Advanced Cryptography CS 655

Week 5:

- Preprocessing: Bit-Fixing Model to Auxiliary Input
- Compression Arguments
- Memory Hard Functions and Pebbling

Recap: Auxiliary-Input Attacker Model

- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Random Oracle Version:
- Offline attacker A_{1} is unbounded and outputs an S-bit hint for online attacker A_{2} after viewing entire truth table $H($.
- A_{2} will try to win security games using this hint
- (S,T,p)-attacker
- A_{1} outputs a S-bit hint
- A_{2} makes at most T random oracle queries
- A_{2} may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p .
- $((S, T, p), \varepsilon)$-security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Recap: Bit-Fixing Model

- Auxiliary-Input Attacker Model $A=\left(A_{1}, A_{2}\right)$
- Random Oracle Version:
- Offline attacker A_{1} fixes output of random oracle $H($.$) at \mathrm{P}$ locations and then outputs a S-bit hint.
- A_{2} initially knows nothing about remaining unfixed values i.e., $H(x)$ picked randomly for $x \notin P$ after A_{1} generates hint
- (P,T,p)-attacker
- A_{1} fixes H on at most P locations and outputs S-bit hint
- A_{2} makes at most T random oracle queries
- A_{2} may be constrained in other ways (space/time/signing queries etc...) as specified by parameters p .
- $((S, T, p), \varepsilon)$-security \rightarrow Any (S, T, p) attacker wins with advantage at most ε

Bit-Fixing Model (Unruh)

- Pro: Much easier to prove lower bounds in Bit-Fixing Model
- Con: Bit-Fixing model is not a compelling model for pre-processing attacks
- Usage: Lower bound in bit-fixing model \rightarrow Lower bound in AuxilliaryInput Model
- This approach yields tight lower-bounds in the Auxilliary-Input Model for some applications ©
- Other applications require a different approach (e.g., compression)

Typical Relationship: BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma>0$, if an application G is $\left((S, T, p), \varepsilon^{\prime}\right)$-secure in the $\mathrm{BF}-\mathrm{RO}(P)$-model, then it is $((S, T, p), \varepsilon)$-secure in the AI-RO-model, for

$$
\varepsilon \leq \varepsilon^{\prime}+\frac{2\left(S+\log \gamma^{-1}\right) \cdot T_{G}^{c o m b}}{P}+2 \gamma
$$

where $T_{G}^{c o m b}$ is the combined query complexity corresponding to G.

Example: Set $\gamma=2^{-2 \lambda}$ and the advantage is $\varepsilon^{\prime}+\frac{2(S+2 \lambda) T}{P}+2^{-2 \lambda}$

Balancing: ε^{\prime} usually increases with P i.e., as BF-attacker gets to fix more and more points.

Typical Relationship: BF-RO and AI-RO

Theorem 5. For any $P \in \mathbb{N}$ and every $\gamma>0$, if an application G is $\left((S, T, p), \varepsilon^{\prime}\right)$-secure in the BF-RO(P-model, then it is $((S, T, p), \varepsilon)$-secure in the AI-RO-model, for

$$
\varepsilon \leq \varepsilon^{\prime}+\frac{2\left(S+\log \gamma^{-1}\right) \cdot T_{G}^{c o m b}}{P}+2 \gamma,
$$

where $T_{G}^{c o m b}$ is the combined query complexity corresponding to G.

So far we have used this result (or similar results for Ideal-Ciphers, Permutations etc...) as a black-box.

How is this result proved?

Preliminary Definitions

- Definition: A (N, M)-source is a random variable \boldsymbol{X} with range $[M]^{N}$
- Random Oracle $\boldsymbol{H}:[N] \rightarrow[M]$ can be viewed as a random variable \boldsymbol{X} with range $[M]^{N}$ e.g., if $\boldsymbol{H}:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{\boldsymbol{m}}$ then we set $M=2^{m}$ and $N=2^{n}$
- Given $I \subseteq[N]$ (inputs) and $x \in[M]^{N}$ let $x_{I} \in[M]^{|I|}$ denote the substring specified by I e.g., value of random oracle on all inputs in I
- Dense-Source: \boldsymbol{X} is $(1-\delta)$ dense if for every subset $I \subseteq[N]$ (inputs) we have $H_{\infty}\left(X_{I}\right) \geq(1-\delta)|I| \log _{2} M=(1-\delta) \log _{2} M^{|I|}$

Minimum Entropy: Equivalent statement is that for all $y \in[M]^{|I|}$ we have $\operatorname{Pr}\left[X_{I}=y\right] \leq|M|^{-|I|(1-\delta)}$

Preliminary Definitions

- Definition: A (N, M)-source is a random variable \boldsymbol{X} with range $[M]^{N}$
- Random Oracle $\boldsymbol{H}:[N] \rightarrow[M]$ can be viewed as a random variable \boldsymbol{X} with range $[M]^{N}$ e.g., if $\boldsymbol{H}:\{\mathbf{0}, \mathbf{1}\}^{\boldsymbol{n}} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{\boldsymbol{m}}$ then we set $M=2^{m}$ and $N=2^{n}$
- Dense-Source: \boldsymbol{X} is $(1-\delta)$-dense if for every subset $I \subseteq[N]$ (inputs) we have $H_{\infty}\left(X_{I}\right) \geq(1-\delta)|I| \log _{2} M=(1-\delta) \log _{2} M^{|I|}$
- Example: Random oracle is $(1-\delta)$-dense with $\delta=0$.

Preliminary Definitions

- Definition: A (N, M)-source is a random variable \boldsymbol{X} with range $[M]^{N}$
- Dense-Source: \boldsymbol{X} is $(P, 1-\delta)$-dense if there is a subset $S \subseteq[N]$ of size $|S| \leq P$ such that for every subset $I \subseteq[N \backslash \boldsymbol{S}]$ we have

$$
H_{\infty}\left(X_{I}\right) \geq(1-\delta)|I| \log _{2} M=(1-\delta) \log _{2} M^{|I|}
$$

- Intuition: Fixed on P coordinates but dense on the rest
- Bit-Fixing Source: \boldsymbol{X} is $(P, 1)$-dense i.e., fixed on P and uniform on the rest

Preliminary: Leaky Source

- Leaky-Source (Auxiliary-Input): Online attacker gets hint $\mathrm{z}=\mathrm{f}(\boldsymbol{X})$ for some function f: $[M]^{N} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{S}$.
- Bayesian Update: Conditional Distribution $\boldsymbol{X}_{\mathbf{Z}}$ for all x in $[M]^{N}$ we have

$$
\operatorname{Pr}\left[\boldsymbol{X}_{z}=x\right]:=\operatorname{Pr}[X=x \mid f(X)=z]
$$

Challenge: It can be difficult to reason about the source X_{z}
Entropy Deficiency: $S_{z}=N \log M-H_{\infty}\left(\boldsymbol{X}_{\boldsymbol{z}}\right)$
In expectation we have $\mathbf{E}\left[S_{z}\right] \leq S$, but the actual value can vary depending on $\mathrm{z}=\mathrm{f}(\boldsymbol{X})$

Proof Strategy

- Leaky-Source (Auxiliary-Input); Online attacker gets hint z $=\mathrm{f}(\boldsymbol{X})$ for some function $\mathrm{f}:[M]^{N} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{S}$.
- Bayesian Update: Conditional Distribution X_{Z} for all X in $[M]^{N}$ we have

$$
\operatorname{Pr}\left[\boldsymbol{X}_{z}=x\right]:=\operatorname{Pr}[X=x \mid f(X)=z]
$$

Challenge: It can be difficult to reason about the source X_{z} Entropy Deficiency: $S_{z}=N \log M-H_{\infty}\left(\boldsymbol{X}_{z}\right)$

$$
\mathbf{E}\left[S_{z}\right] \leq S
$$

- Step 1: Show that any leaky source \boldsymbol{X}_{z} is γ-close to a source $\boldsymbol{Y}_{\boldsymbol{z}}$ which is a convex combination of ($P^{\prime}, 1-\delta$)-dense sources.
- Convex Combination: Let D_{1}, \ldots, D_{k} each be ($P^{\prime}, 1-\delta$)-dense sources. \boldsymbol{Y}_{z} has the form sample a source $i \leq k$ with probability p_{i} then sample from ($P^{\prime}, 1-\delta$)-dense sources D_{i}
- Number of Fixed Points: $P^{\prime} \leq \frac{S_{z}+\log 1 / \gamma}{\delta \log M}$

Proof Strategy

- Leaky-Source (Auxiliary-Input): Online attacker gets hint $\mathrm{z}=\mathrm{f}(\boldsymbol{X})$ for some function f: $[M]^{N} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{S}$.
- Bayesian Update: Conditional Distribution X_{z} for all x in $[M]^{N}$ we have

$$
\operatorname{Pr}\left[\boldsymbol{X}_{z}=x\right]:=\operatorname{Pr}[X=x \mid f(X)=z]
$$

Challenge: It can be difficult to reason about the source \boldsymbol{X}_{z}
Entropy Deficiency: $S_{z}=N \log M-H_{\infty}\left(\boldsymbol{X}_{z}\right) \quad \mathbf{E}\left[S_{z}\right] \leq S$

- Step 2: Show that a $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} cannot be distinguished from a P^{\prime}-bit fixing source Y^{\prime} by a distinguisher making at most T (adaptive) queries.

$$
\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right] \leq \operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right] \times M^{T \delta}
$$

And

$$
\left|\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right]-\operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \log M
$$

Proof Strategy

- Step 1: Show that any leaky source \boldsymbol{X}_{z} is γ-close to a source $\boldsymbol{Y}_{\boldsymbol{z}}$ which is a convex combination of $\left(P^{\prime}, 1-\delta\right)$-dense sources.
- Define $\mathbf{Y}=\boldsymbol{X}_{\boldsymbol{z}}$. If \mathbf{Y} is $(1-\delta)$-dense then we are done. Otherwise, let I be the largest subset for which there exists a violation i.e., $y_{I} \in[M]^{|I|}$ s.t.

$$
\operatorname{Pr}\left[Y_{I}=y_{I}\right]>2^{-(1-\delta)|I| \log M}
$$

- Let \mathbf{Y}^{\prime} denote distribution of \mathbf{Y} conditioned on $\boldsymbol{Y}_{I}=y_{I}$
- Claim 1: \mathbf{Y}^{\prime} is $\left(P^{\prime}, 1-\delta\right)$ dense with $P^{\prime}=|I|$
- Proof Sketch: If there is a subset $\boldsymbol{J} \subseteq[\boldsymbol{N} \backslash \mathrm{I}]$ and $y_{J} \in[M]^{|J|}$ s.t.

$$
\operatorname{Pr}\left[Y_{J}^{\prime}=y_{j}\right]>2^{-(1-\delta)|J| \log M}
$$

Then we could take $I^{\prime}=I \cup J$ and

$$
\operatorname{Pr}\left[\boldsymbol{Y}_{I^{\prime}}=y_{I I}\right]=\operatorname{Pr}\left[\boldsymbol{Y}_{I}=y_{I}\right] \operatorname{Pr}\left[\boldsymbol{Y}_{J}=y_{J} \mid \boldsymbol{Y}_{I}=y_{I}\right]>2^{-(1-\delta)|I \prime| \log M}
$$

This contradicts the maximality of I !

