Random Oracle)
• DAG G (encodes data-dependencies)

• Maximum indegree: 𝛿𝛿 = O 1
• N = 2n nodes

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1

Evaluating an iMHF (pebbling)

1 2 3 4 51 3 4 5

1 2 3 4 5

P1 = {1} (data value L1 stored in memory)

Evaluating an iMHF (pebbling)

Evaluating an iMHF (pebbling)

1 2 3 4 5

P1 = {1}
P2 = {1,2} (data values L1 and L2 stored in memory)

Evaluating an iMHF (pebbling)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

Evaluating an iMHF (pebbling)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}

Evaluating an iMHF (pebbling)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}

Measuring Pebbling Cost: Attempt 1

• Space × Time (ST)-Complexity

ST 𝐺𝐺 = min
𝑃𝑃

𝑡𝑡𝑃𝑃 × max
𝑖𝑖≤𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖
• Rich Theory

• Space-time tradeoffs
• But not appropriate for password hashing

time

sp
ac

e

m

t

ST Cost

Amortization and Parallelism

• Problem: for parallel computation ST-complexity can scale badly in the number of
evaluations of a function.

[AS15] ∃ function fn (consisting of n RO calls) such that: 𝑆𝑆𝑆𝑆 𝑓𝑓× 𝑛𝑛 = 𝑂𝑂(𝑆𝑆𝑆𝑆 𝑓𝑓)

time

sp
ac

e S1

T1

ST1 = S1 × T1 ≈ S3 × T3 = ST3
S3

T3

cost of computing
f once

cost of computing
f three times

Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

• Guessing two passwords doubles the attackers cost
CC 𝐺𝐺,𝐺𝐺 = 2 × CC(𝐺𝐺)

Memory Used at Step i

Approximates
Amortized Area x Time
Complexity of iMHF

Measuring Pebbling Costs [AS15]

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

Memory Used at Step iApproximates
Amortized Area x Time
Complexity of iMHF Cumulative Memory Cost

iterations

sp
ac

e

Pebbling Example (CC)

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}

CC 𝐺𝐺 ≤�
𝑖𝑖=1

5

𝑃𝑃𝑖𝑖

= 1 + 2 + 1 + 2 + 1
= 7

Desiderata

Find a DAG G on n nodes such that
1. Constant Indegree (𝛿𝛿 = 2)

• Running Time: 𝑛𝑛 𝛿𝛿 − 1 = 𝑛𝑛

2. CC(G) ≥ 𝑛𝑛2

𝜏𝜏
for some small value 𝜏𝜏.

Maximize costs for fixed running time n
(Users are impatient)

DAGs with Maximal CC(G)

• Challenge 1: Design a constant indegree DAG G maximizing CC(G)
• Depth-Robust Graphs are necessary [AB16] and sufficient [ABP17]
• Argon2i (PHC winner) is not depth-robust

 CC G = o 𝑛𝑛1.767 ≪ 𝑛𝑛2 [AB16,AB17,ABP17,BZ17]
• Any DAG with constant indegree has CC G = 𝑂𝑂 𝑛𝑛2 log log𝑛𝑛 / log𝑛𝑛 at most
• Theoretical [ABP17] then practical [ABH17] construction of depth-robust graphs

 CC G = Ω 𝑛𝑛2/ log𝑛𝑛 [AB16,AB17,ABP17,BZ17]

• Open Problem 1: Construct G with CC G = Ω 𝑛𝑛2 log log𝑛𝑛 / log𝑛𝑛
• Conjecture: [BHKLXZ19] achieves this goal.

• Open Problem 2: Tighten constants in upper/lower bounds

53

Question: CC(G)  cumulative memory cost?

Bad Case: H(x,y)=x+y mod 2w  𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝑘𝑘𝐺𝐺 × 𝑥𝑥 e.g., 𝑘𝑘𝐺𝐺 = 3 (above)
𝑘𝑘𝐺𝐺 = 2𝑛𝑛−2 (complete)

Computing fG,H x is fast + requires minimal memory.
(even if pebbling cost CC(G) is large!)

54

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥, 0)

1

Independent of input!

Question: CC(G)  cumulative memory cost?

Theorem [AS15]: (in parallel random oracle
model)
𝐴𝐴 𝑥𝑥 = 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 cmc A = Ω 𝑤𝑤 × 𝐶𝐶𝐶𝐶(𝐺𝐺)

55

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1

1
2

3
4

1

Random Oracle Model (PROM)

56

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

• Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgård)

• Model hash function H as a random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same
response

• If x has not been queried, then the value of H(x) is
uniform

Random Oracle Model: Prediction Game

Prediction Game: 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘 ← 𝐴𝐴𝐻𝐻(.) wins the prediction
game if
1. 𝑦𝑦1 = 𝐻𝐻 𝑥𝑥1 , … ,𝑦𝑦𝑘𝑘 = 𝐻𝐻 𝑥𝑥𝑘𝑘 and
2. the inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 are all fresh i.e., A never queried 𝐻𝐻 𝑥𝑥𝑖𝑖

Fact 1: Any algorithm 𝐴𝐴𝐻𝐻(.) wins the prediction game with
probability at most 2−𝑘𝑘𝑘𝑘 over the choice of 𝐻𝐻(.).

Intuition: A never queries 𝐻𝐻 𝑥𝑥1 → can view 𝐻𝐻 𝑥𝑥1 as a (yet to be
sampled) random string

57

Random Oracle Model: Prediction Game

Prediction Game: 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ← 𝐴𝐴𝐻𝐻(.) wins the prediction game if
1. 𝑦𝑦1 = 𝐻𝐻 𝑥𝑥1 , … ,𝑦𝑦𝑘𝑘 = 𝐻𝐻 𝑥𝑥𝑘𝑘 and
2. the inputs 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 are all fresh i.e., A never queried 𝐻𝐻 𝑥𝑥𝑖𝑖

Fact 1: Any algorithm 𝐴𝐴𝐻𝐻(.) wins the prediction game with probability at most
2−𝑘𝑘𝑘𝑘 over the choice of 𝐻𝐻(.).

Fact 2 (Incompressibility of ROs): Any algorithm 𝐴𝐴𝐻𝐻 . (ℎ) given a s-bit hint h
(which may depend on 𝐻𝐻 .) wins the prediction game with probability at most
2−𝑘𝑘𝑘𝑘+𝑠𝑠
Proof Intuition: Otherwise we can win without hint with probability > 2−𝑘𝑘𝑘𝑘

58
Reduction: Guess correct hint h with probability 2−𝑠𝑠 and run 𝐴𝐴𝐻𝐻 . (ℎ)

Parallel Random Oracle Model (PROM)

59

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

• PROM Algorithm 𝒜𝒜(x)
• Initial Input/State: 𝜎𝜎0 = 𝑥𝑥
• 𝜎𝜎1, 𝑞𝑞1 = 𝑥𝑥11, … , 𝑥𝑥𝑟𝑟1

1 ← 𝒜𝒜 𝜎𝜎0
• New State + Batch of Random Oracle Queries

• 𝑎𝑎1 = (𝐻𝐻(𝑥𝑥11), … ,𝐻𝐻(𝑥𝑥𝑟𝑟1
1))

• Answers to Random Oracle Queries

• 𝜎𝜎2, 𝑞𝑞2 = 𝑥𝑥12, … 𝑥𝑥𝑟𝑟2
2 ← 𝒜𝒜 𝜎𝜎1,𝑎𝑎1

• ….
• 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 = 𝑥𝑥1𝑖𝑖 , … 𝑥𝑥𝑟𝑟𝑖𝑖

𝑖𝑖 ← 𝒜𝒜 𝜎𝜎𝑖𝑖−1,𝑎𝑎𝑖𝑖−1
• ….
• 𝑦𝑦 ← 𝒜𝒜 𝜎𝜎𝑡𝑡,𝑎𝑎𝑡𝑡

One round of computation.
1. 𝒜𝒜 receives prior answers 𝑎𝑎𝑖𝑖−1
2. 𝒜𝒜 performs arbitrary computation
3. 𝒜𝒜 outputs 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 new state + new

queries

Parallel Random Oracle Model (PROM)

60

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

• PROM Algorithm 𝒜𝒜(x)
• Fixing 𝒜𝒜, x and H we get an execution trace

Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1
𝑡𝑡

• Cumulative Memory Cost of Execution Trace

cmc Trace𝒜𝒜,H x = �
𝑖𝑖=1

𝑡𝑡

𝜎𝜎𝑖𝑖 + |𝑎𝑎𝑖𝑖|

• Cumulative Memory Cost of a Function
cmc 𝑓𝑓𝐺𝐺,𝐻𝐻 = min

𝒜𝒜,x
𝔼𝔼𝐻𝐻 cmc Trace𝒜𝒜,H x

Min over inputs x and PROM
algorithms 𝒜𝒜 evaluating 𝑓𝑓𝐺𝐺,𝐻𝐻

Expectation over selection of
random oracle

Collision Problem

61

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

Collision Problem: Suppose that we are asked to find 𝑥𝑥 ≠ 𝑥𝑥′
s.t. 𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥𝑥

What is the probability we can succeed given q queries to the
random oracle?

Answer: ≤ 𝑞𝑞22−𝑤𝑤

Explanation: Let 𝒙𝒙𝟏𝟏, … , 𝒙𝒙𝒒𝒒 be the queries we make

𝐏𝐏𝐏𝐏 𝐻𝐻 𝑥𝑥𝑖𝑖+1 ∈ 𝐻𝐻 𝑥𝑥1 , … ,𝐻𝐻 𝑥𝑥𝑖𝑖 ≤ 𝑖𝑖 × 2−𝑤𝑤

∴ 𝐏𝐏𝐏𝐏 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≤�
𝒊𝒊≤𝒒𝒒

𝑖𝑖 × 2−𝑤𝑤 (Union Bound over Each Round)

(Prob Collision at time i+1)

Label Distinctness

62

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

Label Distinctness: Suppose we are given a directed acyclic graph G on n
nodes V={1,…,n} with indegree 2 and such that each node v > 2 has two
parents v-1 and r(v)<v-1. Let

Let 𝑥𝑥 = 𝐿𝐿0 be the initial input (w-bits) and define labels 𝐿𝐿1 =
𝐻𝐻 𝑥𝑥0, 0𝑤𝑤 , 𝐿𝐿2 = 𝐻𝐻 𝐿𝐿1, 0𝑤𝑤 ,

𝐿𝐿3 = 𝐻𝐻 𝐿𝐿2, 𝐿𝐿1
…

𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)
…

𝐿𝐿𝑛𝑛 = 𝐻𝐻 𝐿𝐿𝑛𝑛−1, 𝐿𝐿𝑟𝑟(𝑛𝑛)

Question: What is the probability that two labels collide?

Label Distinctness

63

…
𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)

…

Question: What is the probability that two labels collide?

Let 𝐔𝐔𝒊𝒊 be the event that labels 𝐿𝐿1, … , 𝐿𝐿𝑖𝑖 are all distinct

Pr 𝐔𝐔𝒊𝒊|𝐔𝐔𝒊𝒊−𝟏𝟏 = Pr 𝐻𝐻 𝐿𝐿𝑖𝑖−1, 𝐿𝐿𝑟𝑟(𝑖𝑖) ∈ 𝐿𝐿1, … , 𝐿𝐿𝑖𝑖−1 |𝐔𝐔𝒊𝒊−𝟏𝟏 ≤ (𝑖𝑖 − 1)2−𝑤𝑤

𝐿𝐿𝑖𝑖−1 unique  fresh query! 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵!

Label Distinctness

64

…
𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)

…

Question: What is the probability that two labels collide?

Let 𝐔𝐔𝒊𝒊 be the event that labels 𝐿𝐿1, … , 𝐿𝐿𝑖𝑖 are all distinct

Pr 𝐔𝐔𝒊𝒊|𝐔𝐔𝒊𝒊−𝟏𝟏 ≤ (𝑖𝑖 − 1)2−𝑤𝑤

Pr 𝐔𝐔𝒏𝒏 ≤�
𝑖𝑖≤𝑛𝑛

𝑖𝑖 − 1 2−𝑤𝑤 ≤ 𝑛𝑛22−𝑤𝑤

Label Collision

65

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

…
𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)

Question: Suppose we can make at most q queries to the random
oracle. What is the probability we find some z s.t. 𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝑧𝑧 but z ≠
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝐯𝐯) for some node v?

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝒗𝒗 = 𝐿𝐿𝑣𝑣−1, 𝐿𝐿𝑟𝑟(𝑣𝑣)

Label Collision

66

x H(x)
00 … .00 𝑟𝑟0
00 … .01 𝑟𝑟1

…

…

11 … .11 𝑟𝑟2𝑛𝑛−1

Question: Suppose we can make at most q queries to the random
oracle. What is the probability we find some z s.t. 𝐿𝐿𝑣𝑣 = 𝐻𝐻 𝑧𝑧 but z ≠
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝐯𝐯) for some node v?