Proof Strategy

- Step 1: Show that any leaky source \boldsymbol{X}_{z} is γ-close to a source $\boldsymbol{Y}_{\boldsymbol{z}}$ which is a convex combination of $\left(P^{\prime}, 1-\delta\right)$-dense sources.
- Define $\mathbf{Y}=\boldsymbol{X}_{\boldsymbol{z}}$. If \mathbf{Y} is $(1-\delta)$-dense then we are done. Otherwise, let I be the largest subset for which there exists a violation i.e., $y_{I} \in[M]^{|I|}$ s.t.

$$
\operatorname{Pr}\left[Y_{I}=y_{I}\right]>2^{-(1-\delta)|I| \log M}
$$

- Let \mathbf{Y}^{\prime} denote distribution of \mathbf{Y} conditioned on $\boldsymbol{Y}_{I}=y_{I}$
- Claim 1: Y^{\prime} is $\left(P^{\prime}, 1-\delta\right)$ dense with $P^{\prime}=|I|$
- Claim 2: $|I| \leq \frac{S_{Z}}{(\delta \log M)}$
- Proof Sketch: On one hand we have $H_{\infty}\left(Y_{I}\right) \geq|I| \log M-S_{Z}\left(\operatorname{def}\right.$ of $\left.S_{Z}\right)$
- On the other hand $H_{\infty}\left(\boldsymbol{Y}_{I}\right)<-\log _{2}\left(2^{-(1-\delta)|I|} \log M\right)=(1-\delta)|I| \log M$
- Claim 2 follows immediately by combining the above two inequalities.

Proof Strategy

- Step 1: Show that any leaky source $\boldsymbol{X}_{\boldsymbol{z}}$ is γ-close to a source $\boldsymbol{Y}_{\boldsymbol{z}}$ which is a convex combination of ($P^{\prime}, 1-\delta$)-dense sources.
- Define $\mathbf{Y}=\boldsymbol{X}_{\boldsymbol{Z}}$. If \mathbf{Y} is $(1-\delta)$-dense then we are done. Otherwise, let I be the largest subset for which there exists a violation i.e., $y_{I} \in[M]^{|I|}$ s.t.

$$
\operatorname{Pr}\left[\boldsymbol{Y}_{I}=y_{I}\right]>2^{-(1-\delta)|I| \log M}
$$

- Let \mathbf{Y}^{\prime} denote distribution of \mathbf{Y} conditioned on $\boldsymbol{Y}_{I}=y_{I}$
- Claim: \mathbf{Y}^{\prime} is $\left(P^{\prime}, 1-\delta\right)$ dense with $P^{\prime}=|I|$ with $|I| \leq \frac{S_{Z}}{(\delta \log M)}$
- Key Idea (Recursion!): \boldsymbol{Y}_{z} uses $\left(P^{\prime}, 1-\delta\right)$ dense source \mathbf{Y}^{\prime} with probability $\operatorname{Pr}\left[\boldsymbol{Y}_{I}=y_{I}\right]$ and samples from $\boldsymbol{Y}_{z}{ }^{\prime}$ with probability $1-\operatorname{Pr}\left[\boldsymbol{Y}_{I}=y_{I}\right]$
- $\boldsymbol{Y}_{\mathbf{z}}{ }^{\prime}$ is also convex combination of finitely many $\left(P^{\prime}, 1-\delta\right)$-dense sources which is gamma close to $\boldsymbol{Y}_{\mathbf{1}}$, the distribution of \boldsymbol{Y} conditioned on $\boldsymbol{Y}_{I} \neq y_{I}$

Proof Strategy

- Step 1: Show that any leaky source $\boldsymbol{X}_{\boldsymbol{z}}$ is γ-close to a source $\boldsymbol{Y}_{\boldsymbol{z}}$ which is a convex combination of $\left(P^{\prime}, 1-\delta\right)$-dense sources.
- Key Idea (Recursion!): \boldsymbol{Y}_{Z} uses ($\left.P^{\prime}, 1-\delta\right)$ dense source \mathbf{Y}^{\prime} with probability $\operatorname{Pr}\left[\boldsymbol{Y}_{I}=y_{I}\right]$ and samples from $\boldsymbol{Y}_{z}^{\prime \prime}$ with probability $1-\operatorname{Pr}\left[\boldsymbol{Y}_{I}=y_{I}\right]$
- $\boldsymbol{Y}_{Z}{ }^{\prime}$ is also convex combination of finitely many $\left(P^{\prime}, 1-\delta\right)$-dense sources which is gamma close to $\boldsymbol{Y}_{\mathbf{1}}$, the distribution of \mathbf{Y} conditioned on $\boldsymbol{Y}_{I} \neq y_{I}$
- Each step of recursion decreases size of support \rightarrow finite termination
- Recurse as long as $\operatorname{Pr}\left[X \in \operatorname{Supp}\left(Y_{k}\right)\right]>\gamma$
- Claim: $\boldsymbol{Y}_{\boldsymbol{k}}{ }^{\prime}$ is $\left(P^{\prime}, 1-\delta\right)$ dense with $P^{\prime} \leq \frac{s_{Z}+\log \frac{1}{\gamma}}{(\delta \log M)}$
- Process ends with $\operatorname{Pr}\left[X \in \operatorname{Supp}\left(Y_{\text {final }}\right)\right] \leq \gamma \rightarrow$ replace $Y_{\text {final }}$ with uniform distribution

Proof Strategy

- Step 2: Show that a ($P^{\prime}, 1-\delta$)-dense source X^{\prime} cannot be distinguished from corresponding P^{\prime}-bit fixing source Y^{\prime} (uniform on non-fixed coordinates) by a distinguisher making at most T (adaptive) queries to the source.

$$
\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right] \leq \operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right] \times M^{T \delta}
$$

And

$$
\left|\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right]-\operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \log M
$$

Claim 3. For any $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} and its corresponding P^{\prime}-bit-fixing source Y^{\prime}, it holds that for any (adaptive) distinguisher \mathcal{D} that queries at most T coordinates of its oracle,

$$
\left|\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right]-\mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \cdot \log M
$$

and

$$
\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right] \leq M^{T \delta} \cdot \mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]
$$

Proof Strategy

- Step 2: Show that a $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} cannot be distinguished from a P^{\prime}-bit fixing source Y^{\prime} by a distinguisher making at most T (adaptive) queries to the source.

$$
\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right] \leq \operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right] \times M^{T \delta}
$$

And

$$
\left|\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right]-\operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \log M
$$

Proof Intuition:

- WLOG we can assume \mathfrak{D} is deterministic (otherwise we can fix the random coins that maximizes the advantage of the distinguisher for \mathfrak{D}) and only queries on non-fixed points.
- Transcript τ is a list of all of the query/answer pairs that distinguisher \mathfrak{D} makes.

Proof Strategy

- Step 2: Show that a $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} cannot be distinguished from a P^{\prime}-bit fixing source Y^{\prime} by a distinguisher making at most T (adaptive) queries to the source.

$$
\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right] \leq \operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right] \times M^{T \delta}
$$

And

$$
\left|\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right]-\operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \log M
$$

Proof Intuition: Transcript τ is a list of all of the query/answer pairs that distinguisher \mathfrak{D} makes.

- Let $T_{X^{\prime}}$ (resp. $T_{Y^{\prime},}$) denote random variable over transcripts resulting from interaction with source X^{\prime} (resp. Y^{\prime}).
- Note: The support of $T_{Y,}$ contains the support of $T_{X,}$
- For every transcript τ in the support of T_{X}, we have

$$
\begin{aligned}
\operatorname{Pr}\left[T_{X^{\prime}}=\tau\right] \leq & 2^{-(1-\delta) T \log M} \underset{ }{\text { and }} \operatorname{Pr}\left[T_{Y^{\prime}}=\tau\right]=2^{-T \log M} \\
& \operatorname{Pr}\left[T_{X^{\prime}}=\tau\right] \leq M^{T \delta} \operatorname{Pr}\left[T_{Y^{\prime}}=\tau\right]
\end{aligned}
$$

Proof Strategy

- Step 2: Show that a $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} cannot be distinguished from a P^{\prime}-bit fixing source Y^{\prime} by a distinguisher making at most T (adaptive) queries to the source.

$$
\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right] \leq M^{T \delta} \times \operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right]
$$

And

$$
\left|\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right]-\operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \log M
$$

Proof Intuition: For every transcript τ in the support of T_{Y}, we have

$$
\begin{aligned}
& \operatorname{Pr}\left[T_{X^{\prime}}=\tau\right] \leq 2^{-(1-\delta) T} \log M \quad \text { and } \quad \operatorname{Pr}\left[T_{Y^{\prime}}=\tau\right]=2^{-T \log M} \\
& \operatorname{Pr}\left[T_{X^{\prime}}=\tau\right] \leq M^{T \delta} \operatorname{Pr}\left[T_{Y^{\prime}}=\tau\right]
\end{aligned}
$$

Let $\mathcal{J}_{\mathfrak{D}}$ denote the set of all transcripts where \mathfrak{D} outputs 1 .

$$
\operatorname{Pr}\left[\mathfrak{D}^{X^{\prime}}=1\right]=\sum_{\tau \in \mathcal{T}_{\mathfrak{D}}} \operatorname{Pr}\left[T_{X^{\prime}}=\tau\right] \leq M^{T \delta} \sum_{\tau \in \mathcal{J}_{\mathfrak{D}}} \operatorname{Pr}\left[T_{Y^{\prime}}=\tau\right]=M^{T \delta} \times \operatorname{Pr}\left[\mathfrak{D}^{Y^{\prime}}=1\right]
$$

Claim 3. For any $\left(P^{\prime}, 1-\delta\right)$-dense source X^{\prime} and its corresponding P^{\prime}-bit-fxing source Y^{\prime}, it holds that for any (adaptive) distinguisher \mathcal{D} that queries at most T coordinates of its oracle,

$$
\left|\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right]-\mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]\right| \leq T \delta \cdot \log M
$$

and
and also $\mathrm{P}\left[T_{Y^{\prime}}=\tau\right]=\mathrm{p}_{Y^{\prime}}(\tau)$. Towards proving the first part of the lemma, observe that
and a

$$
\begin{aligned}
\left|\mathrm{P}\left[\mathcal{D}^{X^{\prime}}=1\right]-\mathrm{P}\left[\mathcal{D}^{Y^{\prime}}=1\right]\right| & \leq \mathrm{SD}\left(T_{X^{\prime}}, T_{Y^{\prime}}\right) \\
& =\sum_{\tau} \max \left\{0, \mathrm{P}\left[T_{X^{\prime}}=\tau\right]-\mathrm{P}\left[T_{Y^{\prime}}=\tau\right]\right\} \\
& =\sum_{\tau \in T_{X}} \max \left\{0, \mathrm{p}_{X^{\prime}}(\tau)-\mathrm{p}_{Y^{\prime}}(\tau)\right\} \\
& =\sum_{\tau \in T_{X}} \mathrm{p}_{X^{\prime}}(\tau) \cdot \max \left\{0,1-\frac{\mathrm{p}_{Y^{\prime}}(\tau)}{\mathrm{p}_{X^{\prime}}(\tau)}\right\} \\
& \leq 1-M^{-T \delta} \leq T \delta \cdot \log M
\end{aligned}
$$

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \geq 1-x$ for $x \geq 0$.

$$
\leq 1-M^{-T \delta} \leq T \delta \cdot \log M
$$

where the first sum is over all possible transcripts and where the last inequality uses $2^{-x} \geq 1-x$ for $x \geq 0$.