Answer: at most 𝑛𝑛𝑞𝑞𝑞−𝑤𝑤

Let 𝑧𝑧𝑖𝑖 be ith query to random oracle such that 𝑧𝑧𝑖𝑖 ≠ 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝒗𝒗 for any
node 𝒗𝒗 ≤ 𝒏𝒏 then we have

𝐏𝐏𝐏𝐏 𝐻𝐻 𝑧𝑧𝑖𝑖 ∈ 𝐿𝐿1, … , 𝐿𝐿𝑛𝑛 ≤ 𝑛𝑛2−𝑤𝑤

𝐏𝐏𝐏𝐏 ∃𝒊𝒊 ≤ 𝑞𝑞.𝐻𝐻 𝑧𝑧𝑖𝑖 ∈ 𝐿𝐿1, … , 𝐿𝐿𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛2−𝑤𝑤

Ex Post Facto Pebbling

• Fixing 𝒜𝒜, x and H we get an execution trace
Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1

𝑡𝑡

• Track 𝐿𝐿𝑣𝑣 for each node v
• Note rounds where 𝐿𝐿𝑣𝑣 appear as the input to random oracle query?
• Note rounds does 𝐿𝐿𝑣𝑣 appear as an the output to a random oracle query?
• Define Need(v,i)=1 if and only if the next time (after round i) label 𝐿𝐿𝑣𝑣 appears

it is as an input; otherwise Need(v,i)=0

• Pi = v ∶ Need v, i = 1

67

I0 0 I 0 0
Rounds where v occurs as output 0 or input I t0

Need(v,i)=0

I

Need(v,i)=1

Ex Post Facto Pebbling

• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?
• Order(v) be the bad event 𝐿𝐿𝑣𝑣 is used as an RO input before it has

appeared as an output

68

I0 0 I 0 0
Rounds where v occurs as output 0 or input I t0

I

Expected order

I 0 I 0 0

t0

I

Unexpected order

Rounds where v occurs as output 0 or input I

Ex Post Facto Pebbling
• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Proof Sketch:
Observation 1: If the bad event Order(v) never occurs for any node v
then the pebbling is legal (follows from definition of Need(v,i))

69

Ex Post Facto Pebbling
• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Proof Sketch:
Observation 2: If 𝐿𝐿𝑣𝑣 has not yet appeared as output then the
probability a particular query includes 𝐿𝐿𝑣𝑣 as input early is at most 2−𝑤𝑤

Pr Order v ≤ 𝑞𝑞2−𝑤𝑤 (Union Bound over all q queries)
(𝐿𝐿𝑣𝑣 can be viewed as random w-bit string before it first appears)

70

Ex Post Facto Pebbling

• Pi = v ∶ Need v, i = 1  does this give us a legal pebbling?

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Proof Sketch: Let Order(v) be the bad event 𝐿𝐿𝑣𝑣 is used as an RO input
before it has appeared as an output. Union Bounding

Pr ∃𝑣𝑣 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑣𝑣) ≤ nPr 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑣𝑣 ≤ 𝑛𝑛𝑛𝑛2−𝑤𝑤

(𝐿𝐿𝑣𝑣 can be viewed as random w-bit string before it first appears)

71

Ex Post Facto Pebbling

• Fixing 𝒜𝒜, x and H we get an execution trace
Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1

𝑡𝑡

Claim 1: Suppose that 𝒜𝒜 computes 𝑓𝑓𝐺𝐺,𝐻𝐻 and makes at most q random
oracle queries then P = 𝑃𝑃1, … ,𝑃𝑃𝑡𝑡 is a legal pebbling (except with
probability O(𝑞𝑞𝑞𝑞2−𝑤𝑤).
Observation: If P is legal then CC(P) ≥ 𝐶𝐶𝐶𝐶(𝐺𝐺)

(definition of 𝐶𝐶𝐶𝐶(𝐺𝐺) as best pebbling of G)

72

Extractor Argument

• Fixing 𝒜𝒜, x and H we get an execution trace
Trace𝒜𝒜,H x = 𝜎𝜎𝑖𝑖 , 𝑞𝑞𝑖𝑖 ,𝑎𝑎𝑖𝑖 𝑖𝑖=1

𝑡𝑡

Observation: CC(P) ≥ 𝐶𝐶𝐶𝐶(𝐺𝐺) (definition of 𝐶𝐶𝐶𝐶(𝐺𝐺))

Claim 2: For each round i we have 𝜎𝜎𝑖𝑖 + 𝑎𝑎𝑖𝑖−1 ≥ w 𝑃𝑃𝑖𝑖 /2
Proof Idea: Extractor argument. Suppose for contradiction that 𝜎𝜎𝑖𝑖 +
𝑎𝑎𝑖𝑖−1 < w 𝑃𝑃𝑖𝑖 /2.

We will build an extractor that outputs 𝑃𝑃𝑖𝑖 labels given a hint of size
w 𝑃𝑃𝑖𝑖 /2 + 𝑜𝑜(w 𝑃𝑃𝑖𝑖). This yields a contradiction of incompressibility!

73

Extractor Hint
Claim 2: For each round i we have 𝜎𝜎𝑖𝑖 + |𝑎𝑎𝑖𝑖−1| ≥ w 𝑃𝑃𝑖𝑖 /2
Hint: h
• Initial State: 𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖−1 (used to simulate 𝒜𝒜 at most w 𝑃𝑃𝑖𝑖 /2 bits)
• Encoding of 𝑃𝑃𝑖𝑖 (𝑃𝑃𝑖𝑖 log𝑛𝑛 bits)
• For each v ∈ 𝑃𝑃𝑖𝑖 index 𝑖𝑖𝑣𝑣 of next random oracle query where label 𝐿𝐿𝑣𝑣 appears as input

(𝑃𝑃𝑖𝑖 log 𝑞𝑞 bits)
• For each v ∈ 𝑃𝑃𝑖𝑖 index 𝑜𝑜𝑣𝑣 of next random oracle query where label 𝐿𝐿𝑣𝑣 appears as output

(𝑃𝑃𝑖𝑖 log 𝑞𝑞 bits)
• Total Hint Length: w 𝑃𝑃𝑖𝑖 /2 + 𝑜𝑜(w 𝑃𝑃𝑡𝑡).

Extractor argument. Suppose for contradiction that 𝜎𝜎𝑖𝑖 < w 𝑃𝑃𝑡𝑡 /2.
We will build an extractor that outputs 𝑃𝑃𝑡𝑡 labels given a hint of size 𝜎𝜎𝑖𝑖 + 𝑜𝑜(w 𝑃𝑃𝑡𝑡). This yields a
contradiction of incompressibility!