Lemma 1. Let X be distributed uniformly over $[M]^{N}$ and $Z:=f(X)$, where $f:[M]^{N} \rightarrow\{0,1\}^{S}$ is an arbitrary function. For any $\gamma>0$ and $P \in \mathbb{N}$, there exists a family $\left\{Y_{z}\right\}_{z \in\{0,1\}^{s}}$ of convex combinations Y_{z} of P-bit-fixing (N, M)-sources such that for any distinguisher D taking an S-bit input and querying at most $T<P$ coordinates of its oracle,

$$
\left|\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right]-\mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]\right| \leq \frac{(S+\log 1 / \gamma) \cdot T}{P}+\gamma
$$

and

$$
\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right] \leq 2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]+2 \gamma .
$$

Let Y_{z}^{\prime} be obtained by replacing every X^{\prime} by the corresponding Y^{\prime} in X_{z}^{\prime}. Setting $\delta_{z}=\left(S_{z}+\right.$ $\log 1 / \gamma) /(P \log M)$, Claims 2 and 3 imply

$$
\begin{equation*}
\left|\mathrm{P}\left[\mathcal{D}^{X_{z}}(z)=1\right]-\mathrm{P}\left[\mathcal{D}^{Y_{z}^{\prime}}(z)=1\right]\right| \leq \frac{\left(S_{z}+\log 1 / \gamma\right) \cdot T}{P}+\gamma, \tag{2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\mathrm{P}\left[\mathcal{D}^{X_{z}}(z)=1\right] \leq 2^{\left(S_{z}+\log 1 / \gamma\right) T / P} \cdot \mathrm{P}\left[\mathcal{D}^{Y_{z}^{\prime}}(z)=1\right]+\gamma \tag{3}
\end{equation*}
$$

Moreover, note that for the above choice of $\delta_{z}, P^{\prime}=P$, i.e., the sources Y^{\prime} are fixed on at most P coordinates, as desired.

Lemma 1. Let X be distributed uniformly over $[M]^{N}$ and $Z:=f(X)$, where $f:[M]^{N} \rightarrow\{0,1\}^{S}$ is an arbitrary function. For any $\gamma>0$ and $P \in \mathbb{N}$, there exists a family $\left\{Y_{z}\right\}_{z \in\{0,1\}^{s}}$ of convex combinations Y_{z} of P-bit-fixing (N, M)-sources such that for any distinguisher D taking an S-bit input and querying at most $T<P$ coordinates of its oracle,

$$
\left|\mathbf{P}\left[\mathcal{D}^{X}(f(X))=1\right]-\mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]\right| \leq \frac{(S+\log 1 / \gamma) \cdot T}{P}+\gamma
$$

and

$$
\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right] \leq 2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]+2 \gamma .
$$

One Missing Link Remains! Prior bounds relied on entropy deficiency $S_{z}=N \log M-H_{\infty}\left(\boldsymbol{X}_{z}\right)$ instead of S .

Claim: $E\left[S_{z}\right] \leq S$ and $\operatorname{Pr}\left[S_{f(X)}>S+\log \frac{1}{\gamma}\right] \leq \gamma$
Key Fact: $\operatorname{Pr}[f(X)=z] \leq 2^{-S_{z}}$

Lemma 1. Let X be distributed uniformly over $[M]^{N}$ and $Z:=f(X)$, where $f:[M]^{N} \rightarrow\{0,1\}^{S}$ is an arbitrary function. For any $\gamma>0$ and $P \in \mathbb{N}$, there exists a family $\left\{Y_{z}\right\}_{z \in\{0,1\}}$ of convex combinations Y_{z} of P-bit-ffxing (N, M)-sources such that for any distinguisher D taking an S-bit input and querying at most $T<P$ coordinates of its oracle,

$$
\left|\mathbf{P}\left[\mathcal{D}^{X}(f(X))=1\right]-\mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]\right| \leq \frac{(S+\log 1 / \gamma) \cdot T}{P}+\gamma
$$

and

$$
\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right] \leq 2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]+2 \gamma .
$$

Claim: $E\left[S_{z}\right] \leq S$ and $\operatorname{Pr}\left[S_{f(X)}>S+\log \frac{1}{\gamma}\right] \leq \gamma$
Key Fact: $\operatorname{Pr}[f(X)=z] \leq 2^{-S_{z}}$
Proof: By definition of S_{z} (min-entropy deficiency) there exists $x \in[M]^{N}$ with $f(X)=z$ such that $\operatorname{Pr}[X=x \mid f(X)=z]=\frac{2^{S_{Z}}}{M^{N}}$. We have

$$
\frac{1}{M^{N}}=\operatorname{Pr}[X=x]=\operatorname{Pr}[X=x \mid f(X)=z] \operatorname{Pr}[f(X)=z]=\frac{2^{S_{z}}}{M^{N}} \operatorname{Pr}[f(X)=z]
$$

Lemma 1. Let X be distributed uniformly over $[M]^{N}$ and $Z:=f(X)$, where $f:[M]^{N} \rightarrow\{0,1\}^{S}$ is an arbitrary function. For any $\gamma>0$ and $P \in \mathbb{N}$, there exists a family $\left\{Y_{z}\right\}_{z \in\{0,1\} s}$ of convex combinations Y_{z} of P-bit-fuxing (N, M)-sources such that for any distinguisher D taking an S-bit input and querying at most $T<P$ coordinates of its oracle,

$$
\left|\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right]-\mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]\right| \leq \frac{(S+\log 1 / \gamma) \cdot T}{P}+\gamma
$$

and

$$
\mathbf{P}\left[\mathcal{D}^{X}(f(X))=1\right] \leq 2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathbf{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]+2 \gamma .
$$

Claim: $E\left[S_{z}\right] \leq S$ and $\operatorname{Pr}\left[S_{f(X)}>S+\log \frac{1}{\gamma}\right] \leq \gamma$
Key Fact: $\operatorname{Pr}[f(X)=z] \leq 2^{-S_{z}}$

$$
\operatorname{Pr}\left[S_{f(X)}>S+\log \frac{1}{\gamma}\right]=\sum_{\substack{z \in\{0,1\}^{S} S_{\text {s.t }} \\ S_{z}>S+\log \frac{1}{\gamma}}} \operatorname{Pr}[f(X)=z] \leq 2^{S} \times 2^{-\left(S+\log \frac{1}{\gamma}\right)} \leq \gamma
$$

Claim 4. $\mathrm{E}_{z}\left[S_{z}\right] \leq S$ and $\mathrm{P}\left[S_{f(X)}>S+\log 1 / \gamma\right] \leq \gamma$.
Proof. Observe that $H_{\infty}\left(X_{z}\right)=H_{\infty}(X \mid Z=z)=H(X \mid Z=z)$ since, conditioned on $Z=z, X$ is distributed uniformly over all values x with $f(x)=z$. Therefore,

$$
\begin{aligned}
\mathrm{E}_{z}\left[S_{z}\right]=N \log M-\mathrm{E}_{z}\left[H_{\infty}(X \mid Z=z)\right] & =N \log M-\mathrm{E}_{z}[H(X \mid Z=z)] \\
& =N \log M-H(X \mid Z) \leq S .
\end{aligned}
$$

Again due to the uniformity of $X, \mathrm{P}[f(X)=z]=2^{-S_{z}}$. Hence,

$$
\mathrm{P}\left[S_{f(X)}>S+\log 1 / \gamma\right]=\sum_{z \in\{0,1\}^{S}: S_{z}>S+\log 1 / \gamma} \mathrm{P}[f(X)=z] \leq 2^{S} \cdot 2^{-(S+\log 1 / \gamma)} \leq \gamma .
$$

Lemma 1. Let X be distributed uniformly over $[M]^{N}$ and $Z:=f(X)$, where $f:[M]^{N} \rightarrow\{0,1\}^{S}$ is an arbitrary function. For any $\gamma>0$ and $P \in \mathbb{N}$, there exists a family $\left\{Y_{z}\right\}_{z \in\{0,1\}}$ s of convex combinations Y_{z} of P-bit-fixing (N, M)-sources such that for any distinguisher D taking an S-bit input and querying at most $T<P$ coordinates of its oracle,

$$
\left|\mathbf{P}\left[\mathcal{D}^{X}(f(X))=1\right]-\mathbf{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]\right| \leq \frac{(S+\log 1 / \gamma) \cdot T}{P}+\gamma
$$

and

$$
\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right] \leq 2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathbf{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]+2 \gamma .
$$

$$
\begin{aligned}
\mathrm{P}\left[\mathcal{D}^{X}(f(X))=1\right] & \leq \mathrm{P}\left[\mathcal{D}^{X}(f(X))=1, S_{f(X)} \leq S+\log 1 / \gamma\right]+\mathrm{P}\left[S_{f(X)}>S+\log 1 / \gamma\right] \\
& \leq\left(2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1, S_{f(X)} \leq S+\log 1 / \gamma\right]+\gamma\right)+\gamma \\
& \leq 2^{(S+2 \log 1 / \gamma) T / P} \cdot \mathrm{P}\left[\mathcal{D}^{Y_{f(X)}}(f(X))=1\right]+2 \gamma
\end{aligned}
$$

Memory Hard Functions, Random Oracles, Graph Pebbling and Extractor Arguments

Jeremiah Blocki

Motivation: Password Storage

Offline Attacks: A Common Problem

- Password breaches at major companies have affected millions billions of user accounts.

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

password

 hashing
(2013-2015)
https://password-hashing.net/

password

We recommend that you use Argon2...
(2013-2015)
https://password-hashing.net/

password

(2013-2015)

We recommend that you use Argon2...

There are two main versions of Argon2, Argon2i and Argon2d. Argon2i is the safest against sidechannel attacks

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

- Goal: force attacker to lock up large amounts of memory for duration of computation
\rightarrow Expensive even on customized hardware

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

sCrypt

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

sCrypt

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

VS.

sCrypt

- Data Independent Memory Hard Function (iMHF)
- Memory access pattern should not depend on input

Memory Hard Function (MHF)

- Intuition: computation costs dominated by memory costs

VS.

sCrypt

\|ll\|l

- Data Independent Memory Hard Function (iMHF)
- Memory access pattern should not depend on input

Data-Independent Memory Hard Function $f_{G, H}$

Input: x

- $\mathrm{H}:\{0,1\}^{2 k} \rightarrow\{0,1\}^{k} \quad$ (Random Oracle)
- DAG G (encodes data-dependencies)
- Maximum indegree: $\delta=0$ (1)
- $\mathrm{N}=2^{\mathrm{n}}$ nodes

Evaluating an iMHF (pebbling)

Evaluating an iMHF (pebbling)

$P_{1}=\{1\} \quad$ (data value L_{1} stored in memory)

Evaluating an iMHF (pebbling)

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\}
\end{aligned}
$$

(data values L_{1} and L_{2} stored in memory)

Evaluating an iMHF (pebbling)

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\}
\end{aligned}
$$

Evaluating an iMHF (pebbling)

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\}
\end{aligned}
$$

Evaluating an iMHF (pebbling)

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\} \\
& P_{5}=\{5\}
\end{aligned}
$$

Measuring Pebbling Cost: Attempt 1

- Space \times Time (ST)-Complexity

$$
\operatorname{ST}(G)=\min _{\vec{P}}\left(t_{\vec{P}} \times \max _{i \leq t_{\vec{P}}}\left|P_{i}\right|\right)
$$

- Rich Theory
- Space-time tradeoffs
- But not appropriate for password hashing

Amortization and Parallelism

- Problem: for parallel computation ST-complexity can scale badly in the number of evaluations of a function.

f once
[AS15] \exists function f_{n} (consisting of n RO calls) such that: $S T\left(f^{\times \sqrt{n}}\right)=O(S T(f))$

Measuring Pebbling Costs [AS15]

- Cumulative Complexity (CC)

Memory Used at Step i

- Guessing two passwords doubles the attackers cost

$$
\operatorname{CC}(G, G)=2 \times \operatorname{CC}(G)
$$

Measuring Pebbling Costs [AS15]

Approximates

$$
\operatorname{CC}(G)=\min _{\vec{P}} \sum_{i=1}^{t_{\vec{P}}}\left|P_{i}\right|
$$

Amortized Area x Time
Complexity of iMHF

Pebbling Example (CC)

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\} \\
& P_{5}=\{5\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{CC}(G) & \leq \sum_{i=1}^{5}\left|P_{i}\right| \\
& =1+2+1+2+1 \\
& =7
\end{aligned}
$$

Desiderata

Find a DAG G on n nodes such that
2. $\mathrm{CC}(\mathrm{G}) \geq \frac{n^{2}}{\tau}$ for some small value τ.

Maximize costs for fixed running time n (Users are impatient)

DAGs with Maximal CC(G)

- Challenge 1: Design a constant indegree DAG G maximizing CC(G)
- Depth-Robust Graphs are necessary [AB16] and sufficient [ABP17]
- Argon2i (PHC winner) is not depth-robust

$$
\rightarrow \mathrm{CC}(\mathrm{G})=\mathrm{o}\left(n^{1.767}\right) \ll n^{2}[\mathrm{AB} 16, \mathrm{AB} 17, \mathrm{ABP} 17, \mathrm{BZ} 17]
$$

- Any DAG with constant indegree has $\mathrm{CC}(\mathrm{G})=O\left(n^{2} \log \log n / \log n\right)$ at most
- Theoretical [ABP17] then practical [ABH17] construction of depth-robust graphs

$$
\rightarrow \mathrm{CC}(\mathrm{G})=\Omega\left(n^{2} / \log n\right)[\mathrm{AB} 16, \mathrm{AB} 17, \mathrm{ABP17}, \mathrm{BZ17}]
$$

- Open Problem 1: Construct G with CC(G) $=\Omega\left(n^{2} \log \log n / \log n\right)$
- Conjecture: [BHKLXZ19] achieves this goal.
- Open Problem 2: Tighten constants in upper/lower bounds

Question: $\mathrm{CC}(\mathrm{G}) \rightarrow$ cumulative memory cost?

Bad Case: $\mathrm{H}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\mathrm{y} \bmod 2^{\mathrm{w}} \rightarrow f_{G, H}(x)=k_{G} \times x$ e.g., $k_{G}=3 \quad$ (above) Independent of input! $\quad k_{G}=2^{n-2}$ (complete)
Computing $\mathrm{f}_{\mathrm{G}, \mathrm{H}}(\mathrm{x})$ is fast + requires minimal memory.
(even if pebbling cost $\mathrm{CC}(\mathrm{G})$ is large!)

Question: $\mathrm{CC}(\mathrm{G}) \rightarrow$ cumulative memory cost?

Theorem [AS15]: (in parallel random oracle model)

$$
A(x)=f_{G, H}(x) \rightarrow \operatorname{cmc}(\mathrm{A})=\Omega(w \times C C(G))
$$

Random Oracle Model (PROM)

- Model hash function H as a random function
- Algorithms can only interact with H as an oracle
- Query: x
- Response: $\mathrm{H}(\mathrm{x})$
- If we submit the same query you see the same response
- If x has not been queried, then the value of $\mathrm{H}(\mathrm{x})$ is uniform

x	$\mathrm{H}(\mathrm{x})$
$00 \ldots .00$	r_{0}
$00 \ldots .01$	r_{1}
\ldots	
\ldots	
$11 \ldots .11$	$r_{2^{n}-1}$

- Real World: H instantiated as cryptographic hash function (e.g., SHA3) of fixed length (no Merkle-Damgård)

Random Oracle Model: Prediction Game

Prediction Game: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right) \leftarrow A^{H(.)}$ wins the prediction game if

1. $y_{1}=H\left(x_{1}\right), \ldots, y_{k}=H\left(x_{k}\right)$ and
2. the inputs x_{1}, \ldots, x_{k} are all fresh i.e., A never queried $H\left(x_{i}\right)$

Fact 1: Any algorithm $A^{H(.)}$ wins the prediction game with probability at most $2^{-k w}$ over the choice of $H($.$) .$

Intuition: A never queries $H\left(x_{1}\right) \rightarrow$ can view $H\left(x_{1}\right)$ as a (yet to be sampled) random string

Random Oracle Model: Prediction Game

Prediction Game: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right) \leftarrow A^{H(.)}$ wins the prediction game if

1. $y_{1}=H\left(x_{1}\right), \ldots, y_{k}=H\left(x_{k}\right)$ and
2. the inputs x_{1}, \ldots, x_{k} are all fresh i.e., A never queried $H\left(x_{i}\right)$

Fact 1: Any algorithm $A^{H(.)}$ wins the prediction game with probability at most $2^{-k w}$ over the choice of $H($.$) .$

Fact 2 (Incompressibility of ROs): Any algorithm $A^{H(.)}(h)$ given a s-bit hint h (which may depend on $H($.$)) wins the prediction game with probability at most$ $2^{-k w+s}$
Proof Intuition: Otherwise we can win without hint with probability $>2^{-k w}$

Parallel Random Oracle Model (PROM)

- PROM Algorithm $\mathcal{A}(x)$
- Initial Input/State: $\sigma_{0}=x$
- $\left(\sigma_{1}, \overrightarrow{q_{1}}=\left(x_{1}^{1}, \ldots, x_{r_{1}}^{1}\right)\right) \leftarrow \mathcal{A}\left(\sigma_{0}\right)$
- New State + Batch of Random Oracle Queries
- $\stackrel{\rightharpoonup}{a_{1}}=\left(H\left(x_{1}^{1}\right), \ldots, H\left(x_{r_{1}}^{1}\right)\right)$
- Answers to Random Oracle Queries
- $\left(\sigma_{2}, \overrightarrow{q_{2}}=\left(x_{1}^{2}, \ldots x_{r_{2}}^{2}\right)\right) \leftarrow \mathcal{A}\left(\sigma_{1}, \overrightarrow{a_{1}}\right)$
- $\left(\sigma_{i}, \overrightarrow{q_{i}}=\left(x_{1}^{i}, \ldots x_{r_{i}}^{i}\right)\right) \leftarrow \mathcal{A}\left(\sigma_{i-1}, \overrightarrow{a_{i-1}}\right)$
-
- $y \leftarrow \mathcal{A}\left(\sigma_{t}, \overrightarrow{a_{t}}\right)$

x	$\mathrm{H}(\mathrm{x})$
$00 \ldots .00$	r_{0}
$00 \ldots .01$	r_{1}
\ldots	
\ldots	
$11 \ldots .11$	$r_{2^{n}-1}$

One round of computation.

1. \mathcal{A} receives prior answers $\overrightarrow{a_{i-1}}$
2. \mathcal{A} performs arbitrary computation
3. \mathcal{A} outputs $\left(\sigma_{i}, \overrightarrow{q_{i}}\right)$ new state + new queries

Parallel Random Oracle Model (PROM)

- PROM Algorithm $\mathcal{A}(x)$
- Fixing \mathcal{A}, \mathbf{x} and \mathbf{H} we get an execution trace

$$
\operatorname{Trace}_{\mathcal{A}, \mathrm{H}}(\mathrm{x})=\left\{\sigma_{i}, \overrightarrow{q_{i}}, \overrightarrow{a_{i}}\right\}_{i=1}^{t}
$$

- Cumulative Memory Cost of Execution Trace

$$
\operatorname{cmc}\left(\operatorname{Trace}_{\mathcal{A}, \mathrm{H}}(\mathrm{x})\right)=\sum_{i=1}^{t}\left(\left|\sigma_{i}\right|+\left|\overrightarrow{a_{i}}\right|\right)
$$

x	$\mathrm{H}(\mathrm{x})$
$00 \ldots .00$	r_{0}
$00 \ldots .01$	r_{1}
\ldots	
\ldots	
$11 \ldots .11$	$r_{2^{n}-1}$

- Cumulative Memory Cost of a Function

$$
\operatorname{cmc}\left(f_{G, H}\right)=\min _{\mathcal{A}, \mathrm{X}} \mathbb{E}_{H}\left[\operatorname{cmc}\left(\operatorname{Trace}_{\mathcal{A}, \mathrm{H}}(\mathrm{x})\right)\right]
$$

Min over inputs x and PROM algorithms \mathcal{A} evaluating $f_{G, H}$

Expectation over selection of random oracle

Collision Problem

Collision Problem: Suppose that we are asked to find $x \neq x^{\prime}$ s.t. $H(x)=H\left(x^{\prime}\right)$

What is the probability we can succeed given q queries to the random oracle?