74

Extractor: Simulating Attacker

75

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖−1)

𝜎𝜎𝑖𝑖+1, 𝑞𝑞𝑖𝑖 ,Pi Label Input
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 ??? (i+1,2) (i+2,1)

… …

𝑎𝑎𝑖𝑖 = 𝐻𝐻 𝑞𝑞𝑖𝑖[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖[2] , … ,

Extractor: Simulating Attacker

76

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+1,𝑎𝑎𝑖𝑖)

𝜎𝜎𝑖𝑖+2, 𝑞𝑞𝒊𝒊+𝟏𝟏,Pi Label Input
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 ??? (i+1,2) (i+2,1)

… …
Extract!
𝑞𝑞𝑖𝑖+1[2] contains 𝑳𝑳𝒗𝒗𝟐𝟐

Extractor: Simulating Attacker

77

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+1,𝑎𝑎𝑖𝑖)

𝜎𝜎𝑖𝑖+2, 𝑞𝑞𝑖𝑖+1,Pi Label Input
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) (i+2,1)

… …

𝑎𝑎𝑖𝑖+1 = 𝐻𝐻 𝑞𝑞𝑖𝑖+1[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖+1[2] , … ,

Extract!
𝑞𝑞𝑖𝑖+1[2] contains 𝑳𝑳𝒗𝒗𝟐𝟐

Extractor: Simulating Attacker

78

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+2,𝑎𝑎𝑖𝑖+1)

𝜎𝜎𝑖𝑖+3, 𝑞𝑞𝑖𝑖+2Pi Label Input
Query

Output
Query

v1 ??? (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) (i+2,1)

… …
Extract! H 𝑞𝑞𝑖𝑖+2 4 = 𝑳𝑳𝒗𝒗𝟏𝟏

Extractor: Simulating Attacker

79

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+2,𝑎𝑎𝑖𝑖+1)

𝜎𝜎𝑖𝑖+3, 𝑞𝑞𝑖𝑖+2Pi Label Input
Query

Output
Query

v1 𝑳𝑳𝒗𝒗𝟏𝟏 (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) (i+2,1)

… …
Danger! H 𝑞𝑞𝑖𝑖+2 1 = 𝑳𝑳𝒗𝒗𝟐𝟐
Do not submit this query!

𝑎𝑎𝑖𝑖+2 = 𝐻𝐻 𝑞𝑞𝑖𝑖+2[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖+2[2] , … ,

Extractor: Simulating Attacker

80

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+2,𝑎𝑎𝑖𝑖+1)

𝜎𝜎𝑖𝑖+3, 𝑞𝑞𝑖𝑖+2Pi Label Input
Query

Output of
Query

v1 𝑳𝑳𝒗𝒗𝟏𝟏 (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) 𝑞𝑞𝑖𝑖+2 1

… …

𝑎𝑎𝑖𝑖+2 = 𝑳𝑳𝒗𝒗𝟐𝟐 ,𝐻𝐻 𝑞𝑞𝑖𝑖+2[2] , … ,

Danger! H 𝑞𝑞𝑖𝑖+2 1 = 𝑳𝑳𝒗𝒗𝟐𝟐
Do not submit this query!

Extractor: Simulating Attacker

81

Extractor E
Hint: h = (𝜎𝜎𝑖𝑖, 𝑎𝑎𝑖𝑖−1 𝑃𝑃𝑖𝑖 , …) Random Oracle

𝐻𝐻: 0,1 ∗ → 0,1 𝑤𝑤

Simulate
𝒜𝒜(𝜎𝜎𝑖𝑖+3,𝑎𝑎𝑖𝑖+2)

𝜎𝜎𝑖𝑖+4, 𝑞𝑞𝑖𝑖+3Pi Label Input
Query

Output of
Query

v1 𝑳𝑳𝒗𝒗𝟏𝟏 (i+2,4) (i+10,5)

v2 𝑳𝑳𝒗𝒗𝟐𝟐 (i+1,2) 𝑞𝑞𝑖𝑖+2 1

… …

𝑎𝑎𝑖𝑖+3 = 𝐻𝐻 𝑞𝑞𝑖𝑖+3[1] ,𝐻𝐻 𝑞𝑞𝑖𝑖+3[2] , … ,

𝑒𝑒𝑡𝑡𝑡𝑡…

Extractor: Simulating Attacker
Claim 2: For each round i we have 𝜎𝜎𝑖𝑖 ≥ w 𝑃𝑃𝑖𝑖 /2
Hint:
• simulate 𝒜𝒜 from initial state: 𝜎𝜎𝑖𝑖

• Forward random oracle queries to H(.) (* One Exception Below *)
• For each v ∈ 𝑃𝑃𝑖𝑖 wait for first query where 𝐿𝐿𝑣𝑣 appears as input and record
𝐿𝐿𝑣𝑣 (by definition of 𝑃𝑃𝑖𝑖 this occurs before 𝐿𝐿𝑣𝑣 appears as output)

• For each v ∈ 𝑃𝑃𝑖𝑖 wait for first query 𝑜𝑜𝑣𝑣 which produces output 𝐿𝐿𝑣𝑣
• Do not forward this query to H(.)
• Simply record the response 𝐿𝐿𝑣𝑣
• Technical Note: Extractor can simply run naïve evaluation algorithm for𝑓𝑓𝐺𝐺,𝐻𝐻(𝑥𝑥) after

simulating 𝒜𝒜 to ensure that for each v ∈ 𝑃𝑃𝑖𝑖 there is some round where 𝐿𝐿𝑣𝑣 is output

82

Extractor:
• Outputs 𝐿𝐿𝑣𝑣 for each v ∈ 𝑃𝑃𝑖𝑖
• Generate remaining labels 𝐿𝐿𝑣𝑣 for each v ∉ 𝑃𝑃𝑖𝑖

• Can be done querying random oracle at 𝑥𝑥𝑣𝑣 s.t. 𝐻𝐻 𝑥𝑥𝑣𝑣 = 𝐿𝐿𝑣𝑣
• Yields k ``fresh” input output pairs (𝑥𝑥𝑣𝑣, 𝐿𝐿𝑣𝑣) for each v ∈ 𝑃𝑃𝑖𝑖 as long as

all labels 𝐿𝐿𝑣𝑣 are distinct
Pr[∃ 𝑢𝑢, 𝑣𝑣 . 𝐿𝐿𝑣𝑣 = 𝐿𝐿𝑢𝑢] ≤ 𝑛𝑛22−𝑤𝑤

83

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1

Extractor: Yields k = 𝑃𝑃𝑖𝑖 ``fresh” input output pairs (𝑥𝑥𝑣𝑣, 𝐿𝐿𝑣𝑣) for each v ∈ 𝑃𝑃𝑖𝑖
as long as all labels 𝐿𝐿𝑣𝑣 are distinct and pebbling is legal

Pr[∃ 𝑢𝑢, 𝑣𝑣 . 𝐿𝐿𝑣𝑣 = 𝐿𝐿𝑢𝑢] ≤ 𝑛𝑛22−𝑤𝑤

→ Pr 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 1 − 𝑛𝑛22−𝑤𝑤 − 𝑞𝑞𝑞𝑞2−𝑤𝑤

Contradiction! Extractor can succeed with probability at most 2−𝑘𝑘𝑘𝑘/2+𝑜𝑜(𝑘𝑘𝑘𝑘)

84

1
2

3
4 Output: 𝑓𝑓𝐺𝐺,𝐻𝐻 𝑥𝑥 = 𝐿𝐿𝑁𝑁

= 𝐻𝐻(𝐿𝐿2, 𝐿𝐿3)
Input: x

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿1, 𝐿𝐿2)𝐿𝐿1 = 𝐻𝐻(𝑥𝑥)

1

Reflection: Extractor Argument

• What properties of the random oracle did we use?

• Simulatability/Delayed Sampling:
• Can view H(x) as uniformly random string that is yet to be sampled

• (until x is actually queried)
• used to analyze the probability that a label Lv appears out of order (also collisions)

• Extractability of Queries:
• When attacker submits random oracle query the extractor gets to see the

query (and the response)

85

Quantum Random Oracle Model

• Similar to classical random oracle model except that input is an
entangled quantum state

�
𝑥𝑥

𝛼𝛼𝑥𝑥| ⟩𝑥𝑥,𝑦𝑦 →
𝐻𝐻
�
𝑥𝑥

𝛼𝛼𝑥𝑥| ⟩𝑥𝑥,𝑦𝑦⨁𝐻𝐻(𝑥𝑥)

• Realistic model for any realization of the random oracle e.g., can
implement SHA3 as a quantum circuit

• Challenge: extractor needs to view random oracle queries

86

87

Evaluating an iMHF (pebbling)

Pebbling Rules : 𝑃𝑃=P1,…,Pt⊂ 𝑉𝑉 s.t.
• Pi+1⊂ Pi ∪ 𝑥𝑥 ∈ 𝑉𝑉 parents 𝑥𝑥 ⊂ Pi+1 (need dependent values)
• n∈ Pt (must finish and output Ln)

1
2

3

4 Output: L4Input:
pwd, salt

𝐿𝐿3 = 𝐻𝐻(𝐿𝐿2, 𝐿𝐿1)𝐿𝐿1 = 𝐻𝐻(𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1

Measuring Pebbling Costs [AS15]

• Cumulative Complexity (CC)

CC 𝐺𝐺 = min
𝑃𝑃

�
𝑖𝑖=1

𝑡𝑡𝑃𝑃

𝑃𝑃𝑖𝑖

• Guessing two passwords doubles the attackers cost
CC 𝐺𝐺,𝐺𝐺 = 2 × CC(𝐺𝐺)

Memory Used at Step i

Approximates
Amortized Area x Time
Complexity of iMHF

Naïve: Pebbling Strategy

1 2 3 4 51 3 4 5

Naïve: Pebbling Strategy

1 2 3 4 5

P1 = {1}

Naïve: Pebbling Strategy

1 2 3 4 5

P1 = {1}
P2 = {1,2}

Naïve: Pebbling Strategy

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}

1 2 3 4 5

Naïve: Pebbling Strategy

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}

1 2 3 4 5

P4 = {1, 2, 3, 4}

Naïve: Pebbling Strategy

1 2 3 4 5

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}
P4 = {1, 2, 3, 4}
P5 = {1, 2, 3, 4, 5}

Naïve: Pebbling Strategy (CC)

P1 = {1}
P2 = {1,2}
P3 = {1,2, 3}

1 2 3 4 5

P4 = {1,2, 3,4}
P5 = {1,2,3,4,5}

CC 𝐺𝐺 ≤�
𝑖𝑖=1

5

𝑃𝑃𝑖𝑖

= 1 + 2 + 3 + 4 + 5
= 15

Naïve Pebbling Algorithms

• Naïve (Pebble in Topological Order)
• Never discard pebbles
• Legal Pebbling Strategy for any DAG!
• Pebbling Time: n
• Sequential: Place one new pebble on the graph in each round

Theorem: Any DAG G has 𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ ∑𝑖𝑖≤𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

Proof: Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 ?

Improved Pebbling

1 2 3 4 51 3 4 5

Improved Pebbling

1 2 3 4 5

P1 = {1}

Improved Pebbling

1 2 3 4 5

P1 = {1}
P2 = {1,2}

Improved Pebbling

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

Improved Pebbling

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}

Improved Pebbling

P1 = {1}
P2 = {1,2}
P3 = {3}

1 2 3 4 5

P4 = {3,4}
P5 = {5}

Graphs with High CC

Theorem: Any DAG G has 𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ ∑𝑖𝑖≤𝑛𝑛 𝑖𝑖 = 𝑛𝑛(𝑛𝑛+1)
2

Proof: Naïve pebbling strategy is legal strategy for any DAG G!

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 ?

Claim: The complete DAG has 𝐶𝐶𝐶𝐶 𝐺𝐺 ≥ ∑𝑖𝑖≤𝑛𝑛−1 𝑖𝑖 = 𝑛𝑛 𝑛𝑛−1
2

= Ω 𝑛𝑛2 ?

Proof: Consider the round immediately before we first place a pebble on
node i+1. We must have had pebbles on all of the nodes {1,…,i}.

Question: Can we find a DAG G with 𝐶𝐶𝐶𝐶 𝐺𝐺 = Ω 𝑛𝑛2 and low indegree?

Why do we care about indegree?
In practice the random oracle is instantiated with a function 𝑯𝑯: 𝟎𝟎,𝟏𝟏 𝟐𝟐𝝀𝝀 → 𝟎𝟎,𝟏𝟏 𝝀𝝀

Label of node v is obtained by hashing labels of v’s parents.

Node v has two parents (u and w)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘) One oracle to H used to compute label

Node v has three parents (u, w, x)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑯𝑯 𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘 ,𝑳𝑳𝒙𝒙) Two oracle queries to H to
compute label

Node v has four parents (u, w, x, y)  𝑳𝑳𝒗𝒗 = 𝑯𝑯(𝑯𝑯(𝑯𝑯 𝑳𝑳𝒖𝒖,𝑳𝑳𝒘𝒘 ,𝑳𝑳𝒙𝒙),𝑳𝑳𝒚𝒚) Three oracle queries to H
to compute label

Node v has k parents  k-1 oracle queries to H to compute label

Running time to evaluate 𝒇𝒇𝑮𝑮,𝑯𝑯 is proportional to 𝒏𝒏 × 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝑮𝑮)

Desiderata

Find a DAG G on n nodes such that
1. Constant Indegree (𝛿𝛿 = 2)

• Running Time: 𝑛𝑛 𝛿𝛿 − 1 = 𝑛𝑛

2. CC(G) ≥ 𝑛𝑛2

𝜏𝜏
for some small value 𝜏𝜏.