Answer: $\leq q^{2} 2^{-w}$

x	$\mathrm{H}(\mathrm{x})$
$00 \ldots .00$	r_{0}
$00 \ldots .01$	r_{1}
\ldots	
\ldots	
$11 \ldots .11$	$r_{2^{n}-1}$

Explanation: Let x_{1}, \ldots, x_{q} be the queries we make

$$
\begin{gathered}
\operatorname{Pr}\left[H\left(x_{i+1}\right) \in\left\{H\left(x_{1}\right), \ldots, H\left(x_{i}\right)\right\}\right] \leq i \times 2^{-w} \quad \text { (Prob Collision at time i+1) } \\
\therefore \operatorname{Pr}[\text { Collision }] \leq \sum_{i \leq q} i \times 2^{-w} \quad \text { (Union Bound over Each Round) }
\end{gathered}
$$

Label Distinctness

Label Distinctness: Suppose we are given a directed acyclic graph G on n nodes $\mathrm{V}=\{1, \ldots, \mathrm{n}\}$ with indegree 2 and such that each node $\mathrm{v}>2$ has two parents $v-1$ and $r(v)<v-1$. Let

Let $x=L_{0}$ be the initial input (w -bits) and define labels $L_{1}=$ $H\left(x_{0}, 0^{w}\right), L_{2}=H\left(L_{1}, 0^{w}\right)$,

$$
\begin{gathered}
L_{3}=H\left(L_{2}, L_{1}\right) \\
\ldots \\
L_{v}=H\left(L_{v-1}, L_{r(v)}\right) \\
\ldots \\
L_{n}=H\left(L_{n-1}, L_{r(n)}\right)
\end{gathered}
$$

x	$\mathrm{H}(\mathrm{x})$
$00 \ldots .00$	r_{0}
$00 \ldots .01$	r_{1}
\ldots	
\ldots	
$11 \ldots .11$	$r_{2^{n}-1}$

Question: What is the probability that two labels collide?

Label Distinctness

$$
\begin{gathered}
L_{v}=H(\cdots \\
\left(L_{v-1}, L_{r(v)}\right) \\
\cdots
\end{gathered}
$$

Question: What is the probability that two labels collide?

Let $\mathbf{U}_{\boldsymbol{i}}$ be the event that labels L_{1}, \ldots, L_{i} are all distinct

$$
\begin{gathered}
\operatorname{Pr}\left[\overline{\mathbf{U}_{\boldsymbol{i}}} \mid \mathbf{U}_{\boldsymbol{i}-\mathbf{1}}\right]=\operatorname{Pr}\left[H\left(L_{i-1}, L_{r(i)}\right) \in\left\{L_{1}, \ldots, L_{i-1}\right\} \mid \mathbf{U}_{\boldsymbol{i}-\mathbf{1}}\right] \underset{\uparrow}{\leq}(i-1) 2^{-w} \\
L_{i-1} \text { unique } \rightarrow \text { fresh query! }
\end{gathered}
$$

Label Distinctness

$$
L_{v}=H\left(\ldots L_{v-1}, L_{r(v)}\right)
$$

Question: What is the probability that two labels collide?
Let $\mathbf{U}_{\boldsymbol{i}}$ be the event that labels L_{1}, \ldots, L_{i} are all distinct

$$
\begin{gathered}
\operatorname{Pr}\left[\overline{\mathbf{U}_{\boldsymbol{i}}} \mid \mathbf{U}_{\boldsymbol{i}-\mathbf{1}}\right] \leq(i-1) 2^{-w} \\
\operatorname{Pr}\left[\overline{\mathbf{U}_{\boldsymbol{n}}}\right] \leq \sum_{i \leq n}(i-1) 2^{-w} \leq n^{2} 2^{-w}
\end{gathered}
$$

Label Collision

$$
\begin{aligned}
& L_{v}=H(L_{v-1}, \underbrace{L_{r(v)}}) \\
& \quad \operatorname{Prelab}(v)=L_{v-1}, L_{r(v)}
\end{aligned}
$$

Question: Suppose we can make at most q queries to the random oracle. What is the probability we find some z s.t. $L_{v}=H(z)$ but $\mathrm{z} \neq$

x	$\mathrm{H}(\mathrm{x})$
$00 \ldots .00$	r_{0}
$00 \ldots .01$	r_{1}
\ldots	
\ldots	
$11 \ldots .11$	$r_{2^{n}-1}$

Label Collision

Question: Suppose we can make at most q queries to the random oracle. What is the probability we find some z s.t. $L_{v}=H(z)$ but $\mathrm{z} \neq$ Prelab(v) for some node v?

Answer: at most $n q 2^{-w}$

Let z_{i} be ith query to random oracle such that $z_{i} \neq \operatorname{Prelab}(\boldsymbol{v})$ for any node $\boldsymbol{v} \leq \boldsymbol{n}$ then we have

x	$\mathrm{H}(\mathrm{x})$
$00 \ldots .00$	r_{0}
$00 \ldots .01$	r_{1}
\ldots	
\ldots	
$11 \ldots .11$	$r_{2^{n}-1}$

$$
\begin{gathered}
\operatorname{Pr}\left[H\left(z_{i}\right) \in\left\{L_{1}, \ldots, L_{n}\right\}\right] \leq n 2^{-w} \\
\operatorname{Pr}\left[\exists \boldsymbol{i} \leq q \cdot H\left(z_{i}\right) \in\left\{L_{1}, \ldots, L_{n}\right\}\right] \leq n q 2^{-w}
\end{gathered}
$$

Ex Post Facto Pebbling

- Fixing \mathcal{A}, \mathbf{x} and H we get an execution trace

$$
\operatorname{Trace}_{\mathcal{A}, \mathrm{H}}(\mathrm{x})=\left\{\sigma_{i}, \overrightarrow{q_{i}}, \overrightarrow{a_{i}}\right\}_{i=1}^{t}
$$

- Track L_{v} for each node v
- Note rounds where L_{v} appear as the input to random oracle query?
- Note rounds does L_{v} appear as an the output to a random oracle query?
- Define $\operatorname{Need}(\mathrm{v}, \mathrm{i})=1$ if and only if the next time (after round i) label L_{v} appears it is as an input; otherwise $\operatorname{Need}(\mathrm{v}, \mathrm{i})=0$
- $\mathrm{P}_{\mathrm{i}}=\{\mathrm{v}: \operatorname{Need}(\mathrm{v}, \mathrm{i})=1\}$

Ex Post Facto Pebbling

- $P_{i}=\{v: \operatorname{Need}(v, i)=1\} \rightarrow$ does this give us a legal pebbling?
- Order(v) be the bad event L_{v} is used as an RO input before it has appeared as an output

Ex Post Facto Pebbling

- $P_{i}=\{v: \operatorname{Need}(v, i)=1\} \rightarrow$ does this give us a legal pebbling?

Claim 1: Suppose that \mathcal{A} computes $f_{G, H}$ and makes at most q random oracle queries then $\mathrm{P}=P_{1}, \ldots, P_{t}$ is a legal pebbling (except with probability $\mathrm{O}\left(q n 2^{-w}\right)$.

Proof Sketch:

Observation 1: If the bad event $\operatorname{Order}(\mathrm{v})$ never occurs for any node v then the pebbling is legal (follows from definition of $\operatorname{Need}(\mathrm{v}, \mathrm{i})$)

Ex Post Facto Pebbling

- $P_{i}=\{v: \operatorname{Need}(\mathrm{v}, \mathrm{i})=1\} \rightarrow$ does this give us a legal pebbling?

Claim 1: Suppose that \mathcal{A} computes $f_{G, H}$ and makes at most q random oracle queries then $\mathrm{P}=P_{1}, \ldots, P_{t}$ is a legal pebbling (except with probability $\mathrm{O}\left(q n 2^{-w}\right)$.

Proof Sketch:

Observation 2: If L_{v} has not yet appeared as output then the probability a particular query includes L_{v} as input early is at most 2^{-w} $\rightarrow \operatorname{Pr}[\operatorname{Order}(\mathrm{v})] \leq q 2^{-w}$ (Union Bound over all q queries)
(L_{v} can be viewed as random w-bit string before it first appears)

Ex Post Facto Pebbling

- $P_{i}=\{v: \operatorname{Need}(v, i)=1\} \rightarrow$ does this give us a legal pebbling?

Claim 1: Suppose that \mathcal{A} computes $f_{G, H}$ and makes at most q random oracle queries then $\mathrm{P}=P_{1}, \ldots, P_{t}$ is a legal pebbling (except with probability $\mathrm{O}\left(q n 2^{-w}\right)$.
Proof Sketch: Let $\operatorname{Order}(\mathrm{v})$ be the bad event L_{v} is used as an RO input before it has appeared as an output. Union Bounding

$$
\operatorname{Pr}[\exists v \operatorname{Order}(v)] \leq \mathrm{nPr}[\operatorname{Order}(v)] \leq n q 2^{-w}
$$

(L_{v} can be viewed as random w-bit string before it first appears)

Ex Post Facto Pebbling

- Fixing \mathcal{A}, \mathbf{x} and H we get an execution trace

$$
\operatorname{Trace}_{\mathcal{A}, \mathrm{H}}(\mathrm{x})=\left\{\sigma_{i}, \overrightarrow{q_{i}}, \overrightarrow{a_{i}}\right\}_{i=1}^{t}
$$

Claim 1: Suppose that \mathcal{A} computes $f_{G, H}$ and makes at most q random oracle queries then $\mathrm{P}=P_{1}, \ldots, P_{t}$ is a legal pebbling (except with probability $\mathrm{O}\left(q n 2^{-w}\right)$.
Observation: If P is legal then $\mathrm{CC}(\mathrm{P}) \geq C C(G)$
(definition of $C C(G)$ as best pebbling of G)

Extractor Argument

- Fixing \mathcal{A}, \mathbf{x} and H we get an execution trace

$$
\operatorname{Trace}_{\mathcal{A}, \mathrm{H}}(\mathrm{x})=\left\{\sigma_{i}, \overrightarrow{q_{i}}, \overrightarrow{a_{i}}\right\}_{i=1}^{t}
$$

Observation: $\mathrm{CC}(\mathrm{P}) \geq C C(G)$ (definition of $C C(G)$)

Claim 2: For each round i we have $\left|\sigma_{i}\right|+\left|\overrightarrow{a_{i-1}}\right| \geq \mathrm{w}\left|P_{i}\right| / 2$
Proof Idea: Extractor argument. Suppose for contradiction that $\left|\sigma_{i}\right|+$ $\left|\overline{a_{i-1}}\right|<\mathrm{w}\left|P_{i}\right| / 2$.
We will build an extractor that outputs $\left|P_{i}\right|$ labels given a hint of size $\mathrm{w}\left|P_{i}\right| / 2+o\left(\mathrm{w}\left|P_{i}\right|\right)$. This yields a contradiction of incompressibility!