Maximize costs for fixed running time n
(Users are impatient)

Outline

• Motivation
• Data Independent Memory Hard Functions (iMHFs)
• Our Attacks

• General Attack on Non Depth Robust DAGs
• Existing iMHFs are not Depth Robust
• Ideal iMHFs don’t exist

• Subsequent Results (Depth-Robustness is Sufficient)
• Open Questions

Depth-Robustness: A Necessary Property

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists 𝑆𝑆 ⊆ 𝑉𝑉
s.t. 𝑆𝑆 ≤ 𝑒𝑒 and depth(G-S) ≤ d.

Otherwise, we say that G is (e,d)-depth robust.

1 2 3 4 5

Example: (1,2)-reducible

Attacking (e,d)-reducible DAGs

• Input: |S| ≤e such that depth(G-S) = d, g > d

• Light Phase (g rounds): Discard most pebbles!
• Goal: Pebble the next g nodes in g (sequential) steps
• Low Memory (only keep pebbles on S and on parents of new nodes)
• Lasts a ``long” time

• Balloon Phase (d rounds): Greedily Recover Missing Pebbles
• Goal: Recover needed pebbles for upcoming light phase
• Expensive, but quick (at most d steps in parallel).

Attacking (e,d)-reducible DAGs

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑑𝑑 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Upper bounds pebbles
on nodes x ∈ 𝑆𝑆, where

𝑆𝑆 = 𝑒𝑒
depth(G-S) ≤ 𝑑𝑑

#pebbling rounds

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)-
reducible then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Maintain pebbles on parents of next
g nodes to be pebbled.

#pebbling rounds

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

#balloon phases

Max #pebbles on G
In each round of balloon phase

Length of a balloon phase

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)-
node robust then is an (efficient) attack A such that

ER 𝐴𝐴 ≤ 𝑒𝑒𝑒𝑒 + 𝛿𝛿𝑔𝑔𝑔𝑔 + 𝑛𝑛
𝑔𝑔
𝑛𝑛𝑛𝑛 + 𝑛𝑛R + 𝑛𝑛

𝑔𝑔
𝑛𝑛R.

Set 𝑔𝑔 = 𝑛𝑛𝑛𝑛

ER 𝐴𝐴 = O 𝑒𝑒𝑒𝑒 + 𝑛𝑛3𝑑𝑑 .

Main Theorem

In particular, ER 𝐴𝐴 = o 𝑛𝑛2 for e,d=o(n).

Question

Are existing iMHF candidates based on depth-
robust DAGs?

iMHF Candidates

• Catena [FLW15]
• Special Recognition at Password Hashing Competition
• Two Variants: Dragonfly and Double-Butterfly
• Security proofs in sequential space-time model

• Balloon Hashing [CBS16]
• Newer proposal (three variants in original proposal)

• Argon2 [BDK15]
• Winner of the Password Hashing Competition
• Argon2i (data-independent mode) is recommended for Password Hashing

• This Talk: Focus on Argon2i-A (version from Password Hashing Competition)
• Attack ideas do extend to Argon2i-B (latest version)

Attack Outline

• Show that any “layered DAG” is reducible
• Note: Catena DAGs are layered DAGs

• Show that an Argon2i DAG is almost a “layered DAG.”
• Turn Argon2i into layered DAG by deleting a few nodes
• Hence, an Argon2i DAG is also reducible.

Catena

• Catena Bit Reversal DAG (BRG𝜆𝜆
𝑛𝑛)

• 𝜆𝜆-layers of nodes (𝜆𝜆 ≤ 5)
• Edges between layers correspond to the bit-reversal operation
• Theorem[LT82]: sST(BRG1𝑛𝑛)= Ω 𝑛𝑛2

• Catena Butterfly (DBG𝜆𝜆
𝑛𝑛)

• 𝜆𝜆 = 𝑂𝑂(log𝑛𝑛)-layers of nodes
• Edges between layers correspond to FFT
• DBG𝜆𝜆

𝑛𝑛 is a “super-concentrator.”

• Theorem[LT82] => sST(BRG1𝑛𝑛)= Ω 𝑛𝑛2

log(𝑛𝑛)

𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…

𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…

𝜆𝜆-Layered DAG (Catena)

Layer 01 2 3 4 5 … 𝑛𝑛
𝜆𝜆 + 1

Layer 1

Layer 𝜆𝜆

… 2𝑛𝑛
𝜆𝜆 + 1

… 𝑛𝑛

…

Disallowed! All edges must go to a higher layer (except for (i,i+1))

Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.

Proof: Let 𝐒𝐒 = 𝒊𝒊 × 𝒏𝒏𝟏𝟏/𝟑𝟑 𝒊𝒊 ≤ 𝒏𝒏𝟐𝟐/𝟑𝟑 any path p can spend at most 𝑛𝑛1/3

steps on layer i.

1 2 𝑛𝑛1/3
𝑛𝑛

𝜆𝜆 + 1
Layer 0… … 2𝑛𝑛1/3 …

𝑛𝑛1/3 𝑛𝑛1/3

Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.

Proof: Let 𝐒𝐒 = 𝒊𝒊 × 𝒏𝒏𝟏𝟏/𝟑𝟑 𝒊𝒊 ≤ 𝒏𝒏𝟐𝟐/𝟑𝟑 any path p can spend at most 𝑛𝑛1/3

steps on layer i.

1 2 𝑛𝑛1/3
𝑛𝑛

𝜆𝜆 + 1
Layer 0… … 2𝑛𝑛1/3 …

𝑛𝑛1/3 𝑛𝑛1/3

Layered Graphs are Reducible
Theorem (Layered Graphs Not Depth Robust): Let G be a 𝜆𝜆-Layered
DAG then G is 𝑛𝑛2/3,𝑛𝑛1/3 𝜆𝜆 + 1 -reducible.

Corollary:ER 𝐺𝐺 ≤ 𝑂𝑂 𝜆𝜆𝑛𝑛5/3 .

Attack Quality: QualityR 𝐴𝐴 = Ω 𝑛𝑛1/3

𝜆𝜆
.

Previous Attacks on Catena

• [AS15] CC(BRG1𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.5

• Gap between cumulative cost 𝑂𝑂 𝑛𝑛1.5 and sequential space-time cost Ω 𝑛𝑛2

• [BK15] ST(BRG𝜆𝜆
𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.8 for 𝜆𝜆 > 1.

• Our result CC(BRG𝜆𝜆
𝑛𝑛) ≤ 𝑂𝑂 𝑛𝑛1.67 *

* Applies to all Catena variants.

Argon2i [BDK]

• Argon2: Winner of the password hashing competition[2015]

• Authors recommend Argon2i variant (data-independent) for
password hashing.

Argon2i

1 2 3 4 i… n

Argon2i

1 2 3 4 i… n

random predecessor r(i) < i

Indegree: 𝛿𝛿 = 2

Argon2i is a layered DAG (almost)

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛……
…

Argon2i is a layered DAG (almost)

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: E 𝑆𝑆2 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛

……
…

Argon2i is a layered DAG (almost)
Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

Pr 𝑣𝑣 ∈ 𝑆𝑆2|𝑣𝑣 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 ≤
1
𝑖𝑖 𝐸𝐸 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖 ∩ 𝑆𝑆2 ≤

𝑛𝑛3/4

𝑖𝑖

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛……
…

Argon2i is a layered DAG (almost)

1 2 3 𝑛𝑛3/4

…
…

2𝑛𝑛3/4

… 4 𝑛𝑛

+4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Definition: 𝑆𝑆2 = 𝑣𝑣𝑖𝑖 𝑣𝑣𝑟𝑟(𝑖𝑖)and v𝑖𝑖 in same layer

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂: E 𝑆𝑆2 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛

……

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅: E 𝑆𝑆 = 𝑂𝑂 𝑛𝑛3/4 log𝑛𝑛 and depth(G-S)≤ 𝑛𝑛.

Argon2i is a layered DAG (almost)

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……
…

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: G is (2𝑛𝑛3/4 log𝑛𝑛, 𝑛𝑛)-reducible with high probability.

Argon2i is a layered DAG (almost)

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……
…

Corollary: ER 𝐺𝐺 ≤ 𝑂𝑂 𝑛𝑛7/4 log𝑛𝑛 .

Argon2i is a layered DAG (almost)

1 2 3 𝑛𝑛3/4

+2 +3 …
…

2𝑛𝑛3/4

… 4 𝑛𝑛

n

Layer 0
Layer 1

Layer 4 𝑛𝑛

Let S = S1+S2

……

QualityR 𝐴𝐴 ≤ Ω 𝑛𝑛1/4

log 𝑛𝑛
.

…

Ideal iMHFs Don’t Exist

• Thm: If G has n nodes and constant in-degree δ=O(1) then G is :

𝑂𝑂 𝑛𝑛 log log 𝑛𝑛
log 𝑛𝑛

, 𝑛𝑛
log2 𝑛𝑛

-reducible.

• Thm: If G has n nodes and constant in-degree then:

∀ε > 0 ER 𝐺𝐺 = 𝑜𝑜
𝑛𝑛2

log(𝑛𝑛)1−ε
+ 𝑛𝑛𝑛𝑛

Practical Consequences (R = 3,000)

Drama: Are the attacks `Practical’

• Argon2i team: No, at least for realistic parameter ranges.

• Recent: Argon2i-B submitted to IRTF (Internet Research
Task Force) for standardization.

• New Result [AB16b]:
• New heuristics to reduce overhead by constant factor
• Simulate the attack on real instances

New Simulation Results [AB16b]

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown
line).

Pessimistic Argon 2i-B
parameter

Parameter setting could easily be
chosen when following Argon2i-B
guidelines

…

Outline

• Motivation
• Data Independent Memory Hard Functions (iMHFs)
• Attacks
• Constructing iMHFs (New!)

• Depth-Robustness is sufficient

• Conclusions and Open Questions

Depth-Robustness is Sufficient! [ABP16]

Implications: There exists a constant indegree graph G with

CC G ≥ Ω
𝑛𝑛2

log𝑛𝑛
.

Previous Best [AS15]: Ω 𝑛𝑛2

log10 𝑛𝑛

[AB16]: For all constant indegree graphs CC G = 𝑂𝑂 𝑛𝑛2 log log 𝑛𝑛
log 𝑛𝑛

.

𝐊𝐊𝐊𝐊𝐊𝐊 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓: Let G=(V,E) be (e,d)-depth robust then CC(G)≥ 𝑒𝑒𝑒𝑒.

Depth-Robustness is Sufficient! [ABP16]
Proof: Let P1,…Pt denote an (optimal) pebbling of G. For 0< i < d define

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯
one of the sets Si has size at most CC(G)/d. Now we claim that

d ≥ depth(G-Si)
because any path in G-Si must have been completely pebbled at some
point. Thus, it must have been pebbled entirely during some interval of
length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G)≥ 𝑒𝑒𝑒𝑒.

Proof by Picture

P1, P2,…,Pi-1,Pi,Pi+1,…,Pi+d-1,Pi+d,Pi+d+1,…,Pi+2d-1,Pi+2d,….

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯

d rounds d rounds

Claim: Si ≥ 𝑒𝑒

Implication

𝐶𝐶𝐶𝐶(𝐺𝐺) ≥�
𝑡𝑡

𝑃𝑃𝑡𝑡 ≥�
𝑖𝑖=1

𝑑𝑑

𝑆𝑆𝑖𝑖 ≥�
𝑖𝑖=1

𝑑𝑑

𝑒𝑒 ≥ 𝑒𝑒𝑒𝑒

Claim: Si ≥ 𝑒𝑒

Contradiction by Picture

Path: W in G-Si

21 3

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖

d-1 d

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯

Contradiction by Picture

Path: W in G-Si

2 3

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

1 d-1 d

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯

Contradiction by Picture

Path: W in G-Si

… d-1 d1

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

Step i+2: W-{1,2} contains no pebbles

2

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯

Contradiction by Picture

Path: W in G-Si

d1

Step i: W contains no pebbles since 𝑃𝑃𝑖𝑖 ⊂ 𝑆𝑆𝑖𝑖
Step i+1: W-{1} contains no pebbles

Step i+d-1: W-{1,…,d-1} contains no pebbles

2

Step i+2: W-{1,2} contains no pebbles

... d-1

Si = 𝑃𝑃𝑖𝑖 ∪ 𝑃𝑃𝑑𝑑+𝑖𝑖 ∪ 𝑃𝑃2𝑑𝑑+𝑖𝑖 ∪ ⋯

Contradiction by Picture

Path: W in G-Si

d1

Step i+d: W contains no pebbles since 𝑃𝑃𝑖𝑖+𝑑𝑑 ⊂ 𝑆𝑆𝑖𝑖

Step i+d-1: W-{1,…,d-1} contains no pebbles

2 ... d-1

Contradiction!
d was never pebbled.