Extractor Hint

Claim 2: For each round i we have $\left|\sigma_{i}\right|+\left|a_{i-1}\right| \geq \mathrm{w}\left|P_{i}\right| / 2$

Hint: h

- Initial State: $\sigma_{i}, \overrightarrow{a_{i-1}}$ (used to simulate \mathcal{A} at most w|$\left|P_{i}\right| / 2$ bits)
- Encoding of $P_{i} \quad\left(\left|P_{i}\right| \log n\right.$ bits)
- For each $\mathrm{v} \in P_{i}$ index i_{v} of next random oracle query where label L_{v} appears as input (| $P_{i} \mid \log q$ bits)
- For each $\mathrm{v} \in P_{i}$ index o_{v} of next random oracle query where label L_{v} appears as output (| $P_{i} \mid \log q$ bits)
- Total Hint Length: $\mathrm{w}\left|P_{i}\right| / 2+o\left(w\left|P_{t}\right|\right)$.

Extractor argument. Suppose for contradiction that $\left|\sigma_{i}\right|<\mathrm{w}\left|P_{t}\right| / 2$.
We will build an extractor that outputs $\left|P_{t}\right|$ labels given a hint of size $\left|\sigma_{i}\right|+o\left(w\left|P_{t}\right|\right)$. This yields a contradiction of incompressibility!

Extractor: Simulating Attacker

Random Oracle
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$

P_{i}	Label	Input Query	Output Query
v_{1}	$? ? ?$	$(i+2,4)$	$(i+10,5)$
v_{2}	$? ? ?$	$(i+1,2)$	$(i+2,1)$
\ldots	\ldots		

Simulate
$\mathcal{A}\left(\sigma_{i}, \overline{a_{i-1}}\right)$

Extractor: Simulating Attacker

Extractor E

Random Oracle
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$

P_{i}	Label	Input Query	Output Query
v_{1}	$? ? ?$	$(i+2,4)$	$(i+10,5)$
v_{2}	$? ? ?$	$(i+1,2)$	$(i+2,1)$
\ldots	\ldots		

Extract!

$\overrightarrow{q_{i+1}}[2]$ contains $\boldsymbol{L}_{\boldsymbol{v}_{2}}$

Extractor: Simulating Attacker

Extractor E

Random Oracle
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$

P_{i}	Label	Input Query	Output Query
v_{1}	$? ? ?$	$(\mathrm{i}+2,4)$	$(\mathrm{i}+10,5)$
v_{2}	$L_{v_{2}}$	$(i+1,2)$	$(\mathrm{i}+2,1)$
\ldots	\ldots		

Extract!

Extractor: Simulating Attacker

Extractor E

Random Oracle
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$

P_{i}	Label	Input Query	Output Query
v_{1}	???	(i+2,4)	(i+10,5)
v_{2}	$L_{\nu_{2}}$	(i+1,2)	$(\mathrm{i}+2,1)$
...	...		

Simulate
$\mathcal{A}\left(\sigma_{i+2}, \overline{a_{i+1}}\right)$

Extract! $\mathrm{H}\left(\overrightarrow{q_{i+2}}[4]\right)=\boldsymbol{L}_{\boldsymbol{v}_{1}}$

Extractor: Simulating Attacker

Random Oracle
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$

P_{i}	Label	Input Query	Output Query
v_{1}	$\boldsymbol{L}_{\boldsymbol{v}_{1}}$	$(\mathrm{i}+2,4)$	$(\mathrm{i}+10,5)$
v_{2}	$\boldsymbol{L}_{v_{2}}$	$(\mathrm{i}+1,2)$	$(\mathrm{i}+2,1)$
\ldots	\ldots		

$\stackrel{\sigma_{i+3}, \overline{q_{i+2}}}{\bar{a}_{i+2}=\left(H\left(\overline{q_{i+2}}[1]\right), H\left(\overline{q_{i+2}}[2]\right), \ldots,\right)}$| Simulate |
| :---: |
| $\mathcal{A}\left(\sigma_{i+2}, \overline{a_{i+1}}\right)$ |

Danger! $\mathrm{H}\left(\overrightarrow{q_{i+2}}[1]\right)=\boldsymbol{L}_{\boldsymbol{v}_{2}}$
Do not submit this query!

Extractor: Simulating Attacker

Random Oracle
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$

P_{i}	Label	Input Query	Output of Query
v_{1}	$\boldsymbol{L}_{v_{1}}$	$(\mathrm{i}+2,4)$	$(\mathrm{i}+10,5)$
v_{2}	$\boldsymbol{L}_{v_{2}}$	$(\mathrm{i}+1,2)$	$\overrightarrow{q_{i+2}}[1]$
\ldots	\ldots		

Danger! $\mathrm{H}\left(\overrightarrow{q_{i+2}}[1]\right)=\boldsymbol{L}_{\boldsymbol{v}_{2}}$ Do not submit this query!

Extractor: Simulating Attacker

Random Oracle
$H:\{0,1\}^{*} \rightarrow\{0,1\}^{w}$

P_{i}	Label	Input Query	Output of Query
v_{1}	$\boldsymbol{L}_{v_{1}}$	$(\mathrm{i}+2,4)$	$(\mathrm{i}+10,5)$
v_{2}	$\boldsymbol{L}_{v_{2}}$	$(\mathrm{i}+1,2)$	$\overrightarrow{q_{i+2}}[1]$
\ldots	\ldots		

etc ...

Extractor: Simulating Attacker

Claim 2: For each round i we have $\left|\sigma_{i}\right| \geq \mathrm{w}\left|P_{i}\right| / 2$
Hint:

- simulate \mathcal{A} from initial state: σ_{i}
- Forward random oracle queries to H(.) (* One Exception Below *)
- For each $\mathrm{v} \in P_{i}$ wait for first query where L_{v} appears as input and record L_{v} (by definition of P_{i} this occurs before L_{v} appears as output)
- For each $\mathrm{v} \in P_{i}$ wait for first query o_{v} which produces output L_{v}
- Do not forward this query to H(.)
- Simply record the response L_{v}
- Technical Note: Extractor can simply run naïve evaluation algorithm for $f_{G, H}(x)$ after simulating \mathcal{A} to ensure that for each $\mathrm{v} \in P_{i}$ there is some round where L_{v} is output

$$
L_{3}=H\left(L_{1}, L_{2}\right)
$$

Output: $f_{G, H}(x)=L_{N}$

$$
=H\left(L_{2}, L_{3}\right)
$$

Extractor:

- Outputs L_{v} for each $\mathrm{v} \in P_{i}$
- Generate remaining labels L_{v} for each $\mathrm{v} \notin P_{i}$
- Can be done querying random oracle at x_{v} s.t. $H\left(x_{v}\right)=L_{v}$
- Yields k "fresh" input output pairs (x_{v}, L_{v}) for each $\mathrm{v} \in P_{i}$ as long as all labels L_{v} are distinct

$$
\operatorname{Pr}\left[\exists(u, v) . L_{v}=L_{u}\right] \leq n^{2} 2^{-w}
$$

Output: $f_{G, H}(x)=L_{N}$

$$
L_{1}=H(\underset{x}{i})
$$

$$
=H\left(L_{2}, L_{3}\right)
$$

Extractor: Yields $\mathrm{k}=\left|P_{i}\right|$ "fresh" input output pairs (x_{v}, L_{v}) for each $\mathrm{v} \in P_{i}$ as long as all labels L_{v} are distinct and pebbling is legal

$$
\begin{gathered}
\operatorname{Pr}\left[\exists(u, v) . L_{v}=L_{u}\right] \leq n^{2} 2^{-w} \\
\rightarrow \operatorname{Pr}[\text { Success }] \geq 1-n^{2} 2^{-w}-q n 2^{-w}
\end{gathered}
$$

Contradiction! Extractor can succeed with probability at most $2^{-k w / 2+o(k w)}$

Reflection: Extractor Argument

- What properties of the random oracle did we use?
- Simulatability/Delayed Sampling:
- Can view $H(x)$ as uniformly random string that is yet to be sampled
- (until x is actually queried)
- used to analyze the probability that a label L_{v} appears out of order (also collisions)
- Extractability of Queries:
- When attacker submits random oracle query the extractor gets to see the query (and the response)

Quantum Random Oracle Model

- Similar to classical random oracle model except that input is an entangled quantum state

$$
\sum_{x} \alpha_{x}|x, y\rangle \underset{H}{\rightarrow} \sum_{x} \alpha_{x}|x, y \oplus H(x)\rangle
$$

- Realistic model for any realization of the random oracle e.g., can implement SHA3 as a quantum circuit
- Challenge: extractor needs to view random oracle queries

Evaluating an iMHF (pebbling)

Pebbling Rules: $\vec{P}=\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{t}} \subset V$ s.t.

- $\mathrm{P}_{\mathrm{i}+1} \subset \mathrm{P}_{\mathrm{i}} \cup\left\{x \in V \mid\right.$ parents $\left.(x) \subset \mathrm{P}_{\mathrm{i}+1}\right\} \quad$ (need dependent values)
- $n \in P_{t}$

Measuring Pebbling Costs [AS15]

- Cumulative Complexity (CC)

Memory Used at Step i

- Guessing two passwords doubles the attackers cost

$$
\operatorname{CC}(G, G)=2 \times \operatorname{CC}(G)
$$

Naïve: Pebbling Strategy

Naïve: Pebbling Strategy

$$
P_{1}=\{1\}
$$

Naïve: Pebbling Strategy

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\}
\end{aligned}
$$

Naïve: Pebbling Strategy

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{1,2,3\}
\end{aligned}
$$

Naïve: Pebbling Strategy

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{1,2,3\} \\
& P_{4}=\{1,2,3,4\}
\end{aligned}
$$

Naïve: Pebbling Strategy

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{1,2,3\} \\
& P_{4}=\{1,2,3,4\} \\
& P_{5}=\{1,2,3,4,5\}
\end{aligned}
$$

Naïve: Pebbling Strategy (CC)

$$
\begin{array}{lr}
\mathrm{P}_{1}=\{1\} \\
\mathrm{P}_{2}=\{1,2\} \\
\mathrm{P}_{3}=\{1,2,3\} & \mathrm{CC}(G) \\
\mathrm{P}_{4}=\{1,2,3,4\} & \leq \sum_{i=1}^{5}\left|P_{i}\right| \\
\mathrm{P}_{5}=\{1,2,3,4,5\} & \\
& =1+2+3+4+5 \\
& =15
\end{array}
$$

Naïve Pebbling Algorithms

- Naïve (Pebble in Topological Order)
- Never discard pebbles
- Legal Pebbling Strategy for any DAG!
- Pebbling Time: n
- Sequential: Place one new pebble on the graph in each round

Theorem: Any DAG G has $C C(G) \leq \sum_{i \leq n} i=\frac{n(n+1)}{2}$
Proof: Naïve pebbling strategy is legal strategy for any DAG G!
Question: Can we find a DAG G with $C C(G)=\Omega\left(n^{2}\right)$?