∴ 𝑆𝑆𝑖𝑖 ≥ 𝑒𝑒

Positive Result: Consequences
𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 [𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀]: Let G=(V,E) be (e,d)-depth robust then ER 𝐺𝐺 ≥ 𝑒𝑒𝑒𝑒.

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓[𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄]: There is an Ω 𝑛𝑛 ,Ω 𝑛𝑛 -depth robust DAG G with
indegree 𝛿𝛿 = 𝑂𝑂 log𝑛𝑛 .

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 There is a DAG G with maximum indegree 𝛿𝛿 = 2
and ER 𝐺𝐺 = Ω 𝑛𝑛2

log 𝑛𝑛
. Furthermore, there is a sequential pebbling

algorithm N with cost ER 𝑁𝑁 = 𝑂𝑂 𝑛𝑛2

log 𝑛𝑛
.

More New Results

MHF Upper Bound Lower Bound

Argon2i-A �𝑂𝑂 𝑛𝑛1.71 [ABP16]
�𝑂𝑂 𝑛𝑛1.75 [This work]

�Ω 𝑛𝑛1.66 [ABP16]

Catena �𝑂𝑂 𝑛𝑛1.618 [ABP16]
𝑂𝑂 𝑛𝑛1.67 [This work]

�Ω 𝑛𝑛1.5 [ABP16]

SCRYPT
(data dependent)

O(n2) [Naïve, P12] Ω(n2) [ACPRT16]

Idea: Apply our attack recursively during balloon phases

(e,d)-reducible curve for Argon2i-A

e

De
pt

h
(d

)

Reducible

Depth Robust

Gap: O(polylog(n))

𝑒𝑒 = 𝑛𝑛0.75 log𝑛𝑛, d = 𝑛𝑛

𝑒𝑒 = 𝑛𝑛0.9 log𝑛𝑛, d = 𝑛𝑛0.2

Recursive Attack

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒𝑒𝑒 +
𝑛𝑛
𝑒𝑒
𝑛𝑛𝑛𝑛

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒𝑒𝑒 +
𝑛𝑛
𝑒𝑒
𝐶𝐶𝐶𝐶(𝐺𝐺′)

𝐶𝐶𝐶𝐶 𝐺𝐺 ≤ 𝑒𝑒1𝑛𝑛 +
𝑛𝑛
𝑒𝑒1

𝑒𝑒2𝑑𝑑1 +
𝑛𝑛
𝑒𝑒2
𝑑𝑑2𝑛𝑛

….

Conclusions

• Depth-robustness is a necessary and sufficient for secure iMHFs
• [AB16] [ABP16]

• Big Challenge: Improved Constructions of Depth-Robust Graphs
• We already have constructions in theory [EGS77, PR80, …]
• But constants matter!

More Open Questions

• Computational Complexity of Pebbling
• NP-Hard to determine CC(G) [BZ16]
• Hardness of Approximation?

• What is CC(Argon2i-B)?
• Upper Bound: O(n1.8) [AB16b]
• Recursive attack: O(n1.77) [BZ16b]+[ABP16]
• Lower Bound: Ω(n1.66) [BZ16b]

Large Gap Remains

Thanks for Listening

	Advanced Cryptography�CS 655
	Recap: Auxiliary-Input Attacker Model
	Recap: Bit-Fixing Model
	Bit-Fixing Model (Unruh)
	Typical Relationship: BF-RO and AI-RO
	Typical Relationship: BF-RO and AI-RO
	Preliminary Definitions
	Preliminary Definitions
	Preliminary Definitions
	Preliminary: Leaky Source
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Proof Strategy
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Memory Hard Functions, Random Oracles, Graph Pebbling and Extractor Arguments
	Motivation: Password Storage
	Offline Attacks: A Common Problem
	Goal: Moderately Expensive Hash Function
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Memory Hard Function (MHF)
	Data-Independent Memory Hard Function 𝑓 𝐺,𝐻
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Evaluating an iMHF (pebbling)
	Measuring Pebbling Cost: Attempt 1
	Amortization and Parallelism
	Measuring Pebbling Costs [AS15]
	Measuring Pebbling Costs [AS15]
	Pebbling Example (CC)
	Desiderata
	DAGs with Maximal CC(G)
	Question: CC(G)  cumulative memory cost?
	Question: CC(G)  cumulative memory cost?
	Random Oracle Model (PROM)
	Random Oracle Model: Prediction Game
	Random Oracle Model: Prediction Game
	Parallel Random Oracle Model (PROM)
	Parallel Random Oracle Model (PROM)
	Collision Problem
	Label Distinctness
	Label Distinctness
	Label Distinctness
	Label Collision
	Label Collision
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Ex Post Facto Pebbling
	Extractor Argument
	Extractor Hint
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Extractor: Simulating Attacker
	Slide Number 83
	Slide Number 84
	Reflection: Extractor Argument
	Quantum Random Oracle Model
	Slide Number 87
	Evaluating an iMHF (pebbling)
	Measuring Pebbling Costs [AS15]
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy
	Naïve: Pebbling Strategy (CC)
	Naïve Pebbling Algorithms
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Improved Pebbling
	Graphs with High CC
	Why do we care about indegree?
	Desiderata
	Outline
	Depth-Robustness: A Necessary Property
	Depth Robustness
	Depth Robustness
	Attacking (e,d)-reducible DAGs
	Attacking (e,d)-reducible DAGs
	Main Theorem
	Main Theorem
	Main Theorem
	Main Theorem
	Main Theorem
	Question
	iMHF Candidates
	Attack Outline
	Catena
	𝜆-Layered DAG (Catena)
	𝜆-Layered DAG (Catena)
	𝜆-Layered DAG (Catena)
	Layered Graphs are Reducible
	Layered Graphs are Reducible
	Layered Graphs are Reducible
	Previous Attacks on Catena
	Argon2i [BDK]
	Argon2i
	Argon2i
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Argon2i is a layered DAG (almost)
	Slide Number 139
	Ideal iMHFs Don’t Exist
	Practical Consequences (R = 3,000)
	Slide Number 146
	Drama: Are the attacks `Practical’
	New Simulation Results [AB16b]
	Outline
	Depth-Robustness is Sufficient! [ABP16]
	Depth-Robustness is Sufficient! [ABP16]
	Proof by Picture
	Implication
	Contradiction by Picture
	Contradiction by Picture
	Contradiction by Picture
	Contradiction by Picture
	Contradiction by Picture
	Positive Result: Consequences
	More New Results
	(e,d)-reducible curve for Argon2i-A
	Recursive Attack
	Conclusions
	More Open Questions
	Thanks for Listening