Improved Pebbling

Improved Pebbling

$$
P_{1}=\{1\}
$$

Improved Pebbling

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\}
\end{aligned}
$$

Improved Pebbling

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\}
\end{aligned}
$$

Improved Pebbling

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\}
\end{aligned}
$$

Improved Pebbling

$$
\begin{aligned}
& P_{1}=\{1\} \\
& P_{2}=\{1,2\} \\
& P_{3}=\{3\} \\
& P_{4}=\{3,4\} \\
& P_{5}=\{5\}
\end{aligned}
$$

Graphs with High CC

Theorem: Any DAG G has CC $(G) \leq \sum_{i \leq n} i=\frac{n(n+1)}{2}$
Proof: Naïve pebbling strategy is legal strategy for any DAG G!
Question: Can we find a DAG G with $C C(G)=\Omega\left(n^{2}\right)$?
Claim: The complete DAG has $C C(G) \geq \sum_{i \leq n-1} i=\frac{n(n-1)}{2}=\Omega\left(n^{2}\right)$?
Proof: Consider the round immediately before we first place a pebble on node $i+1$. We must have had pebbles on all of the nodes $\{1, \ldots, i\}$.

Question: Can we find a DAG G with $C C(G)=\Omega\left(n^{2}\right)$ and low indegree?

Why do we care about indegree?

In practice the random oracle is instantiated with a function $H:\{0,1\}^{2 \lambda} \rightarrow\{0,1\}^{\lambda}$ Label of node v is obtained by hashing labels of v 's parents.

Node v has two parents (u and w) $\boldsymbol{\rightarrow} \boldsymbol{L}_{v}=\boldsymbol{H}\left(\boldsymbol{L}_{u}, \boldsymbol{L}_{w}\right) \rightarrow$ One oracle to H used to compute label
Node v has three parents $(\mathrm{u}, \mathrm{w}, \mathrm{x}) \rightarrow \boldsymbol{L}_{v}=\boldsymbol{H}\left(\boldsymbol{H}\left(\boldsymbol{L}_{u}, L_{w}\right), L_{x}\right) \rightarrow$ Two oracle queries to H to compute label

Node v has four parents $(\mathrm{u}, \mathrm{w}, \mathrm{x}, \mathrm{y}) \rightarrow \boldsymbol{L}_{v}=\boldsymbol{H}\left(\boldsymbol{H}\left(\boldsymbol{H}\left(\boldsymbol{L}_{u}, \boldsymbol{L}_{w}\right), \boldsymbol{L}_{x}\right), \boldsymbol{L}_{y}\right) \rightarrow$ Three oracle queries to H to compute label

Node v has k parents $\rightarrow \mathrm{k}-1$ oracle queries to H to compute label

Running time to evaluate $\boldsymbol{f}_{\boldsymbol{G}, \boldsymbol{H}}$ is proportional to $\boldsymbol{n} \times \boldsymbol{\operatorname { i n d e g } (\boldsymbol { G })}$

Desiderata

Find a DAG G on n nodes such that
2. $\mathrm{CC}(\mathrm{G}) \geq \frac{n^{2}}{\tau}$ for some small value τ.

Maximize costs for fixed running time n (Users are impatient)

Outline

- Motivation
- Data Independent Memory Hard Functions (iMHFs)
- Our Attacks
- General Attack on Non Depth Robust DAGs
- Existing iMHFs are not Depth Robust
- Ideal iMHFs don't exist
- Subsequent Results (Depth-Robustness is Sufficient)
- Open Questions

Depth-Robustness: A Necessary Property

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$
s.t. $|S| \leq e$ and depth(G-S) $\leq \mathrm{d}$.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$
s.t. $|S| \leq e$ and depth(G-S) $\leq \mathrm{d}$.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Attacking (e,d)-reducible DAGs

- Input: $|\mathrm{S}| \leq e$ such that $\operatorname{depth}(\mathrm{G}-\mathrm{S})=\mathrm{d}, \mathrm{g}>\mathrm{d}$
- Light Phase (g rounds): Discard most pebbles!
- Goal: Pebble the next g nodes in g (sequential) steps
- Low Memory (only keep pebbles on S and on parents of new nodes)
- Lasts a "long" time
- Balloon Phase (d rounds): Greedily Recover Missing Pebbles
- Goal: Recover needed pebbles for upcoming light phase
- Expensive, but quick (at most d steps in parallel).

Attacking (e,d)-reducible DAGs

```
Algorithm 1: \(\operatorname{GenPeb}(G, S, g, d)\)
    Arguments: \(G=(V, E), S \subseteq V, g \in[\operatorname{depth}(G-S), n], d \geq \operatorname{depth}(G-S)\)
    for \(i=1\) to \(n\) do
            Pebble node ź.
            \(l \leftarrow\lfloor i / g\rfloor * g+d+1\)
            if \(i \bmod g \in[d]\) then // Balloon Phase
            \(d^{\prime} \leftarrow d-(i \bmod g)+1\)
            \(N \leftarrow \operatorname{need}\left(b, l+g, d^{\prime}\right)\)
            Pebble every \(v \in N\) which has all parents pebbled.
            Remove pebble from any \(v \notin K\) where \(K \leftarrow S \cup\) keep \((i, i+g) \cup\{n\}\).
            else
                                    // Light Phase
                    \(K \leftarrow S \cup\) parents \((i, i+g) \cup\{n\}\)
            Remove pebbles from all \(v \notin K\).
            end
    end
```


Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)reducible then is an (efficient) attack A such that

$$
\mathrm{E}_{\mathrm{R}}(A) \leq e n+\delta g n+\frac{n}{g} n d+n \mathrm{R}+\frac{n}{g} n \mathrm{R} .
$$

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)reducible then is an (efficient) attack A such that

$$
\mathrm{E}_{\mathrm{R}}(A) \leq e n+\delta g n+\frac{n}{g} n d+n \mathrm{R}+\frac{n}{g} n \mathrm{R}
$$

Upper bounds pebbles on nodes $\mathrm{x} \in S$, where
$|S|=e$
$\operatorname{depth}(\mathrm{G}-\mathrm{S}) \leq d$
\#pebbling rounds

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is (e,d)reducible then is an (efficient) attack A such that

$$
\mathrm{E}_{\mathrm{R}}(A) \leq e n+\delta g n+\frac{n}{g} n d+n \mathrm{R}+\frac{n}{g} n \mathrm{R}
$$

Maintain pebbles on parents of next g nodes to be pebbled.
\#pebbling rounds

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)node robust then is an (efficient) attack A such that

$$
\mathrm{E}_{\mathrm{R}}(A) \leq e n+\delta g n+\frac{n}{g} n d+n \mathrm{R}+\frac{n}{g} n \mathrm{R}
$$

\#balloon phases
Length of a balloon phase

Max \#pebbles on G
In each round of balloon phase

Main Theorem

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)node robust then is an (efficient) attack A such that

$$
\mathrm{E}_{\mathrm{R}}(A) \leq e n+\delta g n+\frac{n}{g} n d+n \mathrm{R}+\frac{n}{g} n \mathrm{R} .
$$

$$
\text { Set } g=\sqrt{n d}
$$

$$
\mathrm{E}_{\mathrm{R}}(A)=\mathrm{O}\left(e n+\sqrt{n^{3} d}\right)
$$

In particular, $\mathrm{E}_{\mathrm{R}}(A)=\mathrm{o}\left(n^{2}\right)$ for $\mathrm{e}, \mathrm{d}=\mathrm{o}(\mathrm{n})$.

Question

Are existing iMHF candidates based on depthrobust DAGs?

iMHF Candidates

- Catena [FLW15]
- Special Recognition at Password Hashing Competition
- Two Variants: Dragonfly and Double-Butterfly
- Security proofs in sequential space-time model
- Balloon Hashing [CBS16]
- Newer proposal (three variants in original proposal)
- Argon2 [BDK15]
- Winner of the Password Hashing Competition
- Argon2i (data-independent mode) is recommended for Password Hashing

- This Talk: Focus on Argon2i-A (version from Password Hashing Competition)
- Attack ideas do extend to Argon2i-B (latest version)

Attack Outline

- Show that any "layered DAG" is reducible
- Note: Catena DAGs are layered DAGs
- Show that an Argon2i DAG is almost a "layered DAG."
- Turn Argon2i into layered DAG by deleting a few nodes
- Hence, an Argon2i DAG is also reducible.

Catena

- Catena Bit Reversal DAG (BRG ${ }_{\lambda}^{n}$)
- λ-layers of nodes ($\lambda \leq 5$)
- Edges between layers correspond to the bit-reversal operation
- Theorem[LT82]: $\operatorname{sST}\left(\mathrm{BRG}_{1}^{n}\right)=\Omega\left(n^{2}\right)$
- Catena Butterfly ($\mathrm{DBG}_{\lambda}^{n}$)
- $\lambda=O(\log n)$-layers of nodes
- Edges between layers correspond to FFT
- $\mathrm{DBG}_{\lambda}^{n}$ is a "super-concentrator."
- Theorem[LT82] $=>\operatorname{sST}\left(\mathrm{BRG}_{1}^{n}\right)=\Omega\left(\frac{n^{2}}{\log (n)}\right)$

λ-Layered DAG (Catena)

λ-Layered DAG (Catena)

λ-Layered DAG (Catena)

Disallowed! All edges must go to a higher layer (except for (i,i+1))

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ-Layered DAG then G is $\left(n^{2 / 3}, n^{1 / 3}(\lambda+1)\right)$-reducible.

Proof: Let $S=\left\{\boldsymbol{i} \times \boldsymbol{n}^{1 / 3} \mid \boldsymbol{i} \leq \boldsymbol{n}^{2 / 3}\right\}$ any path p can spend at most $n^{1 / 3}$ steps on layer i.

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ-Layered DAG then G is $\left(n^{2 / 3}, n^{1 / 3}(\lambda+1)\right)$-reducible.

Proof: Let $\mathbf{S}=\left\{\boldsymbol{i} \times \boldsymbol{n}^{1 / 3} \mid \boldsymbol{i} \leq \boldsymbol{n}^{2 / 3}\right\}$ any path p can spend at most $n^{1 / 3}$ steps on layer i.

Layered Graphs are Reducible

Theorem (Layered Graphs Not Depth Robust): Let G be a λ-Layered DAG then G is $\left(n^{2 / 3}, n^{1 / 3}(\lambda+1)\right)$-reducible.

Corollary: $\mathrm{E}_{\mathrm{R}}(G) \leq O\left(\lambda n^{5 / 3}\right)$.

Attack Quality: Quality $_{\mathrm{R}}(A)=\Omega\left(\frac{n^{1 / 3}}{\lambda}\right)$.

Previous Attacks on Catena

- [AS15]

$$
\mathrm{CC}\left(\mathrm{BRG}_{1}^{n}\right) \leq O\left(n^{1.5}\right)
$$

- Gap between cumulative cost $O\left(n^{1.5}\right)$ and sequential space-time cost $\Omega\left(n^{2}\right)$
- [BK15] $\quad \operatorname{ST}\left(\mathrm{BRG}_{\lambda}^{n}\right) \leq O\left(n^{1.8}\right)$ for $\lambda>1$.
- Our result $\quad \operatorname{CC}\left(\mathrm{BRG}_{\lambda}^{n}\right) \leq O\left(n^{1.67}\right)$ *
* Applies to all Catena variants.

Argon2i [BDK]

- Argon2: Winner of the password hashing competition[2015]

- Authors recommend Argon2i variant (data-independent) for password hashing.

Argon2i

Argon2i

random predecessor r(i) < i

Indegree: $\delta=2$

Argon2i is a layered DAG (almost)

Layer $\sqrt[4]{n}$
\vdots
Layer 1
Layer 0

Argon2i is a layered DAG (almost)
Definition: $S_{2}=\left\{v_{i} \mid v_{r(i)}\right.$ and v_{i} in same layer $\}$

Layer $\sqrt[4]{n}$ -
 Layer 1
 Layer 0

Claim: $\mathrm{E}\left[S_{2}\right]=O\left(n^{3 / 4} \log n\right)$

Argon2i is a layered DAG (almost)
Definition: $S_{2}=\left\{v_{i} \mid v_{r(i)}\right.$ and v_{i} in same layer $\}$

Layer $\sqrt[4]{n}$ \bullet
 Layer 1
 Layer 0

$$
\operatorname{Pr}\left[v \in S_{2} \mid v \text { in Layer } i\right] \leq \frac{1}{i} \quad E\left[\text { Layer } i \cap S_{2}\right] \leq \frac{n^{3 / 4}}{i}
$$

Argon2i is a layered DAG (almost)
Definition: $S_{2}=\left\{v_{i} \mid v_{r(i)}\right.$ and v_{i} in same layer $\}$

Layer $\sqrt[4]{n}$ -
 Layer 1
 Layer 0

Claim: $\mathrm{E}\left[S_{2}\right]=O\left(n^{3 / 4} \log n\right)$

Argon2i is a layered DAG (almost)

$$
\text { Let } \mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}
$$

Layer $\sqrt[4]{n}$ \bullet
 Layer 1
 Layer 0

Fact: $\mathrm{E}[S]=O\left(n^{3 / 4} \log n\right)$ and depth(G-S) $\leq \sqrt{n}$.

Argon2i is a layered DAG (almost)

$$
\text { Let } \mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}
$$

Layer $\sqrt[4]{n}$ \bullet
 Layer 1
 Layer 0

Theorem: G is $\left(2 n^{3 / 4} \log n, \sqrt{n}\right)$-reducible with high probability.

Argon2i is a layered DAG (almost)

$$
\text { Let } \mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}
$$

Layer $\sqrt[4]{n}$ -
 Layer 1
 Layer 0

Corollary: $\operatorname{ER}(G) \leq O\left(n^{7 / 4} \log n\right)$. Quality $_{\mathrm{R}}(A) \leq \Omega\left(\frac{n^{1 / 4}}{\log n}\right)$.

Ideal iMHFs Don’t Exist

- Thm: If G has n nodes and constant in-degree $\delta=O(1)$ then G is :

$$
\left(O\left(\frac{n \log \log n}{\log (n)}\right), \frac{n}{\log ^{2} n}\right) \text {-reducible. }
$$

- Thm: If G has n nodes and constant in-degree then:

$$
\forall \varepsilon>0 \quad \mathrm{E}_{\mathrm{R}}(G)=o\left(\frac{n^{2}}{\log (n)^{1-\varepsilon}}+n R\right)
$$

Practical Consequences ($R=3,000$)

(a) Argon2i and SB

(b) Ideal iMHF

Drama: Are the attacks ‘Practical’

- Argon2i team: No, at least for reali
- Recent: Argon2i-B submitted to IR7 Task Force) for standardization.
- New Result [AB16b]:
- New heuristics to reduce overhead by constant factor
- Simulate the attack on real instances

New Simulation Results: [AB16b]

Figure 1: Argon2i-B Attack Quality

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown line).

Outline

- Motivation
- Data Independent Memory Hard Functions (iMHFs)
- Attacks
- Constructing iMHFs (New!)
- Depth-Robustness is sufficient
- Conclusions and Open Questions

Depth-Robustness is Sufficient! [ABP16]

Key Theorem: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be (e,d)-depth robust then $\mathrm{CC}(\mathrm{G}) \geq e d$.
Implications: There exists a constant indegree graph G with

$$
\mathrm{CC}(\mathrm{G}) \geq \Omega\left(\frac{n^{2}}{\log n}\right)
$$

Previous Best [AS15]: $\Omega\left(\frac{n^{2}}{\log ^{10} n}\right)$
[AB16]: For all constant indegree graphs $\mathrm{CC}(\mathrm{G})=O\left(\frac{n^{2} \log \log n}{\log n}\right)$.

Depth-Robustness is Sufficient! [ABP16]

Proof: Let $\mathrm{P}_{1}, \ldots \mathrm{P}_{\mathrm{t}}$ denote an (optimal) pebbling of G . For $0<\mathrm{i}<\mathrm{d}$ define

$$
\mathrm{S}_{\mathrm{i}}=P_{i} \cup P_{d+i} \cup P_{2 d+i} \cup \cdots
$$

one of the sets S_{i} has size at most $\mathrm{CC}(\mathrm{G}) / \mathrm{d}$. Now we claim that

$$
d \geq \operatorname{depth}\left(G-S_{i}\right)
$$

because any path in $G-S_{i}$ must have been completely pebbled at some point. Thus, it must have been pebbled entirely during some interval of length d. Thus, $\mathrm{G}(\mathrm{CC}(\mathrm{G}) / \mathrm{d}, \mathrm{d})$-reducible. It follows that $\mathrm{CC}(\mathrm{G}) \geq e d$.

Proof by Picture

$$
\mathrm{S}_{\mathrm{i}}=P_{i} \cup P_{d+i} \cup P_{2 d+i} \cup \cdots
$$

$P_{1}, P_{2}, \ldots, P_{i-1}, P_{i}, P_{i+1}, \ldots, P_{i+d-1}, P_{i+d}, P_{i+d+1}, \ldots, P_{i+2 d-1}, P_{i+2 d}, \ldots$.
d rounds
d rounds

Claim: $\left|\mathrm{S}_{\mathrm{i}}\right| \geq e$

Claim: $\left|\mathrm{S}_{\mathrm{i}}\right| \geq e$

$$
c c(G) \geq \sum_{t}\left|P_{t}\right| \geq \sum_{i=1}^{S_{i} \mid} \mid \sum_{i=1}^{d} e \geq e d
$$

Contradiction by Picture

$$
\mathrm{S}_{\mathrm{i}}=P_{i} \cup P_{d+i} \cup P_{2 d+i} \cup \cdots
$$

Path: W in G-S
Step i: W contains no pebbles since $P_{i} \subset S_{i}$

Contradiction by Picture

$$
\mathrm{S}_{\mathrm{i}}=P_{i} \cup P_{d+i} \cup P_{2 d+i} \cup \cdots
$$

Path: W in G-S
Step i: W contains no pebbles since $P_{i} \subset S_{i}$
Step $\mathrm{i}+1$: W - $\{1\}$ contains no pebbles

Contradiction by Picture

$$
\mathrm{S}_{\mathrm{i}}=P_{i} \cup P_{d+i} \cup P_{2 d+i} \cup \cdots
$$

$$
\text { Path: } W \text { in } G-S_{i}
$$

Step i: W contains no pebbles since $P_{i} \subset S_{i}$
Step i+1: $\mathrm{W}-\{1\}$ contains no pebbles
Step i+2: W-\{1,2\} contains no pebbles

Contradiction by Picture

$$
\mathrm{S}_{\mathrm{i}}=P_{i} \cup P_{d+i} \cup P_{2 d+i} \cup \cdots
$$

Path: W in G-S
Step i: W contains no pebbles since $P_{i} \subset S_{i}$
Step i+1: $\mathrm{W}-\{1\}$ contains no pebbles
Step i+2: W-\{1,2\} contains no pebbles Step i+d-1: W-\{1,...,d-1\} contains no pebbles

Contradiction by Picture

Step i+d: W contains no pebbles since $P_{i+d} \subset S_{i}$

Step i+d-1: W-\{1,...,d-1\} contains no pebbles

Positive Result: Consequences

Theorem [ABP16]: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be (e, d)-depth robust then $\mathrm{E}_{\mathrm{R}}(G) \geq e d$.
Theorem[EGS75]: There is an $(\Omega(n), \Omega(n))$-depth robust DAG G with indegree $\delta=O(\log n)$.

Theorem [ABP16] There is a DAG G with maximum indegree $\delta=2$ and $\mathrm{E}_{\mathrm{R}}(G)=\Omega\left(\frac{n^{2}}{\log n}\right)$. Furthermore, there is a sequential pebbling algorithm N with cost $\mathrm{E}_{\mathrm{R}}(N)=O\left(\frac{n^{2}}{\log n}\right)$.

More New Results

Idea: Apply our attack recursively during balloon phases

(e,d)-reducible curve for Argon2i-A

Recursive Attack

$$
\begin{gathered}
C C(G) \leq e n+\frac{n}{e} n d \\
C C(G) \leq e n+\frac{n}{e} C C\left(G^{\prime}\right) \\
C C(G) \leq e_{1} n+\frac{n}{e_{1}}\left(e_{2} d_{1}+\frac{n}{e_{2}} d_{2} n\right)
\end{gathered}
$$

Conclusions

- Depth-robustness is a necessary and sufficient for secure iMHFs
- [AB16] [ABP16]
- Big Challenge: Improved Constructions of Depth-Robust Graphs
- We already have constructions in theory [EGS77, PR80, ...]
- But constants matter!

More Open Questions

- Computational Complexity of Pebbling
- NP-Hard to determine CC(G) [BZ16]
- Hardness of Approximation?
- What is CC(Argon2i-B)?
- Upper Bound: O(n¹.8)
- Recursive attack: $\left.\mathrm{O}\left(\mathrm{n}^{1.77}\right)\right] \quad[\mathrm{ABZ16b]}]+[A B P 16]$
- Lower Bound: $\left.\quad \Omega\left(\mathrm{n}^{1.66}\right)\right] \uparrow \quad[B Z 16 \mathrm{~b}]$

Large Gap Remains

Thanks for Listening

